




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1322 三角形全等的条件(二)第三课时 教学目标 (一)教学知识点 全等三角形的条件:边角边 (二)能力训练要求 1经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程 2掌握三角形全等的“边角边”条件 3在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明 (三)情感与价值观要求 通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神 教学重点 三角形全等的条件:边角边 教学难点 探究三角形全等的条件 教学方法 引导发现法 教具准备 多媒体课件 教学过程 提出问题,创设情境 师在上节课的讨论中,我
2、们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等给出三个条件时,有四种可能,能说出是哪四种吗? 生三内角、三条边、两边一内角、两内角一边 师很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等今天我们接着研究第三种情况:“两边一内角” 导入新课 (一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况? 生两种 1两边及其夹角 2两边及一边的对角 师按照上节方法,我们有两个问题需要探究 (二)探究1:先画一个任意ABC,再画出一个ABC,使AB=AB、AC=AC、A=A(即保证两边和它们的夹角对应相等)把画
3、好的三角形ABC剪下,放到ABC上,它们全等吗? 探究2:先画一个任意ABC,再画出ABC,使AB=AB、AC=AC、B=B(即保证两边和其中一边的对角对应相等)把画好的ABC剪下,放到ABC上,它们全等吗? 学生活动: 1学生自己动手,利用直尺、三角尺、量角器等工具画出ABC与ABC,将ABC剪下,与ABC重叠,比较结果 2作好图后,与同伴交流作图心得,讨论发现什么样的规律 教师活动: 教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程 操作结果展示: 对于探究1: 画一个ABC,使AB=AB,AC=AC,A=A 1画DAE=A; 2在射
4、线AD上截取AB=AB在射线AE上截取AC=AC;3连结BC 将ABC剪下,发现ABC与ABC全等这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”) 播放课件: 两边和它们的夹角对应角相等的两个三角形全等简称“边角边”和“SAS”如图,在ABC和DEF中, 对于探究2: 学生画出的图形各式各样,有的说全等,有的说不全等教师在此可引导学生总结画图方法: 1画DBE=B; 2在射线BD上截取BA=BA; 3以A为圆心,以AC长为半径画弧,此时只要C90,弧线一定和射线BE交于两点C、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和ABC全等的播
5、放课件: 也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等所以它不能作为判定两三角形全等的条件 归纳总结: “两边及一内角”中的两种情况只有一种情况能判定三角形全等即: 两边及其夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”) (三)应用举例例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA连结BC并延长到E,使CE=CB连结DE,那么量出DE的长就是A、B的距离为什么? 师生共析如果能证明ABCDEC,就可以得出AB=DE 在ABC和DEC中,AC=DC、BC=EC要是再有1=2,那么ABC与DEC
6、就全等了而1和2是对顶角,所以它们相等 证明:在ABC和DEC中 所以ABCDEC(SAS) 所以AB=DE 随堂练习 P97练习(学生板演) 生甲 1解:C、D到B的距离相等 因为在ABD和ABC中 ABCABC(SSA) 所以BD=BC 生乙 2证明:因为BE=CF 所以BE+EF=CF+FE 即BF=CE 在ABF和DCE中 所以ABFDCE(SAS) 所以A=D 师简评请看两位同学的证明,谁有不同意见,请发表 生我不同意同学甲的解法,他的书写不规范,导致把定理名字写错在证明ABD和ABC全等的过程中,他找的是两边及其夹角对应相等,但书写时,先写两边再写夹角,得出ABDABC,写依据时写
7、成“SSA”就错了因为“SAS”才是表示两边和它们的夹角对应相等的两个三角形全等,而“SSA”不是所以我认为书写时最好按“边角边”的顺序,这样才不至于出错 师数学具有严密的逻辑性,我很赞同这位同学的见解,大家认为呢? 生是这样的 师(同学甲修正自己解法)同学乙的证明过程严密、条理,值得大家学习同学甲也修改完毕,嗯!很漂亮 课时小结 这节课我们又探索出了两个三角形全等的条件到现在为止,我们有以下几种方法可以得到两个三角形全等 1定义 2SSS 3SAS 注意对应关系,两边和其中一边的对角对应相等的两个三角形不一定全等所以用“SAS”时,一定要注意找两边及其夹角对应相等才能满足两三角形全等 课后作
8、业 1课本习题1323、4、10题 2预习课P9799内容 活动与探究 已知:如下图,AO=DO,EO=FO,BE=CF能否推证AOEDOF、ABEDCF? 过程:在AOE和DOF中 AOEDOF AE=DF,AEO=DFO 又AEB+AEO=DFC+DFO=180 AEB=DFC 在ABE和DCF中 ABEDCF 结论:可以推证AOEDOF、ABEDCF 板书设计 1322 全等三角形的条件(二) 一、两边一角 二、两边和它们的夹角对应相等的两三角形全等(SAS) 三、例: 四、课堂练习 生甲: 生乙: 五、小结 证明两三角形全等的方法: 1定义 2SSS 3SAS 备课资料 一、参考例题:
9、 例1如下图,已知C是AB的中点,A=B,AD=BE,MD=NE 求证:ADCBEC,MECNDC 证明:在ADC和BEC中 所以ADCBEC 所以DC=EC 又因为MD=NE 所以MD+DC=NE+EC 即MC=NC 在MEC和NDC中 所以MECNDC 例2如图,ADBC,AD=BC,那么AB与CD平行吗?请说明理由 分析:要说明ABCD,需证明同旁内角互补,或内错角相等,或同位角相等不妨连结AC,只要证明1=2即可 证明:如图13218,连结AC 因为ADBC 所以3=4 在ABC和ADC中 所以ABCCDA 所以1=2 所以ABCD 二、参考练习:1图(1)中,若AO=DO,再给出一个什么条件,可证得AOEDOF?(OE=OF) 2图(2)中,若AE=DF,BE=CF,再给
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗安全与风险管理的法规遵循与执行
- 复杂性区域疼痛综合征的临床护理
- 兴唐镇中心小学2025年教科研工作总结模版
- 实习总结模版
- 医疗大数据挖掘与健康教育新模式
- 2025年会计基础知识点总结模版
- 医技新风医疗技术与健康科学的深度融合发展探讨
- 区块链教育培养未来技术领导者
- 中药材产业中质量追溯体系的构建与优化-基于区块链技术的研究
- 医疗信息安全的国际比较与借鉴
- 彩钢板屋面监理细则
- 文艺复兴史学习通超星课后章节答案期末考试题库2023年
- 《BIM技术概论》期末试卷及答案2套
- 城市设计原理-西安建筑科技大学中国大学mooc课后章节答案期末考试题库2023年
- 初中生物理自主学习能力现状的调查研究的开题报告
- 委派合同范本
- 嵩县天运矿业有限责任公司石盘沟金矿矿山地质环境保护与土地复垦方案
- 丝路神话-“一带一路”沿线古今漫谈知到章节答案智慧树2023年黑龙江林业职业技术学院
- 乡村规划与设计教材课件
- 2023年高考-汉语文试卷及答案
- 【小区植物配置情况调研分析8500字(论文)】
评论
0/150
提交评论