资源目录
压缩包内文档预览:
编号:128080291
类型:共享资源
大小:15.06MB
格式:ZIP
上传时间:2021-05-16
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
500
mm
锻打
机械手
设计
- 资源描述:
-
喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,图纸为CAD格式可编辑,【有疑问咨询QQ:414951605 或 1304139763】
- 内容简介:
-
毕业设计(论文)(2015届)500mm锻打机械手结构设计学生姓名 学 号 院 系 专 业 指导教师 填写日期 完成日期 47摘 要机械手是一种典型的机电一体化产品,锻打机械手是机械手研究领域的热点。研究锻打机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。锻打机械手的定义,世界各国尚未统一,分类也不尽相同。最近联合国国际标准化组织采纳了美国机械手协会给锻打机械手下的定义:锻打机械手是一种可重复编程的多功能操作装置,可以通过改变动作程序,来完成各种工作,主要用于搬运材料,传递工件。参考国外的定义,结合我国的习惯用语,对锻打机械手作如下定义:锻打机械手是一种机体独立,动作自由度较多,程序可灵活变更,能任意定位,自动化程度高的自动操作机械。是可进行自动喷漆或关节其他涂料的工业机械手。锻打机械手以刚性高的手臂为主体,与人相比,可以有更快的运动速度,可以搬运更重的东西,而且定位精度相当高,它可以根据外部来的信号,自动进行各种操作。本文对一种使用在锻打机械手的结构进行设计,并完成总装配图和零件图的绘制。要求对机械手模型进行力学分析,估算各关节所需转矩和功率,完成电机和减速器的选型。其次从电机和减速器的连接和固定出发,设计关节结构,并对机构中的重要连接件进行强度校核。关键词: 结构设计,机器臂,关节型机械手,结构分析AbstractThe manipulator is a typical mechatronics product, the forging manipulator is the research focus in the field of mechanical hand. Study on the forging manipulator requires a combination of machinery, electronics, information theory, artificial intelligence, biology, computer and other disciplines of knowledge, at the same time, its development also promotes the development of these disciplines.The definition of a forging manipulator, the world has not yet unified, classification is not the same. The definition of the international organization for Standardization in recent United Nations adopted the manipulator for forging machinerys: forging manipulator is a kind of multifunction operation device can repeat programming, can be changed by the action program, to complete all kinds of work, mainly used for material handling, transmission parts. The definition of the reference of foreign countries, combined with Chinese idioms, are defined as the forging manipulator:Forging manipulator is a body independent of the action more degrees of freedom, the program can be flexibly changed to any location, automatic operation, high degree of automation. Is available for industrial manipulator automatic spray paint or other coating joint.Forging manipulator arm with rigid high as the main body, compared with others, can have faster movement speed, can carry more weight, and the positioning accuracy is very high, it can automatically according to the signal to the outside, to carry out various operations.In this paper, the design of a structure in the forging manipulator, and draw the general assembly drawing and parts drawing. For the mechanical analysis of the model of the manipulator, the joint estimation of the required torque and power, electrical motor and gear selection. Secondly, from the motor and the reducer is connected and fixed on the design of joint structure, and the connection strength check.Key Words: structural design, the machine arm, joint type manipulator, structure analysis目 录摘 要IIAbstractIII目 录IV1 绪论11.1引言11.2 锻打机械手研究概况21.2.1 国外研究现状21.2.2 国内研究现状31.3 锻打机械手的总体结构41.4 主要内容52 总体方案设计52.1 机械手工程概述52.2 工业机械手总体设计方案论述62.3 机械手机械传动原理72.4 机械手总体方案设计92.5 本章小结103 锻打机械手机械部分的设计计算103.1 手部要求及选型103.2机械手手抓的设计计算113.2.1选择手抓的类型及夹紧装置113.2.2 手抓的力学分析123.2.3 夹紧力及驱动力的计算143.2.4 手爪夹持范围计算153.3 机械手手爪夹持精度的分析计算153.4油缸的设计计算173.4.1 初步确系统压力173.4.2 活塞杆的计算校核193.4.3 液压缸工作行程的确定203.4.4 活塞的设计213.4.5 导向套的设计与计算213.4.6 端盖和缸底的计算校核223.4.7 缸体长度的确定223.4.8 缓冲装置的设计223.4.9 液压缸的选型234 传动箱设计计算254.1传动齿轮计算步骤254.2传动轴结构的初步拟定274.3传动轴的材料与热处理284.4传动轴的技术要求294.5传动轴结构图304.6传动轴组件的验算304.6.1 支承的简化304.6.2传动轴的挠度314.6.3 传动轴倾角325 车身行走机构总体结构335.1 传动装置的结构335.2车轮组安装结构335.3小车行走机构的设计335.4选择车轮与轨道并验算其强度345.4.1轮压值校核及选择车轮和轨道345.4.2车轮疲劳计算345.4.3车轮强度计算355.5 运行阻力计算355.5.1摩擦阻力矩计算355.5.2摩擦阻力计算355.6 选择电动机365.6.1类型的选择365.6.2功率的确定365.6.3工作机的阻力365.6.4电动机的转速的确定375.7计算传动装置的运动参数和动力参数375.7.1 计算总传动比i375.7.2各轴的转速375.7.3 各轴的功率375.7.4各轴的转距375.7.5链轮、链条的选取校核385.7.6 轴承的选取校核395.8轴的设计与校核39总结43参考文献44致 谢451 绪论1.1 引言 机械手是一种典型的机电一体化产品,锻打机械手是机械手研究领域的热点。研究锻打机械手需要结合机械、电子、信息论、人工智能、生物学以及计算机等诸多学科知识,同时其自身的发展也促进了这些学科的发展。机械手是锻打机械手的一种。1959年,世界上诞生了第一台工业机械手,开创了机械手发展的新纪元。随着科学技术的发展,锻打机械手的研究与应用迅猛发展。世界著名机械手专家、日本早稻田大学的加藤一郎教授说过:“机械手应当具有的最大特征之一是功能”。其中双足是方式中自动化程度最高、最为复杂的动态系统。伟大的发明家爱迪生也曾说过这样一句话:“上帝创造人类,两条腿是最美妙的杰作”。系统具有非常丰富的动力学特性,对的环境要求很低,既能在平地上,也能在非结构性的复杂地面上,对环境有很好的适应性。功能的具备为扩大机械手的应用领域开辟了无限广阔的前景。研究机械手的原因和目的,主要有以下几个方面:希望研制出机构,使它们能在许多结构和非结构环境中,以代替人进行作业或延伸和扩大人类的活动领域;希望更多得了解和掌握人类得特性,并利用这些特性为人类服务,例如:人造假肢。系统具有丰富的动力学特性,在这方面的研究可以拓宽力学及机械手的研究方向;机械手可以作为一种智能机械手在人工智能中发挥重要的作用。锻打机械手的定义,世界各国尚未统一,分类也不尽相同。最近联合国国际标准化组织采纳了美国机械手协会给锻打机械手下的定义:锻打机械手是一种可重复编程的多功能操作装置,可以通过改变动作程序,来完成各种工作,主要用于搬运材料,传递工件。参考国外的定义,结合我国的习惯用语,对锻打机械手作如下定义:锻打机械手是一种机体独立,动作自由度较多,程序可灵活变更,能任意定位,自动化程度高的自动操作机械。是可进行自动喷漆或关节其他涂料的工业机械手。锻打机械手以刚性高的手臂为主体,与人相比,可以有更快的运动速度,可以搬运更重的东西,而且定位精度相当高,它可以根据外部来的信号,自动进行各种操作。锻打机械手是在计算机控制下可编程的自动机器。采用锻打机械手是提高产品质量与劳动生产率,实现生产过程自动化,改善劳动条件,减轻劳动强度的一种有效手段。机械手的诞生和发展虽只有30多年的历史,但它已应用到国民经济,民事技术等众多的领域,具有广阔的应用和发展前景,显示出强大的生命力1-2。1.2 锻打机械手研究概况1.2.1 国外研究现状最早系统地研究人类和动物运动原理的是Muybridge,他发明了电影用的独特摄像机,即一组电动式触发照相机,并在1877年成功地拍摄了许多四足动物和奔跑的连续照片。后来这种采用摄像机的方法又被Demeny用来研究人类的运动。从本世纪30年代到50年代,苏联的Bernstein从生物动力学的角度也对人类和动物的机理进行深入的研究,并就运动作了非常形象化的描述。真正全面、系统地开展机械手的研究是始于本世纪60年代迄今,不仅形成了机械手一整套较为完善的理论体系,而且在一些国家,如日本、美国和苏联等都已研制成功了能静态或动态的机械手样机。这一部分,我们主要介绍队60年代到1985年这一时期,在机械手领域所取得的最重要进展。在60年代和70年代,对机械手控制理论的研究产生了3种非常重要的控制方法,即有限状态控制、模型参考控制和算法控制。这3种控制方法对各种类型的机械手都是适用的。有限状态控制是由南斯拉夫的Tomovic在1961年提出来的 ,模型参考控制是由美国的Farnsworth在1975年提出来的,而算法控制则是由南斯拉夫米哈依罗鲍宾研究所著名的机械手学专家Vukobratovic博士在1969年至1972年问提出来的。这3种控制方法之间有一定的内在联系。有限状态控制实质上是一种采样化的模型参考控制,而算法控制则是一种居中的情况1。在步态研究方面,苏联的Bessonov和Umnov定义了“最优步态”,Kugushev和Jaro-shevskij定义了自由步态。这两种步态不仅适应于而且也适应于多足机械手。其中,自由步态是相对于规则步态而言的。如果地面非常粗糙不平,那么机械手在时,下一步脚应放在什么地方,就不能根据固定的步序来考虑,而是应该象登山运动员那样走一步看一步,通过某一优化准则来确定,这就是所谓的自由步态。在机械手的稳定性研究方面,美国的Hemami等人曾提出将系统的稳定性和控制的简化模型看作是一个倒立振子(倒摆),从而可以将的前进运动解释为使振子直立的问题。此外,从减小控制的复杂性考虑,Hemami等人还曾就机械手的“降阶模型”问题进行了研究。前面我们曾指出Vukobratovic也对类人型系统进行了能量分析,但他仅限于导出各关节及整个系统的功率随时间的变化关系,并没有过多地涉及能耗最优这个问题但在他的研究中,Vukobratovic得出了一个有用的结论,即姿态越平滑,类人型系统所消耗的功率就越少。1.2.2 国内研究现状国内机械手的研制工作起步较晚,我国是从20世纪80年代开始机械手领域的研究和应用的。1986年,我国开展了“七五”机械手攻关计划,1987年,我国的“863”高技术计划将机械手方面的研究开发列入其中。目前我国从事机械手研究与应用开发的单位主要是高校和有关科研院所等。最初我国进行机械手技术研究的主要目的是跟踪国际先进的机械手技术,随后取得了一定的成就。哈尔滨工业大学自1986年开始研究机械手,先研制成功静态双足机械手HIT-I,高 110cm,重70kg,有10个自由度,实现平地上的前进、左右侧行以及上下楼梯的运动,步幅45cm,步速为10秒/步,后来又相继研制成功了HIT-II和HIT-III,重42kg,高 103cm,有12个自由度,实现了步长24cm,步速2.3步每秒的。目前正在研制的HI下IV机械手,全身可有52个自由度,其在运动速度和平衡性方面都优于前三型机械手37。国防科技大学在1988年春成功地研制了一台平面型6自由度的双足机械手KDW-1,它能前进、后退和上下楼梯,最大步幅为40cm,步速为4步每秒,1989年又研制出空间型 KDW-II,有10个自由度,高69cm,重13kg实现进退、上下台阶的静态稳定以及左右的准动态。1990年在KDW-II的平台上增加两个垂直关节,发展成KDW-III,有12个自由度,具备了转弯功能,实现了实验室环境的全方位。1995年实现动态,步速0.8步每秒,步长为20cm22cm,最大斜坡角度达13度。2000年底在KDW-III的基础上研制成功我国首台仿人形机械手“先行者”,动态,可在小偏差、不确定的环境,周期达每秒两步,高1.4m,重20kg,有头、眼、脖、身躯、双臂、双足,且具备一定的语言功能813。此外,清华大学正在研制仿人形机械手THBIP-I,高1.7m,重130kg,32个自由度,在清华大学985计划的支持下,项目也在不断取得进展。南京航空航天大学曾研制了一台8自由度空间型机械手,实现静态功能13,14。本课题源于“第一届全国大学生机械创新设计大赛”中机械手。目前,机械手大多以轮子的形式实现功能阶段。真正模仿人类用腿走路的机械手还不多,虽有一些六足、四足机械手涌现,但是机械手还是凤毛麟角。我们这个课题,探索设计仅靠巧妙的机械装置和简单的控制系统就能实现模拟人类的机械手。其分功能有:交替迈腿、摇头、摆大臂、摆小臂。1.3 锻打机械手的总体结构锻打机械手的组成及各部分关系概述:它主要由机械系统(执行系统、驱动系统)、控制检测系统及智能系统组成。(1) 执行系统:执行系统是锻打机械手完成关节工件,实现各种运动所必需的机械部件,它包括手部、腕部、机身等。(a) 末端执行器:机械手为了进行作业而配置的操作机构,直接喷漆工件。(b) 腕部:又称手腕,是连接手部和臂部的部件,其作用是调整或改变末端执行器的工作方位。(c) 臂部:联接机座和手部的部分,是支承腕部的部件,作用是承受工件的管理管理荷重,改变手部的空间位置,满足机械手的作业空间,将各种载荷传递到机座。(d) 机身:机械手的基础部分,起支撑作用,是支撑手臂的部件,其作用是带动臂部自转、升降或俯仰运动。(2) 驱动系统:为执行系统各部件提供动力,并驱动其动力的装置。常用的有机械传动、机电传动、气压传动和电传动。(3) 控制系统:通过对驱动系统的控制,使执行系统按照规定的要求进行工作,当发生错误或故障时发出报警信号。(4) 检测系统:作用是通过各种检测装置、传感装置检测执行机构的运动情况,根据需 要反馈给控制系统,与设定进行比较,以保证运动符合要求。 实践证明,锻打机械手可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。工业生产中经常出现的笨重工件的搬运和长期频繁、单调的操作,采用机械手是有效的。此外,它能在高温、低温、深水、宇宙、放射性和其他有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的发展前途4-8。1.4 主要内容第1章 绪论 主要介绍机械手的相关知识和本课题研究的任务和要求.第2章 总体方案设计,介绍该机械手各部分的相关知识和总体设计.第3章 机械手各部分设计的介绍第4章 机械手结构设计2 总体方案设计2.1 机械手工程概述机械手工程是一门跨学科的综合性技术,它涉及到力学、机构学、机械设计、气动液压技术、传感技术、计算机技术和自动控制技术等学科领域。人们将已有学科分支中的知识有效地组合起来用以解决综合性的工程问题的技术称之为“系统工程学”。以机械手设计为例,系统工程学认为,应当将其作为一个系统来研究、开发和运用,从机械手的整体出发来研究其系统内部各组成部分之间的有机联系和系统外部环境的相互关系的一种综合性的设计方法。从系统功能的观点来看,将一部复杂的机器看成是一个系统,它由若干个子系统按一定规律有机地联系在一起,是一个不可分的整体。如果将系统拆开、则将失去作为一个整体的特定功能。因此,在设计一部较复杂的机器时,从机器系统的概念出发,这个系统应具有如下特性:(1) 整体性 由若干个不同性能的子系统构成的一个总的机械系统应具有作为一个整体的特定功能。(2) 相关性 系统内各子系统之间有机联系、有机作用,具有某种相互关联的特性。(3) 目的性 每个系统都应有明确的目的和功能,系统的结构、系统内各子系统的组合方式决定于系统的目的和功能。(4) 环境适应性 任何一个系统都存在于一定的环境中,必须能适应外部环境的变化。因此,在进行机械手设计时,不仅要重视组成机械手系统的各个部件、零件的设计,更应该按照系统工程学的观点,根据机械手的功能要求,将组成机械手系统的各个子系统部件、零件合理地组合,设计出性能优良适于工作需要的机械手产品。在比较复杂的工业机械手系统中大致包括如下:操作机,它是完成机械手工作任务的主体,包括机座、手臂、手腕、末端执行器和机构等。驱动系统,它包括作为动力源的驱动器,驱动单元,伺服驱动系统由各种传动零、部件组成的传动系统。控制系统,它主要包括具有运算、存储功能的电子控制装置(计算机或其他可编程编辑控制装置),人机接口装置(键盘、示教盒等),各种传感器的信息放大、传输和处理装置,传感器、离线编程、设备的输入/输出通讯接口,内部和外部传感器以及其他通用或专用的外围设备14。工业机械手的特点在于它在功能上的通用性和重新调整的柔性,因而工业机械手能有效地应用于柔性制造系统中来完成传送零件或材料,进行装配或其他操作。在柔性制造系统中,基本工艺设备(如数控机床、锻压、焊接、装配等生产设备)、辅助生产设备、控制装置和工业机械手等一起形成了各种不同形式地工业机械手技术综合体地工业机械手系统。在其他非制造业地生产部门,如建筑、采矿、交通运输等生产领域引用机械手系统亦是如此。2.2 工业机械手总体设计方案论述(一) 确定负载目前,国内外使用的工业机械手中,负载能力的范围很大,最小的额定负载在5N以下,最大可达9000N。负载大小的确定主要是考虑沿机械手各运动方向作用于机械接口处的力和扭矩。其中应包括机械手末端执行器的重量、关节工件或作业对象的重量和规定速度和加速度条件下,产生的惯性力等。由本次设计给的设计参数可初估本次设计属于大负载。(二) 驱动方式由于伺服电机具有控制性能好,控制灵活性强,可实现速度、位置的精确控制,对环境没有影响,体积小,效率高,适用于运动控制要求严格的中、小型机械手等特点,故本次设计采用了伺服电机驱动(三)传动系统设计机械手传动装置中应尽可能做到结构紧凑、重量轻、转动惯量和体积小,在传动链中要考虑采用消除间隙措施,以提高机械手的运动和位置控制精度。在机械手中常采用的机械传动机构有齿轮传动、蜗杆传动、滚珠丝杠传动、同步齿形带传动、链传动、行星齿轮传动、谐波齿轮传动和钢带传动等,由于齿轮传动具有效率高,传动比准确,结构紧凑、工作可靠、使用寿命长等优点,且大学学习掌握的比较扎实,故本次设计选用齿轮传动。(四)工作范围工业机械手的工作范围是根据工业机械手作业过程中操作范围和运动轨迹来确定,用工作空间来表示的。工作空间的形状和尺寸则影响机械手的机械结构坐标形式、自由度数和操作机各手臂关节轴线的长度和各关节轴转角的大小及变动范围的选择(五) 运动速度机械手操作机手臂的各个动作的最大行程确定后,按照循环时间安排确定每个动作的时间,就能进一步确定各动作的运动速度,用m/s或()/s表示,各动作的时间分配要考虑多方面的因素,例如总的循环时间的长短,各动作之间顺序是依序进行还是同时进行等。应试做各动作时间的分配方案表,进行比较,分配动作时间除考虑工艺动作的要求外,还应考虑惯性和行程的大小,驱动和控制方式、定位方式和精度等要求。2.3 机械手机械传动原理该方案结构设计与分析该机械手的本体结构组成如图主视图俯视图锻打机械手本体组成各部件组成和功能描述如下: 底座部件: 底座部件包括底座、齿轮传动部件、轴承,步进电机等。机座作用是支撑部件,支承和转动大臂部件,承受锻打机械手的全部重量和工作载荷,所以机座应有足够的强度、刚度和承载能力。另外机座还要求有足够大的安装基面,以保证锻打机械手工作时的稳定运行。锻打机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动2.4 机械手总体方案设计工业机械手的结构形式主要有直角坐标结构,圆柱坐标结构,球坐标结构,关节型结构四种。各结构形式及其相应的特点,分别介绍如下3。(1) 直角坐标机械手结构 直角坐标机械手的空间运动是用三个相互垂直的直线运动来实现的,如图2-1(a)由于直线运动易于实现全闭环的位置控制,所以,直角坐标机械手有可能达到很高的位置精度(m级)。但是,这种直角坐标机械手的运动空间相对机械手的结构尺寸来讲,是比较小的。因此,为了实现一定的运动空间,直角坐标机械手的结构尺寸要比其他类型的机械手的结构尺寸大得多。直角坐标机械手的工作空间为一空间长方体。直角坐标机械手主要用于装配作业及搬运作业,直角坐标机械手有悬臂式,龙门式,天车式三种结构。(2) 圆柱坐标机械手结构圆柱坐标机械手的空间运动是用一个回转运动及两个直线运动来实现的,如图2-1(b)。这种机械手构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。(3) 球坐标机械手结构球坐标机械手的空间运动是由两个回转运动和一个直线运动来实现的,如图2-1(c)。这种机械手结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。(4) 关节型机械手结构关节型机械手的空间运动是由三个回转运动实现的,如图2-1(d)。关节型机械手动作灵活,结构紧凑,占地面积小。相对机械手本体尺寸,其工作空间比较大。此种机械手在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业,都广泛采用这种类型的机械手。根据任务书要求和具体实际我们选择的是(d) 关节型。机械手的特点是工作范围大,动作灵活,通用性强,结构较紧凑,能抓取靠近机座的物体。协作单位根据其用途和特点提出如下技术参数2.5 本章小结本章主要完成对机械手系统设计,通过多种方案的选择来确定最终要确定的方案. 确定了机械手的总体设计方案后,就要针对机械手的腰部、手臂、手腕、末端执行器等各个部分进行详细设计。3 锻打机械手机械部分的设计计算3.1 手部要求及选型即与物件接触的部件。由于与物件接触的形式不同,可分为夹持式和吸附式手在本课题中我们采用夹持式手部结构。夹持式手部由手指(或手爪)和传力机构所构成。手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。回转型手指结构简单,制造容易,故应用较广泛。平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指数有双指式、多指式和双手双指式等。而传力机构则通过手指产生夹紧力来完成夹放物件的任务。传力机构型式较多时常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。(1) 应具有适当的夹紧力和驱动力。应当考虑到在一定的夹紧力下,不同的传动机构所需的驱动力大小是不同的。(2) 手指应具有一定的张开范围,手指应该具有足够的开闭角度(手指从张开到闭合绕支点所转过的角度),以便于抓取工件。(3) 要求结构紧凑、重量轻、效率高,在保证本身刚度、强度的前提下,尽可能使结构紧凑、重量轻,以利于减轻手臂的负载。(4) 应保证手抓的夹持精度。3.2机械手手抓的设计计算3.2.1选择手抓的类型及夹紧装置本设计平动搬运机械手的设计,考虑到所要达到的原始参数:最大夹紧力1000KN要求管径500mm。常用的工业机械手手部,按握持工件的原理,分为夹持和吸附两大类。吸附式常用于抓取工件表面平整、面积较大的板状物体,不适合用于本方案。本设计机械手采用夹持式手指,夹持式机械手按运动形式可分为回转型和平移型。平移型手指的张开闭合靠手指的平行移动,这种手指结构简单, 适于夹持平板方料, 且工件径向尺寸的变化不影响其轴心的位置, 其理论夹持误差零。若采用典型的平移型手指, 驱动力需加在手指移动方向上,这样会使结构变得复杂且体积庞大。显然是不合适的,因此不选择这种类型。通过综合考虑,本设计选择二指回转型手抓,采用滑槽杠杆这种结构方式。夹紧装置选择常开式夹紧装置。 3.2.2 手抓的力学分析下面对其基本结构进行力学分析:滑槽杠杆 图3.1(a)为常见的滑槽杠杆式手部结构。Jix图 机械手手抓结构图(a) (b)图5.1 滑槽杠杆式手部结构、受力分析1手指 2销轴 3杠杆在杠杆3的作用下,销轴GB/T882-20002向上的拉力为F,并通过销轴中心O点,两手指1的滑槽对销轴的反作用力为F1和F2,其力的方向垂直于滑槽的中心线和并指向点,交和的延长线于A及B。由=0 得 =0 得 由=0 得 (3.1)式中 a手指的回转支点到对称中心的距离(mm). 工件被夹紧时手指的滑槽方向与两回转支点的夹角。由分析可知,当驱动力一定时,角增大,则握力也随之增大,但角过大会导致拉杆行程过大,以及手部结构增大,因此最好=。3.2.3 夹紧力及驱动力的计算 手指加在工件上的夹紧力,是设计手部的主要依据。必须对大小、方向和作用点进行分析计算。一般来说,需要克服工件重力所产生的静载荷以及工件运动状态变化的惯性力产生的载荷,以便工件保持可靠的夹紧状态。手指对工件的夹紧力可按公式计算 (3.2)式中 安全系数,通常1.2-2.0; 工作情况系数,主要考虑惯性力的影响。可近似按下式估其中a,重力方向的最大上升加速度; 运载时工件最大上升速度 系统达到最高速度的时间,一般选取0.03-0.5s 方位系数,根据手指与工件位置不同进行选择。 G被抓取工件所受重力(N)。表3-1 液压缸的工作压力作用在活塞上外力F(N)液压缸工作压力Mpa作用在活塞上外力F(N)液压缸工作压力Mpa小于500050000以上计算:设a=100mm,b=50mm,;机械手达到最高响应时间为0.5s,求夹紧力和驱动力和 驱动液压缸的尺寸。(1) 设 =1.02 根据公式,将已知条件带入: (2)根据驱动力公式得: (3)取 (4)确定液压缸的直径D 3.2.4 手爪夹持范围计算为了保证手抓张开角为,手抓夹持范围,当手抓没有张开角的时候,如图3.2(a)所示,根据机构设计,当张开时,如图3.2(b)所示,最大夹持半径计算如下:(a) (b)图5.2 手抓张开示意图3.3 机械手手爪夹持精度的分析计算机械手的精度设计要求工件定位准确,抓取精度高,重复定位精度和运动稳定性好,并有足够的抓取能。机械手能否准确夹持工件,把工件送到指定位置,不仅取决于机械手的定位精度(由臂部和腕部等运动部件来决定),而且也于机械手夹持误差大小有关。特别是在多品种的中、小批量生产中,为了适应工件尺寸在一定范围内变化,一定进行机械手的夹持误差。图5.3 手抓夹持误差分析示意图该设计以棒料来分析机械手的夹持误差精度。机械手的夹持范围为。一般夹持误差不超过1mm,分析如下:手指长,取V型夹角偏转角按最佳偏转角确定:计算 =72.14当S时带入有:夹持误差满足设计要求。3.4油缸的设计计算3.4.1 初步确系统压力表3-1 按负载选择工作压力1负载/ KN50工作压力/MPa1.25,满足最低速度的要求。2.活塞杆强度计算: 60m/min,1.6,工作类型为中级时,车轮直径为=400mm,轨道为P38,其许用轮压为16t,故可用.5.4.2车轮疲劳计算疲劳计算时的等效载荷: (1.2)式中 等效系数 由表1-20查得车轮的计算轮压: (1.3)式中 冲击系数,由表2-7查的。当载荷为第一种时,运行速度V 1时,=1 载荷变化系数,查表2-8,当1.6时,=0.8根据点接触情况计算接触疲劳应力: (1.4)式中 轨顶弧形半径,由表3-8-15查得。对于车轮材料,由表5-4查得=17000-19000。比较得,故疲劳条件满足。5.4.3车轮强度计算按点接触进行接触力的强度校核: (1.5)式中 冲击系数,由表2-7查得对于车轮材料,由表5-4查得=20000-23000。比较得,故强度条件满足。5.5 运行阻力计算5.5.1摩擦阻力矩计算摩擦总阻力矩: (2.1)由表8-1-102知车轮轴承型号为7520,内径值为;由表7-1至7-3有为滚动摩擦系数;轴承摩擦系数;附加阻力系数。代入上式得:5.5.2摩擦阻力计算 运行摩擦阻力: (2.2)5.6 选择电动机 5.6.1类型的选择 根据电源的种类,工作要求,工作环境,载荷大小,本设计中选择我国新设计的国际市场上通用的统一系列Y型系列三相异步电动机。5.6.2功率的确定 计算工作机所需的功率Pw 工作机所需的功率Pw(kw)由工作机的工作负载(阻力)和运动参数计算求得:式中 Fw工作机的阻力(N) Vw工作机的线速度(m/s) Tw工作机的转矩 (N.M) 工作机的效率 5.6.3工作机的阻力已知V=200m/min3.33(m/s)又F=G1G2=150005000=20000(N)Fw=20000(N)由手册表1-14查得车轮与钢轨的滚动摩擦系数f0.050.07, 本设计中取 f0.15,Fw=f.F200000.15 3000(N)工作机的效率 由手册表1-15查得链传动的0.97 工作机的功率Pw 电机的输出功率 P0由工作机所需功率和传动装置的总效率可求得电动机所需的输出功率 式中为电动机至主传动装置的总效率(包括链轮传动,两对滚动球轴承一弹性联轴器弹性体联轴器)值的计算 12由手册表1-15查得 链轮传动10.97 滚动球轴承2 0.99因此 0.970.99 0.96所以 确定电动机的额定功率 Pm:按下式确定电动机的额定功率Pm(11.3)P0 功率的大小可据负载状况来决定,由手册第一篇中有关Y系列电动机技术参数的表中,取电动机的额定功率为Pm11KW,符合设计要求。5.6.4电动机的转速的确定从动轴的转速: r/min按手册表14-1推荐的各种传动机构传动比的范围,取链轮传动的传动比为i1,所以,电机可选择的转速范围为n电动机型号的确定:选择JK系列减速电机Y2160M-4 减速机:DCY200-2N i=405.7计算传动装置的运动参数和动力参数5.7.1 计算总传动比i 传动装置的总传动比 1 式中 nm电动机满载转速 Nw轴转速5.7.2各轴的转速 I 电动机转速 n129r/min 轴 29r/m5.7.3 各轴的功率 I 轴 P1Pm2110.99510.945(kw)II轴 P2P11310.9450.970.99=10.51KW5.7.4各轴的转距 电机轴 T03640(NM)I 轴 T1T03640(NM)II 轴 =3461N5.7.5链轮、链条的选取校核设轴径d50mm,链传动比i1选择链轮齿数:初步确定Z33定链的节距取KA1.0,齿数系数KZ0.73,单排链,则计算功率为1. 选择链条型号和节距根据Pcm8.03KW及n129r/min查表9-11,可选32A 查表的链条节距为P=50.82. 计算链节数和中心距初选中心距a0=(3050)P=(3050)x50.8mm=15242540mm取a0=1550 相应的链长节数为 取链长节数Lp=94节链长L=LpP/1000=94*50.8/1000=4.8m查表得中心距计算系数f1=0.24467,则链传动的最大中心距为2337.6mm3. 计算链速V,确定润滑方式由v=0.810m/s和链号32A,查图9-14可知应采用滴油润滑4. 计算压轴力Fp有效圆周力为:链轮水平布置时的压轴Kfp=1.15, 则压轴力为Fp=KfpFe=1.1513580.2=15617.2N计算结果总汇:链条规格:32A单排链,94节,长4.8m大小齿轮数都为33,中心距a=1550压轴力为15617.2N, 轴径d=76,轮径D=209mm5.7.6 轴承的选取校核设计选取运输车工作速度为20m/min则每个轴承所承受的压力为F=525000/4=131250N转速为则查表6-4,选择调心滚子轴承,代号为22214C其基本参数为:d=70mm D=125mm B=31mm =158KN =205KN 径向载荷 =131250N轴向载荷=0N / =0h 故轴承寿命满足条件。则轴承选取合适。5.8轴的设计与校核进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。对于仅仅承受扭矩的轴,应按扭矩强度条件计算;对于只承受弯矩的轴,应按弯矩强度条件计算;对于即承受弯矩又承受扭矩的轴,应按弯矩合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。传动轴受力结构简图如下:1.校核轴的强度已知轴的弯矩和扭矩后,可针对某危险截面做弯矩合成强度校核计算。按第三方强度理论,计算应力:通常由弯矩所产生的弯曲应力是对称循环变应力,而由扭矩所产生的扭转切应力则常常不是对称循环变应力。轴的扭转强度条件为:由上式可得轴直径:2.校核轴的强度:已知轴的弯矩和扭矩后,可针对某危险截面做弯矩合成强度校核计算。按第三方强度理论,计算应力:对于直径为d的圆轴,弯曲应力为,扭转切应力为,将,代入公式得轴的弯扭合成强度条件为:式中:轴的计算应力,MPa M轴所受的弯矩,N.mm T轴所受的扭矩,N.mm W轴的抗弯截面系数, 对称循环变应力时轴的许用弯曲应力3.按疲劳强度条件进行精确校核求出计算安全系数并应使其稍大于或至少等于设计安全系数S,即:轴的刚度校核计算轴的弯曲刚度校核计算:式中:阶梯轴第i段的长度,mm 阶梯轴第i段的直径,mm 阶梯轴的计算长度,mm 阶梯轴计算长度内的轴段数。当载荷作用与两支承之间时,Ll(l为支承跨距);当载荷作用于悬臂端时,L=l+K(K为轴的悬臂长度,mm)。轴的弯曲刚度条件为:挠度 偏转角 式中:轴的允许挠度,mm轴的允许偏转角,rad轴的扭转刚度校核计算轴的扭转变形用每米长的扭转角来表示。圆轴扭转角的计算公式为:光轴 阶梯轴 式中:T轴所受的扭矩,N.mm G轴的材料的剪切弹性模量,MPa,对于钢材, 轴的截面的极惯性矩,对于圆轴, L阶梯轴受扭矩作用的长度,mm ,分别代表阶梯轴第i段上所受的扭矩,长度和极惯性矩,单位同前 Z阶梯轴受扭矩作用的轴段数。轴的扭转刚度条件为:式中,为轴每米长的允许扭转角,与轴的使用场合有关。总结我觉得这次设计
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。