三角形中位线定理的几种证明方法及教学中需要说明的地方_第1页
三角形中位线定理的几种证明方法及教学中需要说明的地方_第2页
三角形中位线定理的几种证明方法及教学中需要说明的地方_第3页
三角形中位线定理的几种证明方法及教学中需要说明的地方_第4页
三角形中位线定理的几种证明方法及教学中需要说明的地方_第5页
已阅读5页,还剩6页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三角形中位线定理的几种证明方法及教学中需要说明的地方三角形中位线定理的证明及其教学说明以下内容作者为:青岛第四中学杨瀚书老师三角形中位线定理的几种证明方法法1 :如图所示,延长中位线 DE至F,使,连结CF,则 丄亠二, 有AD FC,所以FC BD,则四边形BCFD是平行四边丄-下1形,DF XBC。因为1 ,所以 DE 1 BC .2法2:如團所小,过C作 m匚交DE的延长线于F,则 二二丄有FC AD,那么FC BD,则四边形BCFD为平行四边形,DF BC。 上-1疋.因为1 ,所以DE 丄BC .2法3:如图所示,延长DE至F,使一 丄,连接CF、DC、AF,则四边形ADCF为平行四

2、边形,有AD CF,所以FC BD,那么四边形BCFD为平 zDE丄DF八行四边形,DF BC。因为一 ,所以DE - BC .2法4 :如图所示,过点E作MN / AB,过点A作AM / BC ,则四边形ABNM为平行四边形,易证 AEM三CEN,从而点E是MN的中点,易证四边形ADEM和BDEN都为平行四边形,所以DE=AM=NC=BN ,DE / BC,即DE 1 BC 2法5 :如图所示,过三个顶点分别向中位线作垂线.、教学说明1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关

3、系,我联想到在此之前认识线段中点时 的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。如图,A为线段BC或线段BC的延长线)上的任意一点,D E分别是AB AC 的中点,线段DE与BC有什么关系?AO0aB DEC图:如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗 ?图:说明:学生观察(几何画板制作的)课件演示:当 ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不 难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠 成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜 2、教学重点:本课重点是掌握和

4、运用三角形中位线定理。第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关 系,计算边长或中位线的长。 DE是厶ABC的中位线第二,要知道中位线定理的使用形式,如:1 DE/ BC DE =BC2第三,让学生通过部分题目进行训练, 进而掌握和运用三角形中位线定理。题 1 如图 4.11-7,Rt ABC / BAG 90, D E 分别为 AB BC的中点,点F在CA延长线上,/ FDA=Z B.(1)求证:AF= DE (2)若AO6,BO 10,求四边形 AEDF勺周长.分析 本题是考查知识点较多的综合题,它不但考查应用三角形中位线定理 的能力,而且还考查应用直角三角形和平行四

5、边形有关性质的能力。(1)要证AF= DE,因为它们刚好是四边形的一组对边,这就启发我们设法证 明AEDF是平行四边形.因为DE是三角形的中位线,所以 DE/ AC又题给条件 / FDA=Z B,而在 Rt ABC中,因AE是斜边上的中线,故 AE= EB.从而/ EAB =/ B.于是/ EAB=Z FDA故得到AE/ DF.所以四边形AEDF为平行四边形.11(2)要求四边形AEDF勺周长,关键在于求AE和DEAE= 2 BC= 5,DE= 2 AC =3.证明:(1) t D E分别为AB BC的中点, DE/ AC 即 DE/ AFt Rt ABC中,/ BAG90, BE= EC E

6、心 E吐 2 BQ Z EAB=ZB又 t/ FDA=Z B,Z EAB=Z FDA EA/ DF, AEDF为平行四边形 AF= DE(2) t AO 6, BO 10,丄1 DE= 2 AO 3, AE= 2 BC= 5四边形 AEDF勺周长=2(AE+DE)= 2(3+5) = 16题2 如图,在四边形 ABCD中, AB= CD E、F分别是BC AD的中点,延 长BA和CD分别与EF的延长线交于 K、H。求证:Z BKEZ CHE.E分析 本题考查三角形中位线的构造方法及应用、平行线的性质由中点想到中位线,又要把结论联系起来,既要使中位线的另一端点处一理想的位置, 又使需证明的角转移

7、过来,可考虑,连BD找BD中点G则EG FG分别为 BCD DBA勺中位线,于是得到了解题方法.考虑到结论辅助线不要乱作,取中点比 作平行线好证明:连BD并取BD的中点 G 连FG GE在厶 DAB BCD中TF是AD的中点,E是BC的中点1 1 FG/ AB且 FG= 2 AB EG/ DC且 EG= 2 DC/ BKE=Z GFE / CHZ GEF A吐 CD 二 FG= EGZ GFEZ GEF /-Z BKE=Z CHE题3如图,ABCD为等腰梯形,AB/ CD O为 AC BD的交点,P、R、Q分别为AODO BC的中点,Z AO圧60求证: PQR为等边三角形.分析 本题考查三角

8、形中位线定理、等边三角形判定方法、直角三角形斜边 中线定理。利用条件可知 PR= 2 AD能否把PQ RQ与 AD(BC联系起来成为解 题的关键,由于/ A0圧60, OB OC则厶ODC为等边三角形,再由R为OD中 点,则/ BR& 90, QR就为斜边BC的中线.证明:连RC 四边形ABCD为等腰梯形且AB/ DC AD= BC / ADC=Z BCD又v DC为公共边 ADCA BCD/ ACDZ BDC ODC为等腰三角形vZ DOCZ AO圧60 ODC为等边三角形vR为OD的中点Z OR&90=Z DRC等腰三角形底边上的中线也是底边上的高 )1 1VQ 为 BC的中点 RQ= 2

9、 BO 2 AD1 1同理 PQ= 2 BO 2 AD在厶OAD中 v P、R分别为AO OD的中点1 PR= 2 AD PR= PQ= RQ故厶PRQ为等边三角形3、教学难点:本课难点是三角形中位线定理的证明,证明方法的关键在于如何 添加辅助线.教师可以在证明思路上进行引导、启发,避免生硬地将辅助线直接作出来让学生接受。例如,教师可以启发学生:要证明一条线段的长等于另一条线段的长的一半,可将较短的线段延长一倍,或者截取较长的线段的一半。上面的这种辅助线的作法可以概括为“短延长、长截短”,这种辅助线的 作法还可以用于证明线段和、差、倍、分等方面。证明线段的和、差、倍、分常用的证明策略:1,长截

10、短:要证明一条线段等于另外两条线段的和与差,可在长线上截取一部分等于另两条线段中的一条,然后再证明另一部分等于剩下的一条线段的 长。(角也亦然)2,短延长:要证明一条线段等于另外两条线段的和与差,可先延长较短的一条线段,得到两条线段的和,然后再证明其与长的线段相等。(角也这样)3, 加倍法:要证明一条线段等于另一条线段的 2倍或1/2,可加倍延长线 段,延长后使之为其2倍,再证明与另一条线段相等。(角也这样)4, 折半法:要证明一条线段等于另一条线段的 2倍或1/2,也可取长线段 的中点,再证明其中之一与另一条线段相等。(角也可用)5,代数运算推理法:这种方法是利用代数运算证明线段或角的和、差

11、、倍、分。6,相似三角形及比例线段法:利用相似三角形的性质进行推理论证。题1 (短延长):如图所示,在正方形 ABCD中,P、Q分别为BC CD上的点。(1)若 N PAQ=45,求证:PB+DQ=RQ(2) 若厶PCC的周长等于正方形周长的一半,求证: PAQ=45证明:(1)延长CB至E,使BE=DQ连接AE四边形ABCD1正方形 ABE= ABC= D=90 , AB=AD在厶 ABEft ADQ AB=AD 乂ABEND, BE=DQABE 三 ADQ.AE =AQ, BAE QADPAQ =45 BAPQAD =45BAPBAE =45,即 EAP =/PAQ =45 在AEP和AQP中AE 二 AQ, EAP = PAQ, AP 二 APAEP 二 AQPEP = PQEP =EB BP =DQ BP =PQ即 PB DQ = PQ(2)延长CB至E,使BE=DQ连接AE由(1可知ABE = ADQ.AE =AQ, BAE =/QADDAQ . BAQ BAE . BAQ =90.PCQ的周长等于正方形周长的一半PC QC QP = BC CD.PQ = (BC - PC) (CD - QC)二 BP DQ = BP EB = EP 在:AEP和AQP中AE=AQ, EP=PQ,AP=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论