资源目录
压缩包内文档预览:
编号:128857808
类型:共享资源
大小:5.70MB
格式:ZIP
上传时间:2021-05-19
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
150
积分
- 关 键 词:
-
阀壳油封
轴承
装机
设计
- 资源描述:
-
喜欢这个资料需要的话就充值下载吧。。。资源目录里展示的全都有预览可以查看的噢,,下载就有,,请放心下载,原稿可自行编辑修改=【QQ:11970985 可咨询交流】====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=【QQ:197216396 可咨询交流】====================
- 内容简介:
-
目 录摘 要IIIAbstractIV1 绪论51.1课题背景51.2 本章小结62 阀壳油封轴承压装机的技术路线62.1 阀壳油封轴承压装机研究现状62.2 主要研究内容及结构框架72.3 设计要求82.4 研究目的和意义82.5 本章小结93 总体方案设计及设备选型计算93.1 总体方案设计93.2气缸的选型103.2.1减震器压装机定位机构气缸的选择103.2.2 气缸的理论输出力113.2.3气缸的负载率113.2.4计算和选型123.3直线滚动导轨副143.4 螺栓强度校核143.4.1受横向载荷铰制孔螺栓连接强度校核与设计143.4.2受横向载荷紧螺栓连接强度校核与设计153.5 本章小结174 运用CAD进行建模174.1软件概述174.2总体结构建模184.3 关键零件的设计194.3.1底板的设计194.3.2 支撑轴座与支撑轴的设计194.3.3 压块连接件的结构设计214.3.4 压紧部件上板的设计214.4 装配225 总结与展望235.1 总结235.2 展望24参考文献25绪论本文主要是对阀壳油封轴承压装机设计,通过对其机械结构的设计,使其可以实现阀壳油封轴承的压装。根据轴承进行工艺分析,将压装分成2部。在设计中分别叫做工位和工位。本文第一章,首先介绍了阀壳油封轴承压装机的研究背景,阐述了本设计的主要意义;第二章,主要介绍阀壳油封轴承压装机的发展趋势和国内外研究现状,然后阐述阀壳油封轴承压装机的分类和工作原理;第三章,主要进行设计计算和强度校核;第四章,通过第三章的设计计算对阀壳油封轴承压装机进行主要部件设计和结构设计,使其能够处理实际应用的目标。通过本次毕业设计,是我对大学这几年所学到的指示进行了一次系统的分析与应用,锻炼我对制图软件的熟练应用程度,锻炼了独自解决问题的能力,为今后的工作打下了良好的基础。关键词:轴承 压装机 机械Abstract This article is mainly about the design of the valve housing oil seal bearing press machine. Through the design of its mechanical structure, it can realize the press fit of the valve housing oil seal bearing. According to the process analysis of the bearing, the press-fitting is divided into two parts. In the design, they are called I station and II station respectively. The first chapter of this article first introduces the research background of the valve housing oil seal bearing press and explains the main significance of the design; the second chapter mainly introduces the development trend of the valve housing oil seal bearing press and the current research status at home and abroad, and then explains the valve The classification and working principle of the shell oil seal bearing press machine; Chapter 3 is mainly for design calculation and strength check; Chapter 4 is for the main component design and structural design of the valve shell oil seal bearing press machine through the design calculation in Chapter 3. So that it can deal with the goals of practical applications. Through this graduation project, I carried out a systematic analysis and application of the instructions I have learned in the past few years, exercised my proficiency in 3D drawing software and 2D drawing software, and exercised my ability to solve problems alone. , Laying a good foundation for future work.Keywords: Bearing Press Machine MachineryIII附 录1 开题报告1.1课题背景在中国的国民经济中机械占有重要地位,机械制造是我国经济的战略重点。新中国成立后,特别是改革开放30年来,我国的机械工业发展迅速,各种机械产品层出不穷。当我们设计机械产品时,第一个要满足一定的要求,在一个机械产品的设计也必须遵循某种方法。机械产品的基本要求取决于其所处的地位、作用及工作条件,主要考虑以下要求:功能要求、寿命要求、工艺性要求、价格要求、可靠性要求以及维护要求和标准化要求。自1960年代以来,中国的轨道车辆一直在安装无轴滚动轴承。在1970年代有了固定轴承,他们分别是移动式液压机和固定轴承,并在1980年代记录了压力时间曲线和相关数据。 1989年之后,使用固定的两缸轴承来通过单个微型计算机芯片记录压力和保持时间。在1990年代,计算机控制的固定式内置钢制两缸轴承以及整体结构内置的轴承开始进入铁路生产和维修服务部门。随着时间的不断发展,淘汰旧产品和出现新产品是历史的必然。 1970年代的移动式液压机满足了滚动轴承的最基本要求,但是工作强度高,工作效率低。压力测量使用手动测量误差。在相应的数据中,以手动填充为准。这些缺点非常重要。出现在1980年代的固定式轴承机可以自动测量和记录每个车轮轴承组的技术参数,自动测量和打印轴承压力,停止按压力,并随时间自动改变按压力。曲线连接,其外观很快就消除了移动式液压机。由于当时的技术局限性以及轴承轴承工艺开发人员缺乏了解,经过十多年的制造实践,轴承滚动压力机中记录的时间和压力曲线的缺点变得越来越明显滚动轴承在铁路部门有非常重要的作用,因为他直接关系到车辆形势的安全性,一直是中国铁道部门的工作重点。但是,在过去的一段时间,密封装置,润滑和保持架的质量一直影响轴承的质量,不能满足货运铁路运输的发展需求。热轴将在车轮对工作期间产生,压缩时的偏心载荷是轴端的变形。灼热的地雷非常有害,从车辆的正常暴露,造成数十万的经济损失到发生爆炸事故,都炸毁了威胁乘客和机组人员安全的车辆。压机的固定过程对轴承的可靠性具有决定性的影响。压缸的设计主要是为了确保轴承正确安装,车轴工作正常以及汽车性能最大化。压力机的壳体由底座,支架,供油的主缸,辅助缸和一对轮对组成。与以前相比,该机器的机身和支架的强度和刚度得到了极大的提高。主缸设计独特,具有良好的特性。1.2 本章小结本章首先对阀壳油封轴承压装机的研究背景进行了详细的介绍,并结合当今社会的现状分析了研究的目的及意义,为后续论文的进行奠定了优良的基础。2 阀壳油封轴承压装机的技术路线2.1 阀壳油封轴承压装机研究现状与老式的压装机相比,现在的滚动轴承轴承机具有更高的压力机输出固定力,并通过自动化和信息技术大大提高了压力机的精度,不仅提供了压力机技术等级的自动控制。压力机的冲压质量高,并且压力机的固定效率提高。压力机的壳体由底座,支架,供油的主缸,辅助缸和一对轮对组成。与以前相比,该机器的机身和支架的强度和刚度得到了极大的提高。主缸设计独特,具有良好的特性。液压站液压控制的结构和原理经过多年的测试,密封性能良好,可靠。集成单元的主体是通过六个侧面的锻造和磨削制成的。控制台是计算机控制台的一种流行结构,电气盒的强弱安装,很容易发生障碍。(1) 铁路滚动轴承的发展与现状在铁道部门的积极配合下,解决了许多制约滚动轴承发展的狭窄问题。1978年,中国铁路开始使用滚动轴承代替滑动轴承。铁道部制定的主要技术政策是用滚动轴承代替滑动轴承,这样一来起动阻力和列车行驶阻力都减小了,增加列车牵引吨位,减少轴燃烧事故。为确保行车安全,提高速度,减少火车上的阻力85,行驶中的阻力约10,加速车流,节省油脂,白金属和其他材料,降低运营成本,延长车的保养周期。开始使用大量的卡车,当时使用的是轴承轴承,例如97720、197720、197726、197726和97730。其中,从日本进口的两轴承圆锥滚子轴承197726和国产轴承。在测试过程中,它主要符合中国使用的环境条件和线性条件。 1978年,铁道部决定在中国的有轨电车上安装197726型轴承,并于1980年开始装载大量新卡车。这种轴承已成为中国货车的主要产品。 1992年10月5日,铁道部发布了关于发布铁路货车197726滚动轴承检修会议纪要的通知和“铁路车辆197726轴承检修措施”。在大修期间,在维护期间可能发生没有用过的轴的圆柱滚子轴承。1998年1月,铁道部铁路局在第一阶段批准了由中外合资经营的197726型轴承对北京南科夫轴承SKF铁路轴承有限公司的改进设计。这种先进的设计主要包括使用塑料钢保持架制造轴承和内部微观几何尺寸,而传统的滚子线模仿具有完全凸度的弧形。 SKF197726型轴承的生产始于1998年1月1日,用于车辆,与此同时工厂停止了197726轴承的生产。(2)轴承的设计及现状随着铁路车辆轴承的发展,压机也得到了升级。近几十年来,中国最常见的手推车轴承压力机是移动式机器,具有优越的优势,易于移动和易于操作,但随着桥梁和轴承的发展,轴承和轴承的配合要求越来越高:工作进展用于装配压力机无轨电车的移动式机械性能差,故障率高,劳动强度大,正逐渐被固定的机床所取代。迄今为止,固定压力机的功能非常强大:在开始按压时,操作员可以在控制系统中输入轴号,轴类型,轴承号以及左右两端。自动匹配系统使用主控制机器上的传感器和测量设备来获得各种技术。2.2 主要研究内容及结构框架第一章,首先对阀壳油封轴承压装机的研究背景进行了详细的介绍,并结合当今社会的现状分析了研究的目的及意义,为后续论文的进行奠定了优良的基础。第二章,本章首先介绍了阀壳油封轴承压装机的研究现状,并提出今后阀壳油封轴承压装机的发展方向,然后介绍了阀壳油封轴承压装机的开发的技术路线,最后对本文研究的主要内容及结构框架进行了介绍,为后续毕业设计的开展工作做了铺垫。第三章,主要是设计计算,首先对阀壳油封轴承压装机气缸进行了选型,然后又对直线轴承进行了计算与选项,并对其中所用的螺栓进行了选型与校核,最后对阀壳油封轴承压装机的整体强度进行计算与校核,为后续对其结构设计起到了至关重要的作用。第四章,主要利用二维制图软件对阀壳油封轴承压装机进行了结构设计,并绘制出了它的重要零部件的二维图纸, 并对其主要零部件的功能及材料进行了详细的介绍,对它的整体结构进行讲解。第五章,结论与展望,总结了全文,并且对本设计中研究的主要成果进行概括总结,并且提出本设计中的不足之处,以及后续需要改进的地方。2.3 设计要求阀壳油封轴承压装机应满足的要求,如表2-1所示。表2-1 设计要求要求内容经济性要求在满足使用要求的前提下,要尽可能的降低成本,在设计过程中,经济性的重要性体现在制造、维修和销售等各个方面。因此在设计时要重点考虑它的经济性。安全性要求安全性是设计一个机器是最重要的指标,需要保证机器安全稳定的运行,也要保证在进行实验的人员的人身安全。可靠性要求可靠性就是是指它在运行的过程中的稳定性,可靠性越高运行过程中发生故障的可能性就会越小,它的使用寿命就会越长。操作使用方便性要求测试装置使用时便捷性也十分重要,操作方便可以有效的提高实验效率。2.4 研究目的和意义 在本课题的设计中,采用三维制图软件完成整体结构的设计,利用计算机集成先进制造技术,开辟一种新的设计思维,有很重要的现实意义。本研究课题参考压装试验机整体结构,通过对压装机工作原理深度研究,对比现有装置结构中的不足之处,对其中所存在的问题进行改正,总结分析并研究出一种全新的结构,提升装置的通用性、可靠性及稳定性。本装置可以更有效的提高加工效率,对我国减震器护盖装配技术发展有着重要借鉴意义。通过在对本装置的整体结构进行设计的过程中,能够巧妙地利用大学四年所学到的基础理论知识,完成装置的结构设计,并通过理论与实践相结合,不断的巩固理论知识,完成对大学这几年的理论知识的梳理与复习,在借助绘图软件过程中,使我们对软件的运用更加熟练,为以后参加工作,培养自主完成项目的能力打下坚实的基础。2.5 本章小结本章首先介绍了阀壳油封轴承压装机的研究现状,然后对阀壳油封轴承压装机的设计要求进行了总结与归纳,最后对本文研究的主要内容及结构框架进行了介绍。3 总体方案设计及设备选型计算3.1 总体方案设计本设计是阀壳油封轴承压装机,本次设计通过下方的定位块固定工件,通过气缸的伸出和缩回来实现压头的上下运动,以直线轴承和导杆实现压头的精准定位,用限位块实现压块的伸出位置的限位,通过以上结构的整体装配,保证设备的精准度。阀壳油封轴承压装机主要包括一下几部分:工作平台、定位装置、压头装置、机体安装座、动力装置等。具体设计参数: 1. 工位气缸: MDB1F100-150-Z73L -XC122. 总行程: 150mm 3.力行程: 15mm4.最大冲压力: 5600N/0.6Mpa5.工位气缸: MDB1F100-150-Z73L -XC126.总行程: 150mm7.力行程: 15mm8.最大冲压力: 23000N/0.6Mpa9.作业高度 750(工作台面高度) 10.生产节拍: 40S11.外形尺寸: 1780mm1670mm600mm为了满足以上的装配要求,我采用立式压装机。压装装置采用液压缸,这样可得到足够大的压入力,从而使系统简单可靠。定位装置采用、V型块等定位元件来实现活塞杆的准确定位。(如下图)图3.1 阀壳油封轴承压装机总体方案图3.2气缸的选型3.2.1减震器压装机定位机构气缸的选择气动驱动,压缩空气,并将存储在气缸,电动机或其他设备中的能量转换为机械能。但是,当工业应用中对能量的要求不高时,使用压缩空气是唯一具有成本效益的选择。气动“敏捷手指”用于在短距离内高速移动小物体,例如夹紧,运输,拧紧螺钉以及其他工业,贸易或医疗任务。 气动驱动系统包括空气压缩和处理、控制(通过阀门)和输出驱动(缸或电机)。这些组件在运行期间几乎不需要维护,因此使用寿命会延长。压缩空气易于获取,不会引起火灾或爆炸的危险。然而,压缩空气的生产和制备可能非常昂贵,并且必须抑制排气的刺耳噪音。优点是压缩空气对温度变化不敏感。如果有泄漏,则不会影响机器的安全,也不会污染环境。在很宽的范围内,可以简单地控制致动器的速度和力,但是可能难以获得恒定且均匀的活塞速度。在了解了各驱动方式之后,对减震器压装机定位部分进行选择。由于定位机构中,定位的动作为夹紧往复运动,并且在定位过程中需要有一定的力。所以选择气动作为减震器压装机定位部分的驱动方式。定位机构为通过直线运动带动连杆机构实现夹紧往复的运动,所以选择的气缸类型为双作用的直线气缸,并且为了保证气缸的活塞杆不受径向力,所以有相应的限位机构,最终选择气缸的类型为单导杆的双作用直线气缸作为定位机构的气动驱动元件,直线的位移行程为150mm。接下来对气缸的缸径进行计算和选型。3.2.2 气缸的理论输出力普通双作用气缸的理论推力(N)为: 式中, D一缸径(mm),p一气缸的工作压力(MPa)。 理论拉力(N)为: 式中,d一活塞杆直径(mm)时,估算时可令d=0.4D。3.2.3气缸的负载率气缸的负载率=实际负载力F/理论输出力F0当负载情况变化,实际负载力也变化。 气缸的实际负载是由工况决定,如果确定了负载率,那么气缸的理论出力也随之确定,负载率的选取与气缸的负载性能及气缸的运动速度有关(见下表)负载的运动状态静负载如夹紧、低速压铆动载荷气缸速度100mm/s气缸速度100500mm/s气缸速度500mm/s负载率806550303.2.4计算和选型本课题中举升气缸的轴向负载力:F =mg=0.31049.8=306N气缸的平均速度:V=s/t=100/0.8=125mm/s,按上表中,取负载率=0.5;理论输出力:F0=F/=306/0.5=612N由式和得:D=13.5mm;d=5.6mm考虑安全系数后,根据下表得气缸理论输出力表,选择缸径为100mm的单导杆气缸,行程为150mm,最终型号为MDB1F100-150-Z73L -XC12。3.3直线滚动导轨副直线导轨的距离额定寿命可用下式计算: 式中:硬度系数,一般要求滚道的硬度不得低于58HRC,故通常可取;温度系数,工作温度,取;接触系数,每根导轨上的滑块数为2,取;精度系数,精度等级为2,取;载荷系数,无外部冲击或振动的低速运动场合,取;额定动载荷(N);F计算载荷(N)。由此可计算出导轨的距离额定寿命为一般把滚动直线导轨的距离额定寿命定位50km,故满足要求。3.4 螺栓强度校核3.4.1螺栓连接强度校核与设计受横向载荷铰制孔螺栓连接的基本形式如图3.3所示:图3.3受横向载荷铰制孔螺栓连接受横向载荷铰制孔螺栓连接的基本计算公式:按挤压强度校核计算: 按抗剪强度校核计算: 按挤压强度设计计算: 按抗剪强度设计计算: 式中: 受横向载荷,N; 受剪直径,(螺纹小径),mm,查表获得; 受挤压高度,取 、 中的较小值,mm;m受剪面个数。许用应力的计算公式分两组情况,如表3-2:表3-2许用应力计算公式强度计算被连接件材料静载荷动载荷挤压强度钢铸铁抗剪强度钢和铸铁表中: 为材料的屈服极限,由螺栓机械性能等级所决定。3.4.2受横向载荷紧螺栓连接强度校核与设计受横向载荷紧螺栓连接的基本形式如图3.4所示:图3.4 受横向载荷紧螺栓连接受横向载荷紧螺栓连接强度校核与设计的基本公式如下: (1)预紧力计算公式: (2)校核计算公式: (3)设计计算公式: (4)许用应力计算公式: 式中: 横向载荷,N; 螺栓预紧力,N; 可靠性系数,取1.11.3;m接合面数;f接合面摩擦因数,根据不同材料而定。钢对钢时,为0.15 左右; 螺纹小径,从表中获取; 螺栓屈服强度,MPa,由螺栓材料机械性能等级决定; 安全系数,按表3-3选用。表3-3预紧螺栓连接的安全系数材料种类静载荷动载荷M6M16M16M30M30M60M6M16M16M30M30M60碳钢433221.310合金钢545567.5根据以上计算,最终选取连接螺栓的为四个8.8级的M8螺栓进行连接,可以有效的整体装置的强度及稳定性和可靠性。3.5 本章小结 本章主要是设计计算,首先对阀壳油封轴承压装机的总体方案机器工作原理进行了设计,然后根据总体方案的设计结果,对其中涉及到的设备进行计算选型,首先对阀壳油封轴承压装机的气缸进行了计算选型,然后又对直线轴承进行了设计计算,并对其中所用螺栓进行了选型与校核,为后续对其结构设计起到了至关重要的作用。4 运用CAD进行建模4.1软件概述Autocad是Autodesk计算机设计软件,在1982年由Autodesk首次开发。可用于2D工程图,详细的技术图像,基本设计和3D设计文件。它的多媒体设计文档使不使用计算机的专业人员可以快速学习使用计算机。在持续重复期间,最好研究各种技能和发展技能的要求,以不断提高工作效率。 Autocad具有广泛的兼容性,可以在微型计算机和工作站上的各种操作系统中使用。主要任务是完成完整的摄影作品。详细而有力的工作。有很多方法可以聚在一起。他们可以改变形状图的多样性,并具有很强的交流性。支持多种设备。该系统简单易用,适合所有类型的用户。此外,autocad2000系统还包含一个autocad设计(adc),用于多个文档的项目环境(mde),一个网络驱动程序,一个新的目标功能,一个预定义功能以及一个打开和一个分区一个启示。该程序的好处在于,现在可以轻松管理顺畅的迁移和迁移管理。您可以使用当前图像导出PDF文件中的几何图形,填充,排序和分组文本。 pdf数据可以来自附加到现有图像的PDF或指定的PDF文件。4.2总体结构建模根据前文的计算以及相关参考文献数据,对阀壳油封轴承压装机二维图纸的绘制,阀壳油封轴承压装机的二维数模如图4.1所示,装配体在实际安装的过程中要注意各个零部件的公差配合和尺寸精度是否满足要求,在装配前要检查零件是否有加工缺陷,是否在运输过程中有划伤等现象出现。要保证各零部件具有够用的刚度和强度,结构简单,降低成本,加工方便,并提高在使用时的便捷性及保证稳定性可靠性。图4.1总装图4.3 关键零件的设计4.3.1底板的设计 底板为整个耐久试验设备的支撑装置,能够承受装置所需承受的最大压力而不产生变形,并且能够满足工作压力面的尺寸要求。底板的材料选择Q235-A,通过数控机床加工,保证表面的粗糙度和孔的位置公差以及行位公差,如图4.2所示。图4.2底板4.3.2 支撑轴座与支撑轴的设计在本次设计中整体框架通过二根支撑轴和二个支撑轴连接座作为框架,通过螺栓把接的方式,将其固定在连接板上,这二个轴和二个支撑轴座在整体中间位置,下方连接有支撑下板,也是通过螺栓把接的方式连接,结构简单,降低成本,加工方便,并提高在使用时的稳定性可靠性。支撑轴座和支撑轴的三维数模分别如图4.3、4.4所示图4.3 支撑轴座的图4.4 支撑轴4.3.3 压块连接件的结构设计在本次设计中,压块连接件是用来安装和支撑压块,因为压块的强度要求比较高,对其加工精度还是有一定要求,须严格按照技术要求进行加工,如图4.5所示。图4.5 支撑轴4.3.4 压紧部件上板的设计在本次设计中,压紧部件上板选用的材料为Q235,并进行调质处理后,进行淬火的热处理,压紧部件上板安装在支撑杆上,通过螺母把接的方式,能有效的保证其稳定性,压紧部件上板上安装气缸,将气缸固定在上面。所以压紧部件上板所需的强度比较高,并且对其中间的孔要求加工精度较高,不能有加工缺陷,其零件图如图4.6所示。图4.6 压紧部件上板4.4 装配组装是按照规定的技术要求组装零件:按照规定的技术要求组装零件,然后进行调试和检查以使其成为合格产品的过程始于装配图的设计。组件必须具有定位和夹紧的两个基本条件。定位是确定零件正确位置的过程。定位后立即夹紧并固定零件。根据产品结构的复杂性,装配工作可分为零件装配,零件装配和总装。(1)组件装配:将若干零件连接成组件或将若干零件和组件连接成结构更为复杂一些的组件的工艺过。(2)部件装配:将若干零件和组件连接成部件的过程,称为部件装配。(3)总装配:将若干零件和部件装配成最终产品的工艺过程,称为总装配。因为装配工作的主要任务是保证产品在装配后达到规定的各项精度要求,所以一定采取合理的装配方法。装配体是由几个零件组成的零部件。它表达了组件的工作原理和装配关系。这在设计,组装,调整,检查,安装,实用性和维护过程中非常重要。在CAD中,零件可以位于零件,零件和子装配体,同轴配合,垂直配合,平行配合,距离配合,角度配合等之间。顶升机构的装配体如4.7所示:图4.7总装图5 总结与展望5.1 总结本次毕业设计通过分析轴承压装机的工作原理,设计了一种阀壳油封轴承压装机,通过分析其工作原理的基础上,对阀壳油封轴承压装机的主要结构进行设计和优化。本次论文首先介绍了阀壳油封轴承压装机的研究背景及本次设计的主要意义,然后提出阀壳油封轴承压装机的基本设计思路和设计理念,对阀壳油封轴承压装机进行主要零部件设计,设备选型和结构设计,最后,阀壳油封轴承压装机关键零部件进行强度校核。另外,通过这个设计,可以了解机械设计的一般流程:设计准备、发送装置的整体设计、发送部件的设计和计算、组装设计、部件的加工图纸设计、设计规范的制作。在设计过程中完成的同时,需要在时间内进行沟通与指导人员进行商谈。各阶段结束后,应谨慎检查,慎重保持正确错误,并保持改进。毕业项目的各个阶段互相关联着。在设计上,零件和部件的结构尺寸不能完全通过计算来决定,也应该考虑结构,技术,经济,标准化,串联化的要求。影响部件和部件尺寸的因素很多,随着设计的发展需要考虑的课题需要综合且合理,因此后期阶段的设计应该对前期设计中不合理的结构尺寸进行必要的修改。因此,需要计算设计,同时绘制,反复修正,交替进行设计计算和附图。标准化、串联化、通用化应在设计中进行,以确保可互换性、成本降低、设计周期缩短,这是机械设计、设计质量评估指标之一。在设计上,我们要注意的是,如果要使用标准部件,就必须熟练、正确地使用所有种类的相关技术标准和规范。通过本次毕业设计,锻炼了我对三维及二维软件的应用能力和设计制图能力,对大学这么多年自己的学习成果进行了很好的总结和凝聚,为今后走向工作,实现快速接轨社会奠定了基础。5.2 展望本次的设计任务对与我个人来说实属很难,很难,尤其是这个设计很复杂,尤其在于本次的设计过程中,一直以来自己能力有限。确实无法完成本次的设计,最后在老师与同学的热情帮助下,我经历各种问题,最后实现了设计思路的设定,最后完成这个自动打箔机的设计,完成一个主要从结构设计到最后的创新设计的一个过程。其实一个产品从设计到最后,成型到最后加工要经历一个全新的过程,这个过程很漫长也很长久,经过这个过程我也努力的完成了自己的想法与梦想。未来我希望自己能在机械设计领域创造出属于自己的天地。本次的设计,让给我感触很深,本次设计对我的锻炼也很多,让自己更加清楚自己的能力,设计就是从发现问题到最后解决问题的一个过程,本次完成设计任务,对自己也是一个极大的认可。参考文献1何庆机械制造专业毕业设计指导与范例北京:化工工业出版社 ,2007,102饶华球,孙伟机械制造技术基础北京:电子工业出版社,2007, 93徐鸿本机床夹具设计手册辽宁科学技术出版社2004,34朱龙根简明机械零件设计手册北京:机械工业出版社2005, 65关慧贞,冯辛安机械制造装备设计北京:机械工业出版社2009, 116陈宏钧实用机械加工工艺手册北京:机械工业出版社2003,17孙桓,陈作模.机械原理. 北京:高等教育出版社, 2001年8申永胜.机械原理教程北京:清华大学出版社, 1999年9单辉祖,材料力学:上册. 北京:高等教育出版社.2002 年10单辉祖,材料力学:下册. 北京:高等教育出版社.2002 年25HIL Simulation of Aircraft Thrust Reverser Hydraulic System in Modelica Zhao Jianjun1 Li Ziqiang1 Ding Jianwan1 Chen Liping1 Wang Qifu1 Lu Qing2 WangHongxin2 Wu Shuang2 1: CAD Centre, Mechanical School, Huazhong Univ. Sci.& Tech. Wuhan, Hubei, China, 430074 2: Shanghai Aircraft Design and Research Institute, Commercial Aircraft Corp. of China Ltd., Shanghai, 200436 jjzhao168, willhave, jwdingwh, chenliping.ty wangqf whongxin wushuanga Abstract This article describes a solution to create a hardware-in-the-loop (HIL) simulation system of civil aircraft thrust reverser with Modelica-based simulation plat-form - MWorks in Windows system. The HIL sys-tem uses simulation platform “MWorks” to model and simulate the thrust reverser hydraulic system, and takes hardware - PLCs output signals as the inputs of the simulation. Modeling module, commu-nication module, solving module, animation module and HIL control module are included in the simula-tion platform, whose key technology and implemen-tation details are specified. The HIL system has been successfully applied to the simulation of ARJ21 air-craft thrust reverser hydraulic system. It can simulate the hydraulic system in normal status, fault status as well as other working conditions to verify control logic and evaluate key performance of the system, thereby helping to reduce the cost of experiments and to optimize the design of the system. Keywords: Aircraft thrust reverser hydraulic system, real-time simulation, HIL, Modelica 1 Introduction Thrust reverser 1 as a part of aircraft engine, is air-craft landing deceleration device, which can effec-tively shorten the distance of taxiing. Thrust reverser is a typical complex physical system, involving me-chanical, electronic, hydraulic, control and other domains. In order to verify thrust reversers control logic, we could carry out ground experiment and flight experiment with real pieces of the thrust re-verser, but this approach has high cost and poor se-curity, and it is limited to different natural conditions. Moreover, with this approach, the test for extreme condition is very difficult. Modelica-based HIL simulation system can resolve above-mentioned problems. Firstly, Modelica 2, 3 is a freely available, object-oriented language for modeling of large, complex, and heterogeneous physical systems. It is suited for multi-domain mod-eling. Models in Modelica are mathematically de-scribed by differential, algebraic and discrete equa-tions. In Modelica we can model the entire thrust reverser, which involves mechanical, electronic, hy-draulic and control domains. Secondly, HIL system uses both real logic control components and thrust reverser model to implement the simulation. This HIL system can verify the control logic in a variety of working conditions, and its cost is very low. Moreover, with this system, there is no need to con-sider the security. This article introduces a solution to create an HIL simulation system of thrust reverser with Modelica-based simulation platform MWorks 4 in common computer with Windows operating system. It use as an example the aircraft thrust reverser of Advanced Regional Jet for the 21st Century (ARJ21) which is designed and manufactured by Commercial Aircraft Corp. of China, Ltd. (COMAC). At first, it intro-duces the overall frame of the HIL simulation system, and then specifies several key modules of the simula-tion platform, which are modules of modeling, solv-ing, communication, animation and HIL control, and finally demonstrates a successful application of this system in ARJ21 thrust reverser simulation. 2 System Overview Generally, HIL simulation system is composed of host PC running on Windows operating system and target machine running on real-time operating sys-Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 2009178DOI: 10.3384/ecp09430040tem. This kind of system has high real-time capabil-ity, but is very expensive. ARJ21 aircraft thrust reverser is driven by a hydrau-lic system, which is mainly controlled by six elec-tromagnetic hydraulic valves, whose states all de-pend on the thrust reverser control switch. In the si-mulation, PLC as the thrust reverser controller gen-erates 6 hydraulic valve control signals according to the state of the thrust reverser control switch and feedback signal from simulation platform. And the feedback signal will be only used for fault trigger. Therefore,the simulation does not need very high real-time capability. The HIL simulation system, discussed in this article, does not need expensive true real-time system. It can run on general computer with Windows operat-ing system and the sampling frequency can achieve 50Hz, which is enough for the requirements of the thrust reverser simulation. In Figure 1 the system overview is shown. The HIL simulation system is implemented based on PLC and simulation platform “MWorks”, which consists of five software modules - modeling module, solving module, communication module, animation module and HIL control module. Figure 1: System overview The PLC, used as the hardware part in the HIL sys-tem, receives electrical signal of control switch as well as simulation feedback signal, and sends control signal to the simulation platform after logic opera-tion. MWorks, a Modelica-based integrated development environment, is used as modeling and simulation platform for the HIL simulation system. The thrust reverser is the simulated object, which is modeled in Modelica. According to the model, the solving mod-ule generates the solver, which is responsible for real-time calculation. The communication module is responsible for real-time data exchange between si-mulation platform and the PLC. The animation mod-ule receives the result data from the solving module and drives 3D animation. The HIL control module, whose panel is shown in Figure 2, is responsible for starting and terminating the simulation, setting simu-lation parameters, displaying key data as well as communicating with other modules. Figure 2: HIL Simulation System The simulation process is as follows: 1) After analyzing the thrust reverser system, com-ponent models and system models are created in Modelica. 2) After setting simulation parameters with the panel of the HIL control module, the simulation begins: the HIL control module translates the model, and then the solving module generates a solver, which will be called in a new process. 3) The communication module is called by the HIL control module to receive control signals from PLC. After translating, these signals will be dis-played on the panel, and sent to the solver process. 4) The solver process receives control signal and calculates in every cycle. When the calculation finishes, the solver sends the results to the HIL control module, and wait until the next cycle. Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 20091795) The HIL control module receives the results from the solver process and displays them on the panel of the HIL control module, and delivers them to the animation module to drive real-time anima-tion. At the same time, the HIL control module calls the communication module to send the re-sults as feedback signal to PLC. 6) PLC uses the feedback signals and the state of control switch as input, and after logic operation, sends the control signal to the simulation platform. 7) Repeat the cycle from Step 3 until the termination of the simulation. 3 Key Technologies 3.1 Modeling After analyzing ARJ21 aircraft thrust reverser hy-draulic systems, we developed an exclusive hydrau-lic library: Hydrau_Comac, which is based on Hy-LibLight hydraulic library. Hydrau_Comac library provides ARJ21 thrust reverser hydraulic compo-nents and auxiliary library, such as Isolation Control Valve (ICV), Cowl Lock (CL), Directional Control Valve (DCV), hydraulic actuator, pipe, loads,and characteristics of fluid. These models are constructed according to their physical equations with their pa-rameters calibrated by test results if necessary. To satisfy the requirements of the real-time capability, Hydrau_Comac library also provides simplified real-time component models. The structure of Hy-drau_Comac library is shown in Figure 3. Figure 3: Structure of Hydrau_Comac library Based on HyLibLight library and Hydrau_Comac library, we modeled ARJ21 thrust reverser hydraulic system, provided simplified system model (Figure 4) for real-time HIL simulation, as well as detailed sys-tem model (Figure 5) for off-line simulation. Figure 4: Real-Time System Model for Thrust Re-verser Figure 5: Off-line System Model with Pipes 3.2 Solving Model solving in HIL simulation is different from in off-line simulation. The solving in HIL simulation needs to not only exchange data with external hard-ware, but also guarantee the synchronicity between physical time in real world and logic time in simula-tion. In order to identify input and output data, we used “input” prefix and “output” prefix to modify input variables and output variables, thus we can ensure the order of the calculation - from the input vari-ables to output variables. Besides, according to Modelica specification, input variables and output variables are not only used for external communica-Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 2009180tion, therefore external exchange data needs to be recorded in configuration file. According to the records in configuration file, the solving module associates input/output variables with shared memory. The solver module reads input data from shared memory, and writes output data into there. The HIL control module writes input data coming from PLC into sharing memory, and reads output data from there. The flow chart of real-time solving is shown in fig-ure 6. In every sampling cycle, the solving module gets the input variables from sharing memory, and checks if their value changes, if changes, it means that there is changes in the outside world, which re-sults in an event, so that the solving module need to do event iteration. Then the solving module calcu-lates, and writes required output data into shared memory. Figure 6: Flow Chart of Real-time Solving We use timer to implement the synchronicity. By calling QueryPerformanceFrequency() function, we can obtain machine internal timers clock frequency, and by calling QueryPerformanceCounter() function at two time points, we can get a count. With the fre-quency and the count, we can know the precise time between that two time points. With this method, we can know the time spent in one cycle, and the time is called physical cycle time, which is a variable. The next cycle begins when the physical cycle time is longer than sampling period. The timing error of this method is less than 1ms. In every cycle, the solving module checks whether the time spent on calculating is longer than the sam-pling period. If the calculation overruns the sampling period, but not more than the acceptable time, the module will report a warning. And if the calculation overruns the acceptable time, the module will report an error and quit. Therefore, in order to achieve high real-time capability, the simulation system needs to run on high-performance computer to ensure the speed of solving. 3.3 Communication In HIL simulation, how to communicate between simulation platform and PLC and how to guarantee the precise communication frequency are key factor to real-time capability. By using the communication module, simulation platform communicates with PLC through RS232 serial port . Communication parameters are as fol-lows: 57.6kbps transmission rate, 8-bit data bit, 1-bit stop bit, no parity, and fixed word length data frame. The data transmitted from simulation platform to PLC will be converted to standard data frame ac-cording to the protocol. After receiving, the PLC will translate those data frames to retrieve the content. The communication module calls Windows API function to carry out serial port communication: call-ing CreateFile() function to open the serial port, Wri-teFile() function to write data to the serial port, ReadFile() function to read data from serial port. PLC uses high-speed serial port communication module CP341 to implement communication. FB7 function block of CP341 are responsible for receiv-ing data from simulation platform, and FB8 function block of CP341 are responsible for sending data to simulation platform. Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009 The Modelica Association, 2009181By using timer, the frequency of serial port commu-nication can be controlled. Serial port communica-tion frequency is the same as the sampling frequency. PLC uses its internal timer, whose minimum timing interval can be 10ms. Since the PLC is circuit work-ing, so the precision of timing depends on the opera-tional cycle of PLC control program. Under normal circumstances, the operational cycle of PLC control program can be less than 1ms, and the precision can achieve 1ms. The communication module, based on Windows operating system, uses multimedia timer “timeSetEvent()” for timing control, and implements serial port reading and writing operation in callback function, the precision can also achieve 1ms. 3.4 Animation Generally, the implementation of Modelica multi-body animation has 3 steps: firstly, the solver calcu-lates the model to generate result data, which then will be used to form animation data; secondly, geo-metric models are created; thirdly, the geometric models are driven by the animation data and dis-played on the screen. For the real-time simulation, we need to fresh the animation data in every cycle, but it takes so long to fresh the data that the animation cannot satisfy real-time requirements. Fortunately, the thrust reverser has only one motion freedom, that is, the actuation can move back and forth. Therefore, we can create off-line animation at first, and then use the variable of actuator deployed length to control the display of that off-line animation, thus the synchronicity of the animation can be guaranteed. Specific process is as follows: Firstly, establish the multi-body kinematic model of the thrust reverser, and execute off-line simulation to generate simula-tion results document; secondly, read the simulation results document to create 3D animation; thirdly, establish one to one mapping relationship between the variable of actuator deployed length and the off-line animation frames; finally, carry out the real-time simulation, obtain the value of that variable, and use it to drive the animation. 4 Application This HIL simulation system has been successfully applied to the simulation of ARJ21 aircraft thrust reverser hydraulic system. The simulation platform UI is shown in Figure 7. Logic control hardware part is implemented with Siemens S7-300 series PLC, which includes power supply module, CPU module, discrete input module, discrete output module, analog input module, analog output module, serial port communication module and touch panel. PLC control program is developed with STEP7, and touch screen interface (Figure 7) is developed with Flexcible2005. PLC takes the thrust reverser control switch or the data from the touch screen as input signal, after some logic operation, it sends the output data as control signal to simulation platform. Figure 7: Touch Panel of PLC MWorks runs on general computer with Windows operating system. our computer with simulation plat-form MWorks is a Dell desktop with Intel Core2 2.8G CPU, 2G RAM, ATI 3450HD graphics card and 19-inch liquid crystal display. In this configura-tion, the real-time simulation cycle of ARJ21 thrust reverser hydraulic system can achieve 20ms. The result data and curves generated by this HIL si-mulation system are basically in agreement with the tests, the difference is acceptable. (Table 1
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。