说明书(52页).doc

渐开线齿检仪的改进设计-单盘式渐开线检查仪设计【齿轮测量仪】

收藏

压缩包内文档预览:(预览前20页/共53页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:127740972    类型:共享资源    大小:4.70MB    格式:ZIP    上传时间:2021-05-15 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
渐开线 齿检仪 改进 设计 单盘式 检查 齿轮 测量仪
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】

内容简介:
附件1:外文资料翻译译文应用坐标测量机的机器人运动学姿态的标定这篇文章报到的是用于机器人运动学标定中能获得全部姿态的操作装置坐标测量机(CMM)。运动学模型由于操作器得到发展, 它们关系到基坐标和工件。 工件姿态是从实验测量中引出的讨论, 同样地是识别方法学。允许定义观察策略的完全模拟实验已经实现。实验工作的目的是描写参数辨认和精确确认。用推论原则的那方法能得到在重复时近连续地校准机器人。关键字:机器人标定 坐标测量 参数辨认 模拟学习 精确增进1. 前言机器手有合理的重复精度 (0.3毫米)而知名, 但仍有不好的精确性(10.0 毫米)。为了实现机器手精确性,机器人可能要校准也是好理解 。 在标定过程中, 几个连续的步骤能够精确地识别机器人运动学参数,提高精确性。这些步骤为如下描述:1 操作器的运动学模型和标定过程本身是发展,和通常有标准运动学模型的工具实现的。作为结果的模型是定义基于厂商的运动学参数设置错误量, 和识别未知的,实际的参数设置。2 机器人姿态的实验测量法(部分的或完成) 是拿走为了获得从联系到实际机器人的参数设置数据。3 实际的运动学参数识别是系统地改变参数设置和减少在模型阶段错误量的定义。一个接近完成辨认由分析不同中间姿态变量P和运动学参数K的微分关系决定:于是等价转化得:两者择一, 问题可以看成为多维的优化问题,这是为了减少一些定义的错误功能到零点,运动学参数设置被改变。这是标准优化问题和可能解决用的众所周知的 方法。4 最后一步是机械手控制中的机器人运动学识别和在学习之下的硬件系统的详细资料。包含实验数据的这张纸用于标度过程。 可获得的几个方法是可用于完成这任务, 虽然他们相当复杂,获得数据需要大量的成本和时间。这样的技术包括使用可视化的和自动化机械 ,伺服控制激光干涉计,有关声音的传感器和视觉传感器 。理想测量系统将获得操作器的全部姿态(位置和方向),因为这将合并机械臂各个位置的全部信息。上面提到的所有方法仅仅用于唯一部分的姿态, 需要更多的数据是为了标度过程到进行。2理论文章中的理论描述,为了操作器空间放置的各自的位置,全部姿态是可测量的,虽然进行几个中间测量,是为了获得姿态。测量姿态使用装置是坐标测量机(CMM),它是三轴的,棱镜测量系统达到0.01毫米的精确。机器人操作器是能校准的,PUMA 560,放置接近于CMM,特殊的操作装置能到达边缘。图1显示了系统不同部分安排。在这部分运动学模型将是发展, 解释姿态估算法,和参数辨认方法。2.1 运动学的参数在这部分,操作器的基本运动学结构将被规定,它关系到完全坐标系统的讨论, 和终点模型。从这些模型,用于可能的技术的运动学参数的识别将被规定,和描述决定这些参数的方法。那些基础的模型工具用于描写不同的物体和工件操作器位置空间的关系的方法是Denavit-Hartenberg方法,在Hayati 有调整计划,停泊处 和当二连续的接缝轴是名义上地平行的用于说明不相称模型 。如图2这中方法存在于物体或相互联系的操作杆结构中,和运动学中需要从一个坐标到另一个坐标这种同类变化是被定义的。这种变化是相同形式的上面的关系可以解释通过四个基本变化操作实现坐标系n-1到结构坐标系n的变化。只有需要找到与前一个的关系的四个变化是必需的,在那个时候连续的轴是不平行的,定义为零点。当应用于一个结构到下一个结构的等价变化坐标系与更改Denavit-Hartenberg系相一致时,它们将被书写成矩阵元素实现运动学参数功能的矩阵形状。这些参数是变化的简单变量:关节角,连杆偏置, 连杆长度,扭角,矩阵通常表示如下:对于多连接的, 例如机械操作臂,各自连续的链环和两者瞬间的位置描写在前一个矩阵变化中。这种变化从底部链环开始到第n链环因此关系如下:图3表示出PUMA机器人在Denavit-Hartenberg系中每一连杆,完全坐标系和工具结构。变化从世界坐标系到机器人底部结构需要仔细考虑过,因为潜在的参数取决于被选择的改变类型。考虑到图4,世界坐标,在D-H系中定义的从世界坐标到机器人基坐标,坐标是PUMA机器人定义的基坐标和机器人第二个D-H结构中坐标。我们感兴趣的是从世界坐标到必需的最小的参数数量。实现这种变化有两种路径:路径1,从到D-H变化包括四个参数,接着从到的变化将牵连二个参数和的变化图3图4最后,另外从到的D-H变化中有四个参数其中和两个参数是关于轴Z0因此不能独立地识别, 和是沿着轴Z0因此也不能是独立地识别。因此,用这路径它需要从世界坐标到PUMA机器人的第一个坐标有八个独立的运动学参数。路径2,同样地二中择一,从世界坐标到底部结构坐标的变化可以是直接定义。因此坐标变换需要六个参数,如Euler形式:下面是从到DH变化中的四个参数,但与相关联,与相关联,减少成两个参数。很显然这种路径和路径1一样需要八个参数,但是设置不同。上面的方法可能使用于从世界坐标系到PUMA机器人的第二结构的移动中。在这工作中,选择路径2。工具改变引起需要六个特殊参数的改变的Euler形式:用于运动学模型的参数总数变成30,他们定义于表12.2 辨认方法学运动学的参数辨认将是进行多维的消去过程, 因此避免了雅可比系统的标定,过程如下:1. 首先假设运动学的参数, 例如标准设置。2. 为选择任意关节角的设置。3. 计算PUMA机器人末端操作器。4. 测量PUMA机器人末端操作器的位姿如关节角,通常标准的和预言的位姿将是不同的。5. 为了最好使预言位姿达到标准的位姿,在整齐的方式更改运动学的参数。这个过程应用于不是单一的关节角设置而是一定数量的关节角,与物理测量数量等同的全部关节角设置是需要,必须满足在这儿:Kp是识别的运动学参数的数量N是测量位姿的数Dr是测量过程中自由度的数量文章中,给定了自由度的数量,赠值为因此全部位姿是测量的。在实践中,更多的测量应该是在实验测量法去掉补偿结果。优化程序使用命名为ZXSSO,和标准库功能的IMSL。2.3 位姿测量法显然它是从上面的方法确定PUMA机器人全部位姿是必需的为了实现标定。这种方法现在将详细地描写。如图5所示,末端操作器由五个确定的工具组成。 考虑到借助于工具坐标和世界坐标中间各个坐标的形式,如图6这些坐标的关系如下:是关于世界坐标结构的第i个球的4x1列向量坐标, Pi是关于工具坐标结构第i个球的4x1坐标的列向量, T是从世界坐标结构到工具坐标结构变化的4x4矩阵。设定Pi,测量出,然后算出T,使用于在标定过程的位姿的测量。它是不会很简单,但是不可能由等式(11)反求出T。上面的过程由四个球A, B, C和D来实现,如下:或为由于P, T和P全部相符合,反解求的位姿矩阵在实践中当PUMA机器人放置在确定的位置上,对于CMM由四个球决定Pi是困难的。准确的测量三个球,第四球根据十字相乘可以获得考虑到决定的球中心坐标的是基于球表面点的测量,没有分析可获到的程序。 另外,数字优化的使用是为了求惩罚函数的最小解这里是确定球中心,是第个球表面点的坐标且是球的半径。在测试过程中,发现只测量四个表面上的点来确定中心点是非常有效的。1. Manipulator机器人概述这是出现在古代早期机器人和对科研进入二十世纪机器人的基础上发展中,随着计算机和自动化技术的发展,特别是在1946年第一台数字电子计算机,因为计算机的出现取得了惊人的进展,以高速,高容量,低价格方向。同时,促进技术进步的大规模自动化生产的迫切需求,为机器人的发展奠定了基础。另一方面,核技术的研究需要一定的操作机械代替人处理放射性物质。在这其中要求的背景下,美国于1947年开发,1948年和远程控制机器人开发机械主从机械手。从美国开始开发机器人第一。 1954年美国首先提出的磨损沃尔玛,以及为申请专利的工业机器人的概念。这项专利的一点是利用机器人关节伺服控制技术,使用机械手的动作,机器人可以实现。教学动态记录和回放。这就是所谓的示范再现机器人。现有的机器人使用这种控制方式之一。 1958年联合国防治公司研制出第一台机械手铆机器人。作为机器人产品最早的实用机型(示范再现)是1962年美国的AMF公司推出的“VERSTRAN”和UNIMATION公司推出的“UNIMATE”。这些工业机器人主要由类似人的手和胳膊谁组成它可以代替苦役,以实现生产的机械化和自动化,可以在有害环境下工作,保护人身安全,因而广泛应用于机械制造,冶金,电子,光工业和原子能等部门。工业机器人CaoZuoJi(由机械本体),控制器,伺服驱动系统和检测传感器,使其成为一个人形操作,全自动控制,可重复编程,可在三维空间中完成机电一体化自动化生产设备的各种任务。特别适合于多品种,柔性生产批量变化。它以帮助稳定,提高产品质量,提高生产效率,改善劳动条件和产品更新速度快起着极其重要的作用。机器人技术与计算机,控制论,组织学习,信息和传感技术,人工智能,仿生学科学和高新技术的集成和新技术的形成,是一个非常活跃的当代研究应用越来越广泛。机器人的应用,是一个国家的工业自动化水平的重要标志。机器人而不是简单意义上的劳动,但全面的人际交往能力代替人工和机械的,电子机械,已经到了快速反应和分析判断能力,环境条件的人专业的化身,而机器可能会更长期限工作,精度高和抗恶劣环境的能力,在某种意义上,它也是机器进化的产物的过程中,它是重要的工业和行业的生产和服务,而且还设置了先进制造技术领域不可缺少的自动化设备。机械手是模仿手中行动的一部分,根据给定的计划,跟踪和要求获取,处理或自动机械设备操作。在工业生产的工业机器人的应用程序称为“机器人”。机械手的应用程序可用于提高生产的自动化生产和劳动生产率水平:能减轻劳动强度,保证产品质量,实现安全生产,特别是在高温,高压,低温,低压,粉尘,易爆,有毒气体和辐射等恶劣环境,它代替人的正常工作,意义更加重大。因此,在机械加工,冲压,铸造,锻造,焊接,热处理,电镀,喷漆,装配,轻工,交通等越来越广泛引用。操纵器的结构简单,特异性形式开始,对于机床的强烈只饲养,并连接到计算机的专用机械手。随着工业技术的发展,由一个独立的程序控制实现多次操作,适用范围较广“计划控制的一般操纵国”,或一般机械手。由于一般的机械手可以迅速改变工作程序,良好的适应性,因此它继续改造中,小批量生产的产品得到广泛引用。2. 加强的机械手1)执行器手即与物体接触部分。由于与物体接触形式的不同,可分为吸附型和夹紧手中。夹持式手的手指(或爪子)和动力传动机构构成。手指与组件对象的直接接触,共同的手指运动形式已搬回到和平的转变。回到结构简单,便于手指等应用组件制造,广泛应用于翻译类型,改造,其原因是那么复杂的结构,但翻译式循环部分,手指夹紧工件直径变化不影响其轴线位置,因此适当的夹持直径变化范围工件。手指抓住对象的结构取决于表面形状,引起部分(内孔的个人资料或)和物体的重量和尺寸。通用是指一个单位,形成V形手指表面:剪辑类型里面有支护形式;指数型双指按类型和双指型等手,但是,传力机构产生锁模力由手指来完成任务。把对象剪辑输电机构:越是常用类型的滑动通道,连杆杠杆式,杠杆式锥齿轮,类型,螺母大写和,下,键入弹簧式和重力式,等封闭式手工制作由Chuck为主,它是依靠吸附力(如在卡盘或形成负压电吸磁)吸附对象,相应的负压吸附手上和电磁盘两个吸盘种。对于轻小片零件,光滑板材通常与负压吸chuch材料。的方式造成负压吸风和真空泵的类型。为了指导磁环型和有洞的盘子,有这样的板等部件(网格,通常使用电磁吸盘吸材料。chuch的电磁吸力由直流磁铁和生产。通信电磁铁。负压chuch和电磁chuch吸收电荷,它的形状,数量,吸盘吸附大小,根据吸附物体的形状,大小和重量的大小而定。此外,根据特殊需要,手和勺子类型(如铸造机械手倒袋的一部分),乔类型(如冷齿机上下料机械手的手)的类型。腕手和手臂连接的部件,可用于调节抓住对象(即姿势)的立场。手臂手臂是支持捕获的对象,手,手腕的一个重要组成部分。 ARM的作用是推动抓住物体和手指的处理,以预定的要求指定的位置。机械臂移动工业经常驾驶臂(如油缸,气缸,齿条和齿轮机构,连杆机构,螺旋机构及凸轮机构等)和驱动源(如液压和气动或电机等)的组成部分为了实现各种运动联合兵种。或者在伸缩臂升降运动,以防止周边的轴旋转,需要一个引导设备,以确保在正确的方向运动手指。此外,定位装置可以携带武器的弯矩和扭矩转弯时或在启动时,在瞬间产生的惯性制动臂的运动,使运动部件的应力状态非常简单。定位装置的结构形式,常用的有:单汽缸,双圆柱型,四缸和V形槽,燕尾槽等为主的形式。支柱支柱是支持手臂部分,也可以是支柱手臂和手臂转动和升降运动(或沥青)运动是和支柱紧密相连的一部分。机械手通常设定为固定的,但由于工作需要,有时也可以横向移动,即所谓将移动式酒吧。步行机构当需要完成的工业机器人远程操作,或扩大使用范围,同样的座位安装辊,铁路等,以实现机器的运动流动机制。工业机器人滚筒式可分为声音的流动机制及两个手推车。驱动辊议案应额外的机械传动装置。机架机械手的座位是基础件,机械手驱动器组件和驱动系统安装在待命,所以支持和链接的作用。2)驱动系统驱动系统是工业机器人的驱动动力装置驱动器的运动,通常由电源,控制调节装置和辅助设备组成。驱动控制系统的液压传动,气压传动,电力传动和机械传动等形式使用4 .3)控制系统控制系统主要是由工业机器人运动系统的要求。目前,工业机器人的过程控制系统和通用电气定位(或机械停止件定位)系统的控制系统。控制系统具有电气控制和喷射控制两种,它支配着机械手运动规定的程序进行,根据人民和操纵指令信息(如龙猫,轨迹,运动速度和时间)内存,并根据控制系统的信息化教学的行政机构,并在必要时,运动时的机械手操作监视,任何错误或故障报警信号.4)位置检测装置控制机械手器的位置,并保持执行机构的实际位置反馈运动控制系统,并与设定的位置进行比较,然后通过控制系统调整,从而使执行器一定的精度达到设定位置。3.Manipulator分类工业机器人有许多种,对于分类问题,目前在中国,而不是在这个临时统一分级使用范围,驱动模式和分类控制系统等标准据公用事业百分之机器人可分为专用机械手和通用机械手两种:1.special机械手它是连接到主机,并没有固定的独立的控制系统机制的方案。用行动专用机械手,减少工作对象单一,结构简单,运行可靠,成本低的特点,例如自动机,自动生产线机器人排放和加工中心“批量自动化生产的自动刀具更换机械臂适合大子公司。2.一般的机械手这是一个独立的控制系统,程序变量,一种机械手动作灵活。通过调整,可在不同的场合,驱动系统和晶格性能范围内使用,它的行动方案是可变的,控制系统是独立的。通用机械手的工作范围,更高的精度和通用性,适用于中,小批量改变自动化生产。一般根据控制机械手可分为简单的类型和定位伺服式两种不同的方式分为:简单型“开幕式和闭幕式”型控制定位,只能是位置控制:伺服类型伺服系统,可点位控制系统,还可以实现连续伺服控制路径控制的一般模型GM操纵属于NC型。1)根据驱动方式分1.液压传动机械手基于液压驱动机械手运动的执行机构。其主要特点是:捕捉几百公斤,传动平稳,结构紧凑,行动迅速的重量。但对密封装置的要求,否则漏油严格的机械手的工作性能有很大影响,而不是在高温下,低温工作。如果采用电动液压伺服驱动系统机械手,可以实现连续轨迹控制,使机械手,但普遍扩大电液伺服阀的制造精度,机油滤清器,严格的成本是很高的。2.气动机械手的理论支持基于压缩空气来驱动执行器的机械手运动的压力。其主要特点是:媒体资源极为方便,输出力小,气动行动迅速,结构简单,成本低廉。然而,由于空气可压缩特性,工作速度,稳定性差,低气压的影响,渔获量一般在30公斤以下的重量,在相同条件下它捕获比液压机械手的结构,高速很合适轻负荷,高温度和灰尘的工作环境英寸大3.机械传动机械手即机械传动(如凸轮,连杆,齿轮和齿条,间歇机制等)驱动的机器人。它是一种特殊的工作主机连接到机器人,它的功率是由加工机械通过。其主要特点是准确可靠,动作频率的议案,但结构比较大,行动计划不变。它往往是用来工作和主机放电。4.动力传动机械手也就是说,有特殊的结构感应电机,直线电机或功率步进电机直接驱动执行机构的机械手运动,因为不需要在中间的变化,因此机械结构简单的组织。机械手,直线电机的速度和长途旅行的运动之一,维护和使用方便。这种机器人还小,但有希望。3)根据控制方式分1.位置控制它的运动之间的点至点的移动,只有在这个过程中几个点的位置控制运动的空间,无法控制其运动轨迹。如果你想控制点,你必须增加超过了电气控制系统的复杂性更多。特殊和一般工业机器人目前使用的是这样。2.连续轨迹控制它的任何空间连续的曲线轨迹,其特点是集无限的,整个移动过程控制,可以实现平稳和准确的动作,使用范围点,但电控系统是复杂的。这种工业机器人的一种普遍使用小型计算机控制。四,工业机器人的应用在生产及意义由于其高度的灵活性和机器人在生活中,制造业在各个领域的表现,如中起着非常重要的作用。它可以携带货物,排序和产品,并能在有害环境,保护,而不是对人的生命安全运行繁重的劳动,所以被广泛应用于机械制造,轻工,需要处理各种货物的地方。在现代工业,生产过程自动化已成为一个突出的主题。从所有社会各界的自动化水平越来越高,现代化的加工车间,机械手通常可以改善生产效率,完成工人难以完成或危险的工作。可在机械工业,加工,装配等生产在很大程度上是不连续的。据资料介绍,在美国所有工业零部件生产,百分之75是小批量的生产,金属加工的四分之三在50岁以下的生产实时件机械零件批量加工生产的时间只有部分占5。在这里你可以看到,装卸,搬运,如为实现这些过程的机械化工业机器人的过程是自动化的紧迫性和发电。目前,机械手完成的工作经常被用来有:从模具注塑行业抓住产品和快速固化到下一个将产品生产过程;机器人采摘加工行业,饲料,铸造高温熔化提取液等行业在自动化车间运送材料的焊接,涂装从事,机器人装配工艺操作,但将会从繁重,单调,重复工人解放了体力劳动。特别是在高温,危险或有害的工作环境(放射性,有毒气体和粉尘,易燃,易爆,强噪声等),可用的部分,而不是机械手操作。目前,机器人已广泛应用于铸造,锻造,冲压,对各工序加工,油漆,装配等。在机械工业,机械手的应用意义可概括如下:1.为了提高生产过程的自动化该机器人有利于废旧物资,实现工件装载,卸载和传输刀具更换和整机装配等,因此自动化程度可以提高劳动生产率,降低生产成本。2.为了改善工作条件,避免人身意外 在高温,高压,低温,低压,粉尘,噪音和气味,有放射性等有毒或有污染和狭隘的用人之际的工作空间是危险的手直接操作或不可能的,而且使用机器人可以部分或代替人安全的工作条件,让所有家庭作业改善。在一些简单的,重复性的,尤其是一个沉重的运作,以取代人类,机器人可避免因疏忽或意外操作疲劳。3.可以减轻人力,并促进生产节奏 应用机械手的工作,而不是人,它是直接减少人力的一个方面,因为应用程序可以是连续的工作,机器人是减少人力和另一侧。因此,在自动机综合加工,自动线现在几乎没有机械手,以减少人力和更精确的控制生产节奏,促进生产节奏的工作。综上所述,机械行业的发展机械臂的有效应用,是一个必然的趋势。附件2:外文原文(复印件)Full-Pose Calibration of a Robot Manipulator Using a Coordinate-Measuring Machine The work reported in this article addresses the kinematiccalibration of a robot manipulator using a coordinate measuringmachine (CMM) which is able to obtain the full pose ofthe end-effector. A kinematic model is developed for themanipulator, its relationship to the world coordinate frame andthe tool. The derivation of the tool pose from experimentalmeasurements is discussed, as is the identification methodology.A complete simulation of the experiment is performed, allowingthe observation strategy to be defined. The experimental workis described together with the parameter identification andaccuracy verification. The principal conclusion is that themethod is able to calibrate the robot successfully, with aresulting accuracy approaching that of its repeatability.Keywords: Robot calibration; Coordinate measurement; Parameter,identification; Simulation study; Accuracy enhancement1. Introduction It is well known that robot manipulators typically havereasonable repeatability (0.3 ram), yet exhibit poor accuracy(10.0 mm). The process by which robots may be calibratedin order to achieve accuracies approaching that of themanipulator is also well understood . In the calibrationprocess, several sequential steps enable the precise kinematicparameters of the manipulator to be identified, leading toimproved accuracy. These steps may be described as follows:1. A kinematic model of the manipulator and the calibrationprocess itself is developed and is usually accomplished withstandard kinematic modelling tools. The resulting modelis used to define an error quantity based on a nominal(manufacturers) kinematic parameter set, and an unknown,actual parameter set which is to be identified.2. Experimental measurements of the robot pose (partial orcomplete) are taken in order to obtain data relating to theactual parameter set for the robot.3.The actual kinematic parameters are identified by systematicallychanging the nominal parameter set so as to reducethe error quantity defined in the modelling phase. Oneapproach to achieving this identification is determiningthe analytical differential relationship between the posevariables P and the kinematic parameters K in the formof a Jacobian, and then inverting the equation to calculate the deviation ofthe kinematic parameters from their nominal valuesAlternatively, the problem can be viewed as a multidimensionaloptimisation task, in which the kinematic parameterset is changed in order to reduce some defined error functionto zero. This is a standard optimisation problem and maybe solved using well-known methods.4. The final step involves the incorporation of the identifiedkinematic parameters in the controller of the robot arm,the details of which are rather specific to the hardware ofthe system under study. This paper addresses the issue of gathering the experimentaldata used in the calibration process. Several methods areavailable to perform this task, although they vary in complexity,cost and the time taken to acquire the data. Examples ofsuch techniques include the use of visual and automatictheodolites, servocontrolled laser interferometers ,acoustic sensors and vidual sensors . An ideal measuringsystem would acquire the full pose of the manipulator (positionand orientation), because this would incorporate the maximuminformation for each position of the arm. All of the methodsmentioned above use only the partial pose, requiring moredata to be taken for the calibration process to proceed.2. Theory In the method described in this paper, for each position inwhich the manipulator is placed, the full pose is measured,although several intermediate measurements have to be takenin order to arrive at the pose. The device used for the posemeasurement is a coordinate-measuring machine (CMM),which is a three-axis, prismatic measuring system with aquoted accuracy of 0.01 ram. The robot manipulator to becalibrated, a PUMA 560, is placed close to the CMM, and aspecial end-effector is attached to the flange. Fig. 1 showsthe arrangement of the various parts of the system. In thissection the kinematic model will be developed, the poseestimation algorithms explained, and the parameter identificationmethodology outlined.2.1 Kinematic Parameters In this section, the basic kinematic structure of the manipulatorwill be specified, its relation to a user-defined world coordinatesystem discussed, and the end-point toil modelled. From thesemodels, the kinematic parameters which may be identifiedusing the proposed technique will be specified, and a methodfor determining those parameters described.The fundamental modelling tool used to describe the spatialrelationship between the various objects and locations in themanipulator workspace is the Denavit-Hartenberg method, with modifications proposed by Hayati, Mooring and Wu to account for disproportional models when two consecutive joint axes are nominally parallel. Asshown in Fig. 2, this method places a coordinate frame oneach object or manipulator link of interest, and the kinematicsare defined by the homogeneous transformation required tochange one coordinate frame into the next. This transformationtakes the familiar form The above equation may be interpreted as a means totransform frame n-1 into frame n by means of four out ofthe five operations indicated. It is known that only fourtransformations are needed to locate a coordinate frame withrespect to the previous one. When consecutive axes are notparallel, the value of/3. is defined to be zero, while for thecase when consecutive axes are parallel, d. is the variablechosen to be zero. When coordinate frames are placed in conformance withthe modified Denavit-Hartenberg method, the transformationsgiven in the above equation will apply to all transforms ofone frame into the next, and these may be written in ageneric matrix form, where the elements of the matrix arefunctions of the kinematic parameters. These parameters aresimply the variables of the transformations: the joint angle0., the common normal offset d., the link length a., the angleof twist a., and the angle /3. The matrix form is usuallyexpressed as follows: For a serial linkage, such as a robot manipulator, a coordinateframe is attached to each consecutive link so that both theinstantaneous position together with the invariant geometryare described by the previous matrix transformation. Thetransformation from the base link to the nth link will thereforebe given byFig. 3 shows the PUMA manipulator with theDenavit-Hartenberg frames attached to each link, togetherwith world coordinate frame and a tool frame. The transformationfrom the world frame to the base frame of themanipulator needs to be considered carefully, since there arepotential parameter dependencies if certain types of transformsare chosen. Consider Fig. 4, which shows the world framexw, y, z, the frame Xo, Yo, z0 which is defined by a DHtransform from the world frame to the first joint axis ofthe manipulator, frame Xb, Yb, Zb, which is the PUMAmanufacturers defined base frame, and frame xl, Yl, zl whichis the second DH frame of the manipulator. We are interestedin determining the minimum number of parameters requiredto move from the world frame to the frame x, Yl, z. Thereare two transformation paths that will accomplish this goal:Path 1: A DH transform from x, y, z, to x0, Yo, zoinvolving four parameters, followed by another transformfrom xo, Yo, z0 to Xb, Yb, Zb which will involve only twoparameters b and d in the transformFinally, another DH transform from xb, Yb, Zb to Xt, y, Zwhich involves four parameters except that A01 and 4 areboth about the axis zo and cannot therefore be identifiedindependently, and Adl and d are both along the axis zo andalso cannot be identified independently. It requires, therefore,only eight independent kinematic parameters to go from theworld frame to the first frame of the PUMA using this path.Path 2: As an alternative, a transform may be defined directlyfrom the world frame to the base frame Xb, Yb, Zb. Since thisis a frame-to-frame transform it requires six parameters, suchas the Euler form:The following DH transform from xb, Yb, zb tO Xl, Yl, zlwould involve four parameters, but A0 may be resolved into4, 0b, , and Ad resolved into Pxb, Pyb, Pzb, reducing theparameter count to two. It is seen that this path also requireseight parameters as in path i, but a different set.Either of the above methods may be used to move fromthe world frame to the second frame of the PUMA. In thiswork, the second path is chosen. The tool transform is anEuler transform which requires the specification of sixparameters:The total number of parameters used in the kinematic modelbecomes 30, and their nominal values are defined in Table 1.2.2 Identification Methodology The kinematic parameter identification will be performed asa multidimensional minimisation process, since this avoids thecalculation of the system Jacobian. The process is as follows:1. Begin with a guess set of kinematic parameters, such asthe nominal set.2. Select an arbitrary set of joint angles for the PUMA.3. Calculate the pose of the PUMA end-effector.4. Measure the actual pose of the PUMA end-effector forthe same set of joint angles. In general, the measured andpredicted pose will be different.5. Modify the kinematic parameters in an orderly manner inorder to best fit (in a least-squares sense) the measuredpose to the predicted pose. The process is applied not to a single set of joint angles butto a number of joint angles. The total number of joint anglesets required, which also equals the number of physicalmeasurement made, must satisfyKp is the number of kinematic parameters to be identifiedN is the number of measurements (poses) takenDr represents the number of degrees of freedom present ineach measurement. In the system described in this paper, the number of degreesof freedom is given bysince full pose is measured. In practice, many more measurementsshould be taken to offset the effect of noise in theexperimental measurements. The optimisation procedure usedis known as ZXSSO, and is a standard library function in theIMSL package .2.3 Pose Measurement It is apparent from the above that a means to determine thefull pose of the PUMA is required in order to perform thecalibration. This method will now be described in detail. Theend-effector consists of an arrangement of five precisiontoolingballs as shown in Fig. 5. Consider the coordinates ofthe centre of each ball expressed in terms of the tool frame(Fig. 5) and the world coordinate frame, as shown in Fig. 6.The relationship between these coordinates may be writtenas:where Pi is the 4 x 1 column vector of the coordinates ofthe ith ball expressed with respect to the world frame, P isthe 4 x 1 column vector of the coordinates of the ith ballexpressed with respect to the tool frame, and T is the 4 4homogenious transform from the world frame to the toolframe.1.Manipulator overview of RobotsIt is the ancient robot in early appearance and developed on the basis of research into the middle of the twentieth century manipulator, along with the computer and automation technology development, especially the first digital electronic computer in 1946, since the advent of computer made amazing progress, to high speed, high capacity, low price direction. Meanwhile, the urgent demand of mass production of promoting automation technology progress, and for the development of robots laid a foundation. On the other hand, nuclear technology research requires certain operating machine instead of people handle the radioactive substances. In this one requirement background, the United States is developed in 1947, in 1948 and remote control robot developed mechanical master-slave manipulator.From the United States began developing manipulators first. In 1954 the United States first suggested the wear wal-mart, and the concept of industrial robot applied for patent. This patent point is using servo technology control of the robot joints, using an action on the robot hands, the robot can realize. Teaching movement recording and playback. This is the so-called demonstration emersion robot. The existing robots are using this kind of control mode. 1958 united control company developed the first manipulator riveting robot. As the earliest practical model robot products (demonstration reappearance) is 1962 U.S. AMF company launched VERSTRAN and UNIMATION company launched UNIMATE. These industrial robot mainly by similar mans hands and arms who composed it can replace the hard labor in order to achieve production mechanization and automation, can in harmful environment operation to protect the personal safety and thus widely used in mechanical manufacturing, metallurgy, electronics, light industry and atomic energy and other departments.Industrial robot CaoZuoJi (by mechanical body), controller, servo drive system and detection sensor, making it a humanoid operation, automatic control, can repeat programming, can finish all kinds of assignments in 3d space the electromechanical integration automation production equipment. Particularly suitable for many varieties, change of flexible production batch. It to help stabilize, improve product quality, raise efficiency in production, improve working conditions and product rapid renewal plays an extremely important role.Robotic technology is integrated with computer, cybernetics, organization learning, information and sensing technology, artificial intelligence, bionics science and the formation of high technology and new technology, is a very active, contemporary study applied more and more widely. Robot applications, is a national industrial automation level of important symbol.Robot and not in the simple sense of labor, but replace artificial comprehensive people skills and machine a personification of the specialty of electronic machinery, already someone on the environment condition of rapid reaction and the analysis judgment ability, and a machine could be longer duration of work, high precision and the ability of resistance to bad environment, in a sense it is also machine process of evolution product, it is an important industrial and the industry production and service, but also set the advanced manufacturing technology field indispensable automation equipment.Manipulator is part of the action imitating the hands, according to the given program, track and demanding acquirement, handling or operation of the automatic mechanical device. In the industrial production of the application of industrial robots called robot. Application of manipulator can be used to increase production level of automation production and labor productivity: can reduce labor intensity, assure product quality, achieve safety production; Especially in high temperature, high pressure, low temperature, low pressure and dust, explosive, toxic gases and radiation etc harsh environment, it instead of human normal work, meaning more significant. Therefore, in the mechanical processing, stamping, casting, forging, welding, heat treatment, electroplating, paint, assembly and light industry, transportation etc widely quoted are increasingly.The structure of the manipulator is simpler, specificity form began, strong for a machine tools only feeder, and was attached to the machines special manipulator. Along with the development of industrial technology, made by an independent program control realization repeated operation, suitable scope is wider program control general manipulator, or general manipulator. Due to the change of general manipulator can quickly working procedures, good adaptability, so it continues to transform the medium and small batch production products gain extensive reference .2.Composed of the manipulator1)ActuatorsHandNamely parts in contact with objects. Due to the different forms of contact with objects, can be divided into clamping type and adsorption the hands. Gripping type hand fingers (or by PAWS) and power transmission institution constitutes. Fingers are in direct contact with the object of components, common finger movement forms have moved back to the transformation of peace. Back to the transformation of simple structure, easy fingers, so application component manufacturing is widely applied translation type, its reason is less complicated structure, but translations type circular parts, fingers clamping workpiece diameter variation do not affect its axis position, therefore appropriate clamping diameter variation range workpiece.Finger structure by grasping object depends on surface shape, caught parts (the profile or within hole) and object weight and dimensions. Common refers to a flat, form the v-shaped finger and surface: the clip type and inside there supporting type; Index has double refers to type, by type and hands of double refers to type, etc.But the force transmission institution is produced by clamping force fingers to accomplish the task. Put objects clips Power transmission institutions are: the more commonly used type sliding channel, connecting lever lever type, bevel gear lever type, type, screw nut upper-and-lower, type spring type and gravity type, etc.Enclosed type hand made mainly by chuck, it is to rely on adsorption force (such as chuck formed in the negative pressure or an electric suction magnetic) adsorption objects, the corresponding adsorption hand have negative pressure and electric disk two kinds of suckers.For light small flake parts, smooth plate materials, usually with negative pressure chuch suck material. The way cause negative pressure air suction and vacuum pump type.To guide magnetic ring type and the plate with a hole, and have such parts of sheet etc (meshes, usually use electro-magnetic chuck suck material. The suction electro magnetic chuch by dc magnets and production. Communication electromagnet.With negative pressure chuch and electro magnetic chuch absorb charge, its shape, quantity, suckers absorbability size, according to adsorb object shape, size and weight size and decide.In addition, according to special needs, the hand and spoon type (such as casting manipulator poured bag part), Joe type (such as cold gear machine up-down material manipulator hand) type.WristHand and arm is connected components, and can be used to adjust the position by grasping object (i.e. posture).ArmThe arm is supporting caught objects, hand, an important part of the wrist. The arms role is to drive to grab objects, and fingers predetermined asks its handling to the location specified. Industrial manipulator arm often moving parts by driving arm (such as oil cylinder, cylinders, rack-and pinion institutions, link mechanism, screw mechanism and CAM mechanism, etc.) and drive source (such as hydraulic and pneumatic or motor, etc.), in order to realize the combined arms all kinds of sports.The arm in telescopic or lifting movement, in order to prevent around its axis rotation, need a guide device, to ensure that the finger on the correct direction movement. In addition, orientation device can bear arms were bending moment and torsion moment when turning or arm movement in start-up, brake generated at the moment of inertia, make the moving parts stress state is simple.Orientation device structure form, commonly used are: single cylinder, double cylindrical, four cylinder and v-shaped chamfer, swallow tail trough etc oriented form.PillarPillar is supporting the arm parts, pillar also can be part of the arm and arm turn movement and lift (or pitch) movement are and pillar are closely linked. Manipulator to usually set for fixed, but need because of the job, sometimes also can make lateral movement, namely called will move a type bar.Walk InstitutionsWhen industrial robots need to complete a remote operation, or expanded use scope, the same seat installation roller, rail, etc, in order to realize the mobile mechanism of the machine movement. Industrial robots Roller type can be divided into the mobile mechanism of sounds and two trolley. Drive roller motion should be additional mechanical transmission device.BaseSeating is basic parts of manipulator, manipulator actuator components and the drive system are installed in on standby, so the role of the support and links.2)Drive systemDrive system is driving industrial robots actuators movement of the power unit, usually by power supply, the control adjusting device and auxiliary device component. The drive system used in hydraulic transmission, pneumatic transmission, power transmission and mechanical transmission etc 4 form.3)Control system Control system is dominated by the requirements of industrial robots sport system. At present the control system of industrial robots by process control system and general electric positioning (or mechanical stop pieces positioning) systems. Control system has the electrical control and jet control two kinds, it dominates the manipulator procedures stipulated by the movement, according to people and memory of the manipulator instruction information (such as action sequence, trajectory, movement speed and time), and according to the control system of the information instruction executive agencies and, when necessary, the action of manipulator when motion surveillance, any error or fault alarm signal that.4)Position detection device Controlling manipulator actuator position and keep movement of actuator actual position feedback to control system, and with setting the position to compare, and then adjusted by controlling system, thus make actuators to certain accuracy reached set position.3.Manipulator classificationThere are many kinds of industrial robots, about classification problems, at present in China, not unified classification standard in this temporary by use scope, drive mode and classify control system, etc.According to utility centRobots can be divided into special manipulator and general manipulator two: 1.special manipulator It is attached to the host and have fixed program without independent control system mechanism. Special manipulator with action, less work object single, simple structure and reliable operation and cost low characteristic, suitable for big affiliate, such as automatic machine, automatic line and discharge of robot and processing center the automatic automation production batch cutter replacement manipulator. 2. general manipulator It is a kind of independent control system, program variable, action flexible manipulator. Through the adjustment may be used in different occasions, driving system and lattice performance range, its actions program is variable, the control system is independent. General manipulator work range, higher precision and versatility, applicable to the production of changing medium and small batch automation production. General manipulator according to the control can be divided into different ways of the positioning of the simple type and servo type two kinds: simple type with opening and closing type control positioning, can only be position control: servo type has servo system, can point position control system, also can achieve continuous control path control general servo model gm manipulator belong to nc type.1) According to the driving way points1. hydraulic transmission manipulator Based on the hydraulic pressure to drive the actuators movement of the manipulator. Its main features are: catch weight of several hundred kg, stable transmission, compact structure, action quick. But for sealing device requirements, otherwise the oil leakage strictly to the working performance of the manipulator has a great influence, and not in work under high temperature, low temperature. If the manipulator by applying electro-hydraulic servo drive system, can achieve continuous trajectory control, make the manipulator, but universal expand electro-hydraulic servo valve manufacturing precision, oil filter, strict cost are high. 2. pneumatic theories.supported manipulator based on pressure of compressed air to drive the actuators movement of the manipulator. Its main features are: media sources is extremely convenient, output force is small, pneumatic action quick, simple structure, low cost. However, due to the air has compressible characteristics and work rate, the poor stability, and impact low air pressure, catch in commonly 30 kilograms heavy weight below, under the same conditions it caught the structure than hydraulic manipulator, so suitable for high-speed, light load, high temperature and dust big environment to work in. 3. mechanical transmission manipulator Namely the mechanical transmission (such as CAM, connecting rod, gear and rack, intermittent mechanism, etc) driven manipulators. It is a kind special the attached to work host manipulator, its power is passed by working machinery. Its main characteristic is accurate and reliable, action frequency motion, but structure is bigger, action program immutable. It is often used to work and discharge of host. 4. power transmission manipulator Namely, have special structure induction motors, linear motor or power step-motor direct driving actuators movement of the manipulator, because do not need the change in the middle, so the mechanical structure simple organization. One of the manipulator, the linear motor speed and longer journeys movement, maintaining and easy to use. Such manipulator is still small, but promising.3)According to the control mode points1. position control Its movement for space between point-to-point control movement of mobile, only the position of several points in the process, unable to control its trajectory. If you would control points, you must increase more than the complexity of the electrical control system. Current use of special and general industrial robots are such. 2. continuous trajectory control Its trajectory of any continuous curve for the space, its characteristic is set point for unlimited, the whole mobile process under control, can achieve smooth and accurate movement, and use range, but the electrical control system is complicated. This kind of industrial robots generally USES small computer control.4.The application of industrial robots in production and its significanceBecause of its high flexibility and robot in life, manufacturing performance in various fields such as plays a very important role. It can carry goods, sort and products, and can in harmful environment to protect life safety operation, instead of mans heavy labor, so are widely used in machinery manufacturing, light industry and needs goods handling various places. In modern industry, the production process automation has become a prominent theme. The automation level from all walks of life becomes more and more high, modern processing workshop, often with manipulator to improve production efficiency, complete workers difficult to complete or dangerous job. Available in mechanical industry, processing, assembling and other production largely is not continuous. According to data is introduced, the American production in all industrial parts, 75 percent is sm
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:渐开线齿检仪的改进设计-单盘式渐开线检查仪设计【齿轮测量仪】
链接地址:https://www.renrendoc.com/paper/127740972.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!