外文资料.pdf

YZC3振动压路机振动轮设计

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:129148565    类型:共享资源    大小:936.84KB    格式:RAR    上传时间:2021-05-21 上传人:加Q294****549海量... IP属地:湖南
45
积分
关 键 词:
YZC3 振动 压路机 设计
资源描述:
YZC3振动压路机振动轮设计,YZC3,振动,压路机,设计
内容简介:
YZC3振动压路机振动轮设计摘 要 随着振动压实理论的逐步完善以及新的压实技术和控制技术在压路机中的应用,振动压路机的研究逐渐显出其重要性及必要性。本次毕业设计的主要任务是设计一种常用的YZC3振动压路机振动轮结构,该设计的意义在于研究设计出一种常用的3t轻型压路机,满足一般压路工况。由于所选择的YZC3振动压路机为轻型振动压路机,所承受的激振力较小,因此振动轮设计为单振幅、单振频的振动形式,设计较为简单和常用。具有很强的通用性,通过对YZC3振动压路机振动轮中的偏心轴以及所选轴承、激振器的设计计算,确定整个振动轮旋转过程中所产生激振力以及校核部分零件,使之满足YZC3振动压路机的工作需求。除了振动轮各项参数的设计计算部分,本文还包括了对振动压路机的发展,课题研究意义的分析,以及对本领域目前发展情况的最新进展以及所出现的问题进行研究和讨论。关键词:振动压路机, 振动轮,振动激振器, 单调频, 单调幅 YZC3vibratory wheel of vibratory roller designABSTRACTAs the gradual improvement of the vibratory compaction theory and the new compaction technology and control technology have been applied to the roller, the research of the vibratory roller gradually shows its importance and necessity. The main task of the graduation design is the design of a commonly used YZC3vibratory wheel structure, the purpose is to design a kind of commonly used 3T light roller, satisfy the general road conditions.Due to the chosen YZC3vibratory roller for light-duty vibration road roller, under vibration force is small, therefore the vibration wheel design for single amplitude, single frequency vibration form, design is more simple and commonly used. Has the very strong versatility, through to the YZC3vibratory wheel of the eccentric shaft and bearing selection, design and calculation of the vibration exciter, the vibration wheel rotation generated in the process of exciting force and check parts, which can meet the needs of the work of YZC3 vibration road roller.In addition to the vibration wheel parameters design calculation, this article also includes a pair of vibrating compactor development, research significance, as well as the current situation of the latest progress and existing problems are studied and discussed.KEY WORDS: vibratory roller, vibratory wheel, vibration exciter, single frequency, single amplitude7前言压路机是以增加工作介质(土石填方及路面铺层混合物料)的密实度为主要用途的施工机械。它是道路与工程结构物基础、堤坝及路面铺装工程的主要施工设备之一。按施工原理的不同,压路机分为静作用压路机、轮胎压路机、振动压路机和冲击式压路机四大系列。振动压路机以其发出的震动载荷使土颗粒处于高频振动状态,颗粒间的内摩擦力丧失,压路机本身的重力对土壤的压应力和剪切力迫使这些颗粒重新排列而得到压实。振动压路机是一种高效的压实机械,广泛应用于道路建设施工中。对国内外压实机械发展史的研究,把握压实技术和压实机械的发展趋势及最新动态。为YZC3振动压路机产品的定位提供依据。振动压路机是利用滚动压实原理对路面铺层或工程结构物基础的压实工作,所以振动压路机的最重要的工作装置就是它的振动轮。本设计介绍了振动压路机的发展概况、振动机构的配置、偏心轴的设计计算、振动轮的组成设计计算、激振器的型式、减振器的设计。本次设计将重点介绍几种不同的设计方案,相互比较之后选取最佳方案,并校核计算重点零件。 1 压路机概况1.1 压实机械简介1.1.1 压实机械发展简史压实原理的应用起源于中国,早在1000多年前的隋唐时期就使用了人力或畜力拖动的石滚。1262年,美国制成了世界上第一台以蒸汽机为动力的自行式三轮压路机。1929年,美国制成了世界上第一台以柴油机为动力的自行式光轮压路机。1930年,德国设计了用履带拖拉机牵引的振动平板夯,1940年,在此基础上设计成功了振动压路机。振动压路机的出现,改写了压实机械的历史:不仅替代了过去靠单一增加主机的重量,来增加压实力的做法。而且在压实理论上也有新发展,目前被人们接受有四大理论:1.内摩擦减少学说;2.共振学说;3.反复载荷学说;4.交变剪应变学说。新理论的产生必然带来产品的革命。因此,引起了各国制造商的关注,对振动压路机进行了广泛的研究。最初,振动压路机只用于压实非粘性材料,随着技术性能的改进和提高,振动压路机已广泛地用于粘性材料、沥青路面和混凝土的压实工作。60年代后,随着振动压实理论的深入研究和完善,涌现了各种形式的振动压实机械,液压技术的广泛应用,使振动压实机械得到了迅速发展,目前已形成了品种繁多的压实机械家族。1.1.2 压实机械的分类根据压实机械的工作原理、结构特点、传动形式、操作方法和用途的不同,有不同的分类方法,习惯上把压实机械分为压路机和夯实机两大类。1、压路机:按压实原理,压路机可分为静作用压路机、振动压路机和组合式压路机。静作用压路机又可分为光轮压路机和轮胎压路机。振动压路机可分为手扶式振动压路机、自行式振动压路机、两钢轮串联式振动压路机和拖式振动压路机。振动压路机按振动机构分又可分为:圆周振动;扭转振动即振荡;智能振动,其中包括:垂直振动、斜向振动和水平振动;复式振动即扭转振动和轴向振动的叠加:混沌振动压路机即主频附近的宽频激振。2、夯实机:夯实机有蛙式打夯机、振动平板夯、振动冲击夯和爆炸夯四种。振动平板夯又可分前行和可逆行振动平板夯两种。振动冲击夯又分为电动和内燃振动冲击夯两种。1.2 振动压路机的组成和发展方向1.2.1 振动压路机的组成与工作方式压路机以其滚轮触地,滚轮以一定的线载荷对铺筑层材料施以滚压力,随滚压次数的增加,材料被逐渐压实。在振动压路机的压轮上伴随有高频振动,能大大增加这种压实能力,并且使压实力向着更深层处波及。压路机的滚轮即是工作装置,又是行走机构。因而滚轮支持着整机重量,并保证与地面有必要的附着能力,以传递足够的驱动力矩驱和制动力矩。如图1-1所示的振动压路机。 图1-1 压路机的工作装置与行走系统 1振动轮 2减振器 3车架 4驱动轮振动压路机的工作装置与行走系统由带激振器的振动轮1、橡胶减振器2、车架3和驱动轮4组成。压路机整机的重力G通过车轮传给地面,引起地面产生作用于驱动轮上的垂直支反力和。当发动机经传动系统给予驱动轮上一个驱动力矩M时,则地面便产生了作用于驱动轮边缘上的牵引力P,从而驱动压路机行走,完成对铺层材料的反复滚动和振动压实。当压路机刹车制动时,经操纵系统作用于滚轮边缘上与行走方向相反的制动力,制动力传给机架,迫使整个压路机减速以致停车。1.2.2 振动压路机的技术发展上世纪90年代以来,国际工程机械市场出现平稳增长趋势,作为压实主要设备的振动压路机以及压实理论和压实控制技术越来越受到各国的重视,并陆续采用了一系列的新技术。1.引进改变振子偏心距或偏心质量达到调幅调频的调幅与调频机构。最方便的调幅机构是固定振子与活动振子不同方位相叠加实现的。双幅振动只要改变液压马达的旋转方向即可实现。通过花键或嵌接调节固定振子与活动振子的相对角度能实现多级振幅换接。无级调幅很困难,现在有用液体流动原理制成的无级调幅机构,振动调频的调节是用液压马达的调速来实现的。 2.气力悬挂减振装置可以使振动能量全部传递给压实面。气力悬挂是利用空气的弹性,由于气体受压缩和反弹的速率很快,几乎不消耗振动能量。 3.在压路机的驾驶室内设置频率仪、振幅计和压实度计,实现压路机的随机自动检测。这样操作人员可以随时测定压实效果及确定碾压遍数,从而提高了作业效率和压质量。 4.在压路机的有关部位设置传感器,可以对油位、油温、滤清器堵塞、皮带松弛等故障自动报警,加上对压实速度、振动频率和振幅的快速调节及压实度的随机检测,实现压路机故障报警与调控自动化。我国振动压路机经历了从机械传动到液压传动、由单一型号到系列发展的不同阶段。上世纪40年代以来,国内主要生产厂家直接引进世界先进技术水平压路机制造技术,如洛阳建筑机械厂引进德国Bomag公司的BW217D、BW213D、BW141D和BW120D等型号和振动压路机专有技术;徐州工程机械厂引进瑞典 Dynapac公司的CA25振动压路机制造技术,多年来经过归引进机型消化吸收和国产化的改造,使产品技术水平不断提高,可靠性不断增强,生产能力不断扩大。国内目前已形成了徐工、三一、洛建、三重等为代表的压路机生产厂家。我国振动压路机的新发展体现在新产品频频亮相、新机构不断涌现和自动化水平不断提高等三方面。随着微电子技术和自动控制技术的发展,液压与电子控制有机结合使振动压路机性能显著提高。利用速度、压力、流量等传感器,采集振动压路机工作状态参数引入自我诊断系统,实现故障自动报警、振动频率和振幅的快速调节及压实度的随机检测。但是由于我国振动压路机起步晚,整体水平与国外先进水平相比仍有较大差距,尤其是重型和超重型振动压路机生产数量和品种仍然较少,产品的可靠性和外观质量等综合技术经济指标和自动控制技术方面仍低于国外先进水平。 随着现代科学技术的迅猛发展,计算机技术的运用已成为非常重要的手段,这使得压实机械的研究过程从论证、设计、制造、试验、使用、维修到管理的全过程成为高度自动化和现代化的工作过程,并将最终推动压实机械向自动化、智能化、无人化和机器人化的方向发展。机器可以按照土质的变化情况不断调整自身各种工作参数就(振动频率、振幅碾压速度和遍数)的组合,自动适应外部工作状态的变化,使压实作业始终在最优条件下进行。这种智能自动条幅压实系统能自动选择与被压材料的密实度状况相匹配的振幅,从而消除材料出现压实不足或过压实现象,提高压实度的均匀程度;能够消除振动轮的跳振,避免粗骨破碎。在对压实过程控制和机器工作状态实施检测的基础上,压实机械将从局部自动化过渡到全面自动化。1.3压实机械的发展方向1、液压化20世纪60年代,国外大中型压实机械已采用液压技术;20世纪70年代推出的全液压振动压路机,使得压路机结构简单、布置方便、操纵简便省力,特别是液压传动实行走系统无级变速,使振动系统根据施工要求在较大范围内调频和调幅,振动压路机使用性能和应用范围大大改善和提高,同时,液压化为机器自动检测和控制提供了条件。近年来,液压技术逐步应用于小型振动压路机和振动平板夯,而且非常重视液压系统的污染控制。2、系列化为满足不同施工条件的要求,压实机械产品系列不断扩大和完善,就振动压路机而言,从300kg的手扶振动压路机到自重20t的大型振动压路机,都按不同的系列进行生产。根据用户的使用要求,一种产品又派生出多种变形产品,如瑞典戴纳帕克(Dynapac)公司CA系列产品为轮胎驱动振动压路机,包括CA10、CA21、CA30、CA51等,自重从416t;CC系列产品包括CC11、CC21、CC41等自重从410t;其中CA25S型振动压路机派生出压实粘性土用的CA25P、双轮驱动的CA25D、双轮驱动压实粘土用的CA25PD和压实面层的CA25R等型号。德国宝马(Bomag)公司在BW90S手扶式振动压路机的基础上派生出带有转向和司机座椅的BW90SL型振动压路机。3、电子化、智能化测试技术和微电子技术在压实机械上的应用可以提高生产率,确保压实质量和机器正常工作。电子化主要表现在机器状态和参数的检测处理和显示以及密实度计。密实度计可以自动记录被压实材料的密实度值;电子化的另一个表现是:测试压路机可以在工程施工过程中提供压实质量控制依据;而电子化的最高表现是智能压路机,智能压路机可以自动调节自身状态,使之与周围环境压实材料想适应,优化压实过程,智能压路机代表着发展方向。4、标准化、模块化设计标准化包括两方面的内容:一方面,为了适应施工工艺,产品性能参数尽可能标准化,例如,振动轮尺寸、静线压力、激振频率、振幅、行驶速度等;另一方面,为了简化加工工艺,减低成本,生产厂家尽力使本公司的各类产品零件标准化。例如,瑞典德纳帕克(Dynapac)公司正在改进CA15、CA25、CA30、CA51机型的设计,使其零件在一定范围内尽可能通用,如分动箱、变速箱、减速箱、驱动桥等,便于组织大批量生产。另外标准化有利于采用模块组合设计方法,将一台机器分成不同的模块提高新产品开发速度,满足多途的需要。该公司在同一机器上可方便地更换各种振动轮,变型为CA25P型。宝马公司设计了一种特殊凸块装置,可在很短时间内嵌固在光滑振动轮表面上。5、人性化、安全化为了提高生产率,延长机器使用寿命,振动压实机械均在减振降噪方面作了大量的工作,可满足ISO2631-1978(E)人体承受整体振动的评价指南中司机连续工作8小时不疲劳的要求。德国ABG公司生产的8t组合振动压路机,在减振和隔音处理方面都达到了相当高的水平。采用双方向盘、可动方向盘、旋转座椅,并且将操纵手柄设计在座椅扶手上,尽可能减少操纵失误和减轻司机的疲劳强度,满足操纵方便性。如瑞典德纳帕克(Dynapac)公司生产的CC42型振动压路机,只有两个操纵手柄,而且方向盘可以到侧面,减少了操纵过失和司机疲劳。一些压实机械制造商在其产品上装有倾翻驾驶室和防降重物驾驶室,适应特殊施工条件的要求,保障驾驶员的人身安全,德国韦伯麦克公司在手扶振动压路机手柄上装有自动停车装置,一旦司机滑倒,手脱离手柄,立即停车,确保人身安全。6、特殊用途压实机械例如:斜坡压路机、水下压路机、垃圾压路机、RCC(碾压混凝土)专用振动压路机、回填挖压路机等专用压路机的开发得到重视。7、应用压实新技术例如:振荡压实技术、垂直震动压实技术、调频调幅技术、橡胶压实轮技术被逐步应用于工程施工中。8、面向产品生命周期的设计现代化管理带来的收益是潜在的和巨大的,现代化管理包括产品设计、制造、销售、使用、维修各个环节,特别是售前、售后服务的实时化和规范化。2 振动系统的组成和配置2.1 振动系统的组成振动压路机的振动系统由激振机构、振动轮、减振器、驱动板及振动机架组成。激振机构是振动压路机产生振动的力源。现有振动压路机上的激振机构,都是由支撑于振动轴承上的振动轴带有偏心块振子构成,振动轴高速旋转时偏心振子所产生的离心力就是振动压路机的激振力。振动轮由钢板卷制的轮圈和辐板焊接成。轮圈的厚度直接影响了振动压路机的质量配置并应保持在使用过程中被磨损后不至于过多的影响质量配置,也不至于被较大的石块硌穿。振动轮各辐板上安装振动轴承的孔,应有较高的同轴度要求,以减轻振动轴承的发热量和动力损耗。减振器用于连接振动轮与机架或连接振动轮与驱动轮,起到减振作用。目前振动压路机上大都使用承受剪切力的橡胶减振器,因为橡胶块的弹性滞后和阻尼,不仅会影响振动轮的振幅大小,而且使橡胶块发热导致橡胶老化和产生裂纹。近几年来国外出现了气力悬挂减振器,其减速率很快,并且在反弹和压缩过程中近似于绝热过程,故几乎不消耗能量。使得振动轮通过气力悬挂减振器传递到机架上的振动趋与“零”,因此其振动能量完全传递给了被压实铺层上。 驱动板用于将驱动油马达的转矩通过一组减速器传递给振动轮,以驱使振动轮能自行走。当振动轮为压路机的被动轮时,无此驱动轮。振动轮的机架是由钢板焊接而成的结构件,可以做成是四方框架或门型框架的结构型式。振动机架除了要求有足够的动静强度之外,还要有适度的重量以保证振动压路机的总体技术性能。振动压路机的非振动部分与振动部分重量之比是重要的参数之一,非振动部分重量的增大能增加压实效果和有利于减振。根据统计分析可知,这一比例应保持在1.52之间较好。2.2 振动机构的配置2.2.1 振动机构配置简介振动压路机上的振动机构有着不同的配置方法,从而形成了具有不同工作性能的振动压路机。例如按激振器安装位置的不同区分为外振式与内振式,按振动轮的不同位置区分为单轮振动、双轮振动与摆振式,按振动力与传递方向的不同区分为无定向摆动、振荡和垂直振动。其中振荡与垂直振动可合称为定向振动,或称双轴振动。2.2.2 外振式振动压路机外振式振动压路机有上下两层机架,两机架之间由压缩减振器相连接,激振器安装在下机架上。当振动轴带动偏心块高速旋转时,压路机的下机架连同安装在下机架上的压轮一起振动。这种振动压路机的激振器结构简单,便于维修保养,所以在很多手扶振动压路机上得到了应用。 图2-1 外振式振动压路机2.2.3 内振式振动压路机目前,绝大多数的振动压路机都采用内振式单轴振动结构。内振式振动压路机的激振器安装在振动轮内,并与振动轮的回转轴在同一轴线上。当振动压路机工作时,振动马达驱动振动轴高速旋转,振动轴上的偏心振子即产生离心力,振动轮就是在这个离心力的作用下产生圆周运动。内振式振动压路机结构紧凑,技术成熟,操作使用安全,因此获得了广泛应用。2.2.4 单轮振动压路机单轮振动压路机只有一个振动轮,另一个车轮不振动而仅起驱动或导向作用,如CA25轮胎驱动振动压路机即YZC5型串联振动压路机。单轮振动压路机的结构相对简单,大吨位的轮胎驱动单轮振动压路机用于基础压实,驱动能力大,横向性能好。小型的串联式单轮振动压路机用于小型压实工程或路面维修作业。2.2.5 双轮振动压路机双钢轮串联式振动压路机的结构相对复杂些,两个振动轮上都需要减振,也都需要驱动,如CC21振动压路机。但双轮振动压路机的压实能力强,作业效率高,与同吨位的单轮振动压路机相比,双轮振动压路机压实土壤时的生产率可提高80%,压实沥青混凝土时的生产率可提高50%。 图2-2 双轮振动压路机183 振动压路机振动轮设计3.1 振动轮振动参数振动压路机的振动轮的振动参数主要是振幅和频率,还有一些派生振动参数,如振动加速度、激振力和动作用力等,这些派生的参数都可以是用振幅和频率导出。本次设计的振动压路机为YZC3(3吨两轮串联振动压路机)型。因此,YZC3振动压路机的基本参数选择为:振动轮质量为600kg,振动轮直径为,宽度为800mm,振动形式为单振幅单振频,振幅为0.5mm,振频为55Hz。 3.1.1 振动频率压路机振动轮在激振力的作用下产生受迫振动,其振动频率(Hz)、角频率(rad/s)和振动周期T(s)分别按以下公式计算=55Hz (3-1) =110 (3-2)=s(3-3)式中 n-激振器转速,r/min。 振动压路机振动轮频率与振动轮及被压实土壤的振动系统有关。应在振动系统的分析基础上,针对不同的压实土壤和使用工况,选定振动轮频率。随着振动压实施工的进行,土壤的力学参数刚度和阻尼发生变化,土壤密实度增加,阻尼减少,振动轮与土壤系统的固有频率发生变化,处于压实状态的土壤,成为密实而有弹性的物体。振动轮的频率应大于振动轮与土壤的共振频率。3.1.2 工作振幅和名义振幅振动压路机在振动压实作业时,振动轮的实际振幅称为振动压路机的工作振幅,用A来表示,振动压路机的工作振幅受土壤刚度的影响。由于土壤铺层的刚度是一个随机值,所以振动压路机的工作振幅也是一个随机参数。为了评价和比较不同机型振动压路机的振动性能,就引入了名义振幅这个设计上的概念。所谓“名义振幅”,是指把振动压路机用支撑物架起来,振动轮悬空时测量的振幅,也称为“空载振幅”,用A0表示。名义振幅的大小只与振动轮本身的参振质量及激振器的静偏心距有关,而不受外部工况的约束。振动轮的名义振幅A0(m)用下面公式计算A0= (3-4) Me=6000.510-3=0.3kgm 式中 Me激振器的静偏心距,Nm; md振动质量,kg。此处的振动质量是指参与振动压实工作的所有零件质量的总和。包括振动轮本身、激振器、液压马达、安装板,甚至还应计入减震器质量的一半。与振动频率相对而言,振动压路机振幅的变化对压实效果有更显著的影响。由试验知,振动频率在2055Hz范围内的压实效果最好,而压实曲线变化也比较平缓。这说明,在这区段内振动频率对压实效果的影响不大。而在同一频率区段,若将工作振幅增加一倍时,其压实效果和影响深度会出现跳跃性的变化,根据此考虑,本设计中振幅取0.5mm,振频取55Hz。3.1.3 振动加速度振动轮的振动加速度a是一个派生参数,可以由名义振幅A0振动角频率求得a= (3-5)a=6.1振动加速度用重力加速度g的个数表示,它反映了振动压路机对地面动态冲击力的大小,其值控制在410个g。振动压路机的振动加速度体现了频率和振幅的综合效应。振动加速度a过小,说明振动压路机的工作频率过低或名义振幅过小。过小的振动加速度,产生的动态冲击力很小,体现不出振动压实的优越性。反之,振动加速度a过大,说明振动压路机的工作频率或名义振幅取值过高。过大的振动加速度,将导致被压实材料出现离析现象,即大质量的骨料颗粒在振动状态下产生较大垂直于地面的惯性力,使之沉降在铺层表面疏松,道路的稳定性和耐磨性下降。3.1.4 激振力和动作用力振动压路机振动轮对地面的作用力Fs可简称为“动作用力”,振动压路机振动轮的作用力和它的激振力是两种完全不同的力,它们之间并不存在关系,更不能混为一谈。激振力F0是由偏心振子激振器高速旋转式的离心力形成的。它只和振子的静偏心距Me及角频率有关,可以计算出。动作用力Fs是土壤弹性变形抗力和阻尼力的矢量和,它与振动轮的瞬间振幅、振动加速度及土壤的物理力学特点有关。 (3-6)为了提高振动压路机的动作用力Fs,一个非常重要的办法就是加大名义振幅或工作振幅,因为激振力F0和名义振幅A0都与激振器的静偏心距Me成正比,所以具有大静偏心距激振器的振动压路机,其压实效果及压力波影响深度都优于较小静偏心距的振动压路机。3.1.5 机架的振幅与减振系统传递率振动压路机的机架(上车),由于受减振器传来的振动力的影响,也产生受迫振动,其振动频率与振动轮相同,但振幅却大大衰减了。机架振幅与振动轮振幅A之比值为减振系统的振动传动率,即 =A (3-7)在进行振动压路机减振系统的设计时,一般选取=0.020.04。3.2 振动轮主要工作参数振动压路机振动轮的主要工作参数是工作重量、压轮尺寸、转弯半径、振动参数、工作速度。这些主要参数是振动压路机及其部件总成设计的依据,它们往往是振动压路机总体性能优劣的决定性因素。选择和确定振动轮主要工作参数的依据:被压实材料的物理力学性能和工艺要求;提高压实作业效率和节省能源的需要;考虑到机器零件的使用寿命和驾驶人员的安全舒适性能;综合实验研究和类比所给出的取值范围。3.2.1 压路机的工作重量及其分配(1)工作重量和线载荷工作重量是振动压路机的主要参数,它是按规定加入油、水、压重物、随机工具、并包括一名司机在内的振动压路机的总重量、振动压路机工作重量的大小直接影响了压实质量和工作效率。振动轮的质量决定了机械对土壤铺层所施加静压力的大小。为了比较不同振动压路机的压实能力,引入了压轮线载荷的概念。线载荷是沿压轮轴向单位长度上对土壤所施加的静压力,也称线压力。线载荷q(N/cm)的表达式如下q= (3-8)即 式中 G压轮上的分配载荷,N; b压轮宽度,cm。在其他工作参数(如振动参数)不变的情况下,施加于地面上的静、动态压力几乎与压轮分配载荷成正比。实验证明,振动压路机的影响深度大致上与振动轮的重量成正比。因此,无论是静碾压轮还是振动压路机,静线载荷都是极为重要的技术参数。压路机重量分布主要是前后轮之间的重量和制动力矩,对于单轮驱动的压路机,较大的驱动轮分配质量能保证压路机产生足够的附着力和制动力矩,较小的转向轮分配重量可以减少从动轮拥土的现象,但转向轮过轻将导致压路机转向不稳定。对光轮单驱动压路机的驱动轮分配重量应取整机的60%70%。对于全驱动双钢轮串联振动压路机,前后轮则需等同的分配质量。此外,车轮也应占有压路机总重量的适当比例,因为增大车轮的重量可以降低整机重心高度,但对于压路机行走加速时的旋转惯性阻力影响也加大。(2)振动压路机上、下车质量的分配振动压路机的下车质量的变化对振幅A和动作用力Fs均产生影响。为了提高振动压路机对地面的作用力,希望在其他条件不变的情况下振动轮质量偏小为好。但振动压路机的压实效果除了与Fs有关之外,还与振动轮的动量有关系。振动轮质量增大时,在同样振幅条件下,振动压路机对土壤的冲击能量增加,压实效果也能提高。从增加振动冲击能量的角度出发,则希望振动轮的质量偏大为好。振动压路机的上车质量增加时,振动轮可以借助机架的重量压向土壤,从而为振动压实创造条件,但上车过重会对振动产生阻尼作用。因此在设计振动压路机时应两者兼顾,合理解决上下车的质量分配问题。3.2.2 压轮的直径和宽度选择压轮直径时应考虑到:滚压松散铺层材料使压轮不致陷下去;尽量避免或减小路面形成波纹;整机的重心不要过高。图3-1所示为压轮滚过铺层时的截面,此时认为松散铺层的弹性变形很小,以至可以忽略,并在滚动方向之前也无积聚材料。图中3-1所示为压路机直径D, 为压陷深度h,并且有两个和。压轮与铺层材料的接触面积为A=b=b (3-9)式中 b压轮宽度。 图 3-1 压轮滚过铺层时的截面 令G为压轮的分配载荷,铺层材料的单位压力p为p= (3-10)取材料的许用单位为,可得压轮直径D的计算式为 D (3-11)本振动压路机主要用来压实沥青混凝土及路面,取许用单位为为4MPa,压陷深度h为100mm。压轮直径的大小对压实质量有显著的影响。随着压轮直径的减小,将会增加其水平推力,以致引起被压材料发生剪切滑移,降低了压实质量。压轮直径增大可以改善压实质量,但压实影响深度将下降,且增加了压路机的外形尺寸,使重心抬高不利于行驶稳定性。两轮串联压路机的驱动轮直径应大于从动轮直径,全轮驱动的串联压路机可取前后轮直径相同。在设计压路机时,压轮直径D(cm)通常取为线载荷的函数,即 D= (3-12)式中,为直径系数,根据设计经验,静碾压路机光轮取=56.5,振动压路机光轮取79.5.即 mm取D为600mm。压轮宽度通过线载荷影响了压实能力。压轮宽度过窄,在压实路面时易产生裂纹;压轮过宽,在转向时易产生被压材料的剪切滑移。另外,压轮的宽度还影响了压路机的作业效率和横向稳定性。压轮的宽度b通常参考直径取之,则 b=D (3-13)式中,宽度系数的取值范围为:串联静碾压轮取11.2,振动压路机光轮取=1.31.55。即 mm最后带入式子(3-11)验算,综合考虑取压轮的直径为600mm,宽度为800mm。3.2.3 压路机振动参数的选择振动压路机各项振动参数的选择是否得当,将直接影响振动压路机整体性能的优劣。振动压路机在压实沙土、回填石、沥青混合料以及水泥混凝土的不同铺层材料时,振动轮应有不同的工作频率和振幅。当然,用于压实填土、压实路基以及压实路面的振动压路机,其振动参数和总体参数也有所不同。总的来说,由于振动压实理论的不完善及振动压实工况的随机性,由于土壤物理性能特性的多变引起铺层材料的刚度及“振动轮-土壤”振动系统的固有频率也具有随机性,这些都使得振动参数的选择很复杂,甚至还存在不少的争议。面前的做法是,通过大量的实验和统计分析,对各项振动参数给出一个合理的取值范围。振动压路机设计者可根据给定范围,并与相同规格机型类比分析,已选定参数取值的上、下限。工作频率与名义振幅的取值范围为:压实路床路基,=2530Hz,=1.42.0mm;压实次基础层,=2540Hz, =0.82.0mm;压实沥青混凝土及路面,=3055Hz,=0.40.8mm;因此根据以上参数取值范围要求,对YZC3振动压路机的工况要求参考,得出该型振动压路机振动轮的参数选择为=55Hz,=0.5mm。另外,应对振动加速度予以校核,压实路基时a=(510)g,压实路面时a=(47)g。当校核时发现振动压路机的振动加速度超出上述范围,应对其频率或振幅进行修正。修正原则是,压实基础的振动压路机应优先保证工作振幅,主要修正振动频率;压实路面的振动压路机应先保证振动频率,主要修正工作振幅。Frame Design and Reality of On2line Quality ControlSystem for CNC Machining Center Based on MicrocomputerLiu Xiaosheng(刘晓胜) , Zhou Shuang , Wang Haoyu , Ma Yulin(School of Mechatronics Engineering , Harbin Institute of Technology ,Harbin 150001 , P. R. China)AbstractAfter giving a short review of the methods used for detecting and monitoring in general sys2tems , this paper describes the way of communication between computer and Computer NumericalControl (CNC) Machining Center (MC) . Based on these , the paper addresses the means of per2forming in2cycle measurement for manufacturing quality , provides an approach of improving thestate of manufacturing process by achieving the real2time change of control parameters accordingto the level of manufacturing process , and discusses the technique of implementing in2process di2mensional errors compensation corresponding to the in2cycle measurement. The results of the ex2periments show that the frame design is successful and the operation is reliable. The system istaking shape nowadays.Key words : Detection , Monitor , Compensation , In2cycle measurement , On2line quality con2trol , Manufacturing process1. IntroductionOn2line quality control of manufactur2ing processes is deemed essential in many ad2vancedmanufacturingsystems ,suchasFlexible Manufacture System(FMS) , Com2puterIntegratedManufacturingSystem( CIMS ) ,AgileManufactureSystem(AMS) , etc. , and it lays the technicalfoundation fortheGlobalManufacturingSystem(GMS) in the near future. In orderto carry out on2line quality control , peoplehave developed lots of detecting and moni2toring systems for manufacturing processesin the past decades , and to some extent ,some of them met the requirements of indus2trial production. Yet , some of them are justin laboratories , and few ofthem couldachieve the compensation of dimensional er2rors.As various new and advanced tech2niques appear , such as neural networks ,fuzzy control , chaos theory , Wavelet theoryand so on , some new kinds of detecting andmonitoring systems containing these newtechniques are being developed and appliedin actual manufacturing processes with bet2ter effects1 - 4. These systems usually con2sist of a detecting subsystem , a monitoringsubsystem and a faults2diagnosing subsys2tem. In this paper , a complete frame of de2tecting , monitoring , diagnosing and com2pensating the processes conducted on themilling/ boring machining center , named In2telligentInspectingandMonitoringandCompensating System Based on Microcom2puter (IIMCSBM) is given , and the meansfor its detailed implementation is also given.As a part of this system , the in2cycle mea2surement subsystem is one of the vital sub2systems ,andthein2cyclemeasurementbased on high2precise probe and linear grat2ing sensors is a feasible and effective methodfor manufacturing process in present techni2cal conditions5. In this paper , we providethe description of our efforts towards the im2plementation of in2cycle measurement forquality control. Before these , a way of com242High Technology Letters , Vol. 4 , No. 2 , December 1998Supported by the National Defense Foundation of China.Received Feb. 9 , 1998.munication between the computer for moni2toring and MC is given , which is the hard2ware foundation for the follow2up work. Onthe basisof these , we concentrate our effortsparticularly on implementing the compensa2tion of dimensional errors and the improve2ment of operating conditions by real2timechanging of control parameters , such asspindle speed(cutting speed) , feed rate anddepth of cutting , which are closely related tothe tool wear and the chatter and greatly in2fluence on the surface finish and the dimen2sional accuracy of the product. The systemframe is illustrated schematically in Fig. 1.Fig. 1Schematic diagram of on2line quality control on the boring/ milling MC2. Communication between Microcomputerand MCWith the rapid development of the soft2ware and hardware techniques , microcom2puter has been widely used in various indus2trial applications.The communication be2tween computers is the paramount founda2tion in FMS , CIMS , AMS or similar sys2tems , and it has become a relatively maturetechnique. However , the communication be2tween computer and MC is not easy becausemost of them are originally not designed forthat purpose. Although most of machiningcenters have a serial interface ( RS232C) ,which is directly connected to the numericalcontroller , the interface can be only used totransfer the parts programs and can not givecommands to the machine in most cases6.So the particular interface unit which can re2alizes the connection between the computerand MC must be found out , whose scheme isshown in Fig. 2. Our experiments are con2ducted on Hurbo CNC BMC 20L machiningcenter.The Specific Communication Inter2face Unit (SCIU) for this MC consists oftwo parts given as follows:High2performance multi2function dataacquisitioncard( AdvanTech ,PCL2818HG, with 100000 samples per secondA/D Conversion rate , 16 SE or 8 differen2tial input channels , 322channel digital input/output) : it is used to collect the sensors sig2nals of the conditions of MC in the wholemanufacturing process , transmit 32 digitalinput/output signals , and accept the inter2rupted signal of trigger probe.SpecificCommunicationInterfaceComponent (SCIC) : it is developed by us torealize many functions , such as signal isola2tion , signal transference , signal transforma2tion , etc.With this system and RS232C in themachining center , the following operations52High Technology Letters , Vol. 4 , No. 2 , December 1998Fig. 2Parallel and serial communication between PC and MCcan be performed with the microcomputer :simulating the console of MC;downloading a part program to MC;starting or stopping the machiningcenter ;setting dynamically the control param2eters for manufacturing process;driving the probe to travel to carry outin2cycle measurement ;driving the tool shifting for cutting tocompensate the dimensional errors.In general , the control mode based onthe console of the machining center can betransferred into the mode of PC , which canemulate the machine console , and programthe control procedure.Though usually themachine is not totally controllable from theSCIU based on PC , most crucial operationscan be started from the PC.3. In2cycle Measurement and CompensationSystemInspecting the dimensional informationof the product is the key step to ensure thehigh product quality.Although there aremany methods to achieve on2line or real2timedetecting in automatical systems , some de2fects usually exist in these systems. For ex2ample , the applications of the CoordinateMeasuring Machines(CMM) with a contacttrigger probe to the dimensional inspectionare restricted to the parts made of hard ma2terials, such as steel7and it is difficult toperform the on2line inspection because thecomponent must be remounted and fixed onthe table of a machine tool. The non2contactinspection means based on integrated laser orCharge2Coupled Device ( CCD) are usuallyexpensive and difficult to put into practice inactualmanufacturingconditions8.Al2though the advanced MC is often equippedwith the Touch Trigger Probe ( TTP) sys2tem , it is not easy to transmit the dimen2sional information about the product fromthe machine tool to the computer connectedwith the MC.3.1Driving the probe or the tool to travelIn order to drive a probe or a tool totravel according to the commands given bythe control computer , we have developed theSpecial Driving Card for Probe Tool ( SD2CPT) , which is the basis of implementingthe in2cycle measurement and the real2timeor on2line compensation of dimensional er2rors. It includes the following functions:selecting the X/ Y/ Z dimension for theprobe or the tool to shift ;driving the probe or the tool to travelrapidly in the direction of the selected di2mension mentioned previously;driving the probe or the tool to travelslowly in the minimum step of a pulse signalin the direction of the selected dimensionmentioned previously;changing the direction of traveling re2versibly when it accepts the probe switching62High Technology Letters , Vol. 4 , No. 2 , December 1998signal and keeps traveling reversibly for ashort distance to prevent the probe fromwearing when it leaves the measured compo2nent ;changing the spindle speed to improvethe condition of manufacturing;changing the feed rate to realize thesame goal just as the above one.The hardware structure of SDCPT isschematically shown in Fig. 3.Fig. 3Hardware structure of SDCPT3.2Inspecting for dimensionsIn2CycleMeasurement BasedMicro2computer ( ICMBM) is the automatic mea2surement or gauging of a component con2trolled by a computer while the component isclamped in the machining position whichfeeds back in2cycle quality data to the com2puter for inspecting and controlling.Thisform measurement may also include auto2matic component setting , tool setting andtool condition monitoring. Our ICMBM sys2tem consists of the following parts:contact probe sensor ( high2precisioncontactprobedevelopedbyourselves ) :sending a switching signal to SDCPT whenit touches a component ;X/ Y dimentional linear displacementgrating sensors and related second2signal2transform meter (GX2A type , manufacturedby theChineseAcademy ofSciences) :pointing out the coordinate positions of X/ Ydimension in Binary Coded Decimal(BCD) ;parallel interfaces card for grating sen2sors ( AdvanTech ,PCL2733 ,322channelIsolated Digital Input Card) : transmittingthe dimensional information from grating in2to control computer ;Special Driving Card for Probe or Tool(SDCPT) (designed and developed by our2selves) : giving means to drive the probe ortool to travel according to the commands giv2en by the computer ;microcomputer and software embed2ded in the microcomputer for measuring orcompensating programs: imitating the con2sole of MC and commanding the MC operat2ing. It is the kernel of the IIMCSBM. Thewhole in2cycle measurement system struc2ture is schematically shown in Fig. 4.From Fig. 4 , we can easily see thatwhen the probe traveling encounters theworkpiece , the trigger signal is transmittedto the probe interface , which filters the con2tact bounce noise by RS flip flop and con2verts the trigger signal into the SDCPT , and72High Technology Letters , Vol. 4 , No. 2 , December 1998the computer can read the dimensional infor2mation ofthe product immediately fromgrating sensor interface when it accepts thetrigger signal through SDCPT. At the sametime , the computer may assign the path forthe probe moving through the SDCPT , andthe computer can appoint the various veloci2ties of shifting the probe according to thedistance between the location of the probeand the location of the product. So this sys2tem can bring about two dimensional auto2matic measuring and checking functions , de2viations from tolerances , determining feedsfor finishing and so on.Fig. 4In2cycle measuring and compensating system used in the CNC machine tool3.3Compensating for dimensionsUnder the current technical conditions ,it is difficult to carry out real2time or on2linecompensation for dimension errors because itis very difficult to implement directly the re2al2time detection for dimensional errors andmodify the program which is being run byCNC.When the dimensional errors exceedingthe tolerances by means of in2cycle measure2ments as mentioned previously is discovered ,we must decide whether a fallout comes outor not.If previous material removal is toolarge , the dimensional errors can not becompensated by any consequent operations ,so what the system can do is only to abandonthe consequent manufacturing to alleviatethe loss of work time. If not that , the sys2tem can automatically set up the manufac2turing parameters and generate the compen2sating program for dimensional errors ac2cording to the detected results and geometri2cal features of the product. After that , thesystem restarts the compensating program.When we can model the tool wear correctly ,and identify the tool wear reliable as men2tioned later , the real2time compensation fortool wear can alsobe implemented.Ofcourse , this method of compensation is onlyeffective to a certain degree.4. On2line Monitoring SystemDuringthemanufacturingprocess ,there are many factors affecting the finalquality of the product at every step of the to2tal manufacturing process. After numberousexperiments and researches were con2ductedfor productquality , we found thattoolwear , chatter and workpiece temperaturehave great influence on the surface finish andthe dimensional accuracy of the product.Hence , on2line continuous estimation of toolwear , identification of the chatter , and de2tection of the temperature are of great engi2neering importance. The on2line monitoringsystem is schematically shown in Fig. 5.They lay the foundation for compensation ofdimensional errors and change of the controlparameters.82High Technology Letters , Vol. 4 , No. 2 , December 1998Fig. 5On2line monitoring system in the CNC machine center4.1Multi2signal f usionOn the one hand , the spindle drivingcurrent signal and the feed driving currentsignal , which can be easily picked up by cur2rent sensors , usually include the informationrelated to tool wear and workpiece vibra2tion2, and vibrating signals picked up byvibration sensors also contain the informa2tion of tool wear and chatter.With thesetwo different kinds of signals , the error rateof identification of tool wear and chatter isreduced rapidly. So in our experiment sys2tem , we used three current sensors (one isfor spindle driving current , and the othertwo are for X/ Y direction feed driving cur2rent) and two vibration sensors(X/ Y direc2tion on workpiece) . On the other hand , thethermal changes caused by high2speed cut2ting sometime make the workpiece deformedto produce defective products in some de2gree10 - 11. In order to keep a stable processcondition and adjust the parameters of man2ufacturing , we monitored the change of oiltemperature in the oil bank of MC throughthe whole process. All of the three parts ofsignals are successively transferred into fil2ters , amplifiers , A/ D converters , and com2puters , and the signal feathers are extractedfrom the signals of the sensors by Wavelettransforms3, which lay the foundation ofreal2time process status control.More de2tailed software information about this will beintroduced in another paper.4.2Chatter controlChatter has a great influence on thesurface finish and dimensional accuracy ofthe workpiece , and in some extreme situa2tions it may result in damaging the machinetool and theworkpiece.Thetraditionalchatter control process usually involves thefollowing steps1:(1) stopping the feed and spindle rota2tion immediately after detecting chatter ;(2) changing the process parameters tobring the behavior to a desirable level.When the Artificial Intelligent Diagno2sis System (AIDS) in our experimental sys2tem detects the undesirable chatter existingin the manufacturing process , the abnormalcutting process is interrupted immediately bystopping the feed rapidly through SDCPT ,and the original spindle speed remains un2changed. Then AIDS resets the new processcontrol parameters (cutting speed , Feed ,Depth of cutting) to bring the behavior to anoptimal level after calculating according tothe process dynamics model.5. Concluding RemarksThis is mainly a complex experimentalsystem. We started our research and built up92High Technology Letters , Vol. 4 , No. 2 , December 1998our preliminary frame of the system in early1996. First , we built our fundamental hard2ware systems for detecting and measuringafter fully consulting about the structure a
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:YZC3振动压路机振动轮设计
链接地址:https://www.renrendoc.com/paper/129148565.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!