说明书.doc

混凝土泵车的回转支承和回转底座的部分设计

收藏

压缩包内文档预览:(预览前20页/共61页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:129233145    类型:共享资源    大小:1.32MB    格式:ZIP    上传时间:2021-05-22 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
混凝土泵 回转 支承 底座 部分 设计
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,图纸为CAD格式可编辑,【有疑问咨询QQ:414951605 或 1304139763】

内容简介:
徐州工程学院毕业设计(论文)任务书 机电工程 学院 机械设计制造及其自动化 专业设计(论文)题目 混凝土泵车的回转支承和回转底座的部分设计 学 生 姓 名 王 飞 班 级 04机本(5) 起 止 日 期 2008.2.252008.6.2 指 导 教 师 仇文宁 教研室主任 李 志 发任务书日期 2008年 2 月 25 日1. 毕业设计的背景:随着科学技术的发展,国家提出西部大开发计划,在此框架下,基础建设的需求不断扩大,在建筑施工作业中,急需一种一其节省劳动力施工速度快,浇筑质量高等一系列要求的工程机械。因此在这种情况下,有必要设计一种结构合理、性能优越的混凝土工程机械,而混凝土泵车可以一次同时完成现场混凝土的输送的布料作业,在臂架活动范围内可以任意改变混凝土浇筑的位置,不需要在现场临时铺设管道,可以节省辅料时间,提高工效。2.毕业设计(论文)的内容和要求:内容:1稳定性分析以及倾翻力矩的计算;2回转支承的设计;3回转底座的设计要求:1回转底座的总装以及部件图;2设计说明书一份,20000字;3译文5000字。3.主要参考文献:1 雷玉成.于治水.焊接成型技术.北京:化学工业出版社,2004 2 徐灏.机械设计手册.北京:机械工业出版社,19913 张国忠.现代混凝土泵车及施工应用技术.北京:中国建材工业出版4 吕玲.焊工应知应会实务手册.北京:机械工业出版社,20065 机械工程师手册编辑委员会.机械工程师手册.北京:机械工业出版社,2000.56 邱宣怀.机械设计.北京:高等教育出版社,20067 马宝国.新型泵送混凝土技术及施工分析 M.北京:化学工业出版社,2006.54.毕业设计(论文)进度计划(以周为单位):起 止 日 期工 作 内 容备 注2.253.23.3 3.93.103.163.173.233.243.303.314.64.7 4.134.144.204.214.274.285.45.5 5.115.125.185.195.255.266.1进行实地调研、查阅相关文献,收集资料;进行实地调研、查阅相关文献,收集资料;综合分析文献资料、提出并论证整体设计方案;分析泵车的结构组成,工作原理,以及整体参数;对泵车的稳定性做整体判断;计算并确定布料杆的倾翻力矩;回转支承的设计;回转支承的选择和强度校核;回转底座的结构设计;回转底座的强度校核,并开始绘图;设计绘制回转支承和回转底座的图纸;继续绘制没完成的图纸,并整理撰写论文;对绘制的图纸进行审核,对论文进行总体完善;查漏补缺完善论文和图纸,准备答辩。教研室审查意见: 室主任 年 月 日学院审查意见: 教学院长 年 月 日徐州工程学院毕业设计(论文)开题报告课 题 名 称:混凝土泵车的回转支承和回转底座的部分设计学 生 姓 名:王 飞 学号: 20040601535 指 导 教 师:仇文宁 职称: 高级工程师 所 在 学 院: 机 电 工 程 学 院 专 业 名 称: 机 械 设 计 制 造 及 其 自 动 化 徐州工程学院2008年 3月 4日 说 明1根据徐州工程学院毕业设计(论文)管理规定,学生必须撰写毕业设计(论文)开题报告,由指导教师签署意见、教研室审查,学院教学院长批准后实施。2开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。3毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。4本报告中,由学生本人撰写的对课题和研究工作的分析及描述,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。5. 课题类型填:工程设计类;理论研究类;应用(实验)研究类;软件设计类;其它。6、课题来源填:教师科研;社会生产实践;教学;其它课题名称混凝土泵车回转支承及回转底座部分设计课题来源社会生产实践课题类型工程设计选题的背景及意义随着科学技术的发展,国家提出西部大开发计划,在此框架下,基础建设的需求不断扩大,在建筑施工作业中, 急需一种以其节省劳动力施工速度快,浇筑质量高等一系列要求的工程机械。因此,在这样情况下,有必要设计一种结构合理、性能优越的混凝土工程机械,对国家的基础建设完善和改善传统的建筑施工方法有着重要的意义,而混凝土泵车可以一次同时完成现场混凝土的输送和布料作业,具有泵送性能好、布料范围大、能自行行走,机动灵活和转移方便等特点。尤其是在基础、低层施工及需频繁转移工地时,使用混凝土泵车更能显示其优越性。采用它施工方便,在臂架活动范围内可任意改变混凝土浇筑位置,不需在现场临时铺设管道,可节省铺助时间,提高工效。特别适用于混凝土浇筑需求量大、超大体积及超厚基础混凝土的一次浇筑和质量要求高的工程。研究内容拟解决的主要问题毕业设计研究的内容:1总体布局的确定;2泵车倾翻力矩的确定和泵车稳定性的判断;3回转支承的选型以及强度校核;4回转底座的强度校核以及回转底座的焊接加。拟解决的主要问题:1稳定性的判断是否达到设计要求;2支承的选型是否合理;3回转底座材料的选择其强度强度否达到设计要求;4焊接加工的方案是否合理。研究方法技术路线研究方法:1阅读大量相关文献资料,教材及新闻背景资料,包括机械制造的原理及方法,泵车技术的现有技术水准,国际水平探讨方面的书籍,报刊.以了解可靠性的内容,和工程机械领域的基本知识体系。2通过调研,进一步了解企业现状及需求.接下来进行分析与设计.确定数据来源的真实准确.再进行系统设计。技术路线:1采用至下而上的设计方法,查阅相关资料,设计出总装图。2在现有的资料基础上,运用最新的研究成果,进行毕业设计。研究的总体安排和进度计划第1、2 周:进行实地调研、查阅相关文献,收集资料。第3、4 周:综合分析文献资料,提出论证整体设计方案。第5、6 周:计算并确定布料杆的倾翻力矩确定泵车的稳定性。第7、8 周:回转支承的选型以及强度校核。第9、10 周:回转底座的强度校核,以及结构的确定。第11、12周:回转底座的工艺设计。第13、14周:绘制回转支承和回转底座的图纸。第15、16周:整理图纸资料,撰写毕业论文,审核,毕业论文的完善,准备答辩。主要参考文献1 雷玉成.于治水.焊接成型技术.北京:化学工业出版社,20042 徐灏.机械设计手册.北京:机械工业出版社,19913 张国忠.现代混凝土泵车及施工应用技术.北京:中国建材工业出版4 吕玲.焊工应知应会实务手册.北京:机械工业出版社,20065 机械工程师手册编辑委员会.机械工程师手册.北京:机械工业出版社,20005 邱宣怀.机械设计.北京:高等教育出版社,2006.6 马宝国.新型泵送混凝土技术及施工分析 M.北京:化学工业出版社,2006.5指导教师意 见 指导教师签名: 年 月 日 教研室意见学院意见教研室主任签名:年 月 日 教学院长签名: 年 月 日摘要 混凝土泵车在建筑施工作业中, 以其节省劳动力施工速度快、浇筑质量高等一系列优点受到人们的普遍重视,现己成为建筑施工过程中不可缺少的机械设备。本文首先介绍了泵车结构和特点以及工作原理,重点对泵车的稳定性、底座和回转支承部分进行了校核和设计,通过对泵车的倾翻力矩和稳定力矩的比较从而确定整车的稳定性,对回转支承的受力载荷和受力分析以及强度校核最终确定选择双排球的回转支承,这种回转支承有上、下两排滚动体,它具有较大的接触压力角,同其它形式的回转支承相比能承受很大的轴向载荷和倾翻力矩,回转底座部分通过对危险截面的强度校核以确定回转底座的材料,设计为了保证其回转底座的结构紧凑可靠在其内部设计了油箱和水箱,在凝土泵车回转区域由于连接回转支撑及回转减速机,为了保证回转减速机及回转支撑具有良好的啮和特性,回转部位均设计具有较大的刚度,在该区域的设计广泛采用的办法是薄座圈板加筋增加整体刚性的办法以及厚座圈钢板的连接方法,主体结构部分通过焊接完成。关键词:混凝土泵车;倾翻力矩;稳定力矩;回转支承;回转底座; AbstractThe concrete pump car is in the building the construction the homework, with it economical labor force construction speed quick, sprinkle to build quality a series of advantage is widespreadly valued by people, personal become a building construction process now in indispensability of machine equipments. With the modern science technical quick development, pump car the application is more and more wide in the modernization the building the production line.This text first introduced a pump car structure and characteristics and work principle, point to pump car of stability, base and turn-over paid to accept part to carry on a check and design, through to pump car of the tipping gear moment and stability moment of more and thus make sure the whole car of stability, to the turn-over pay to accept of is carry by dint lotus and is analyze by dint and the strength check an end and certain choice double the turn-over of the volleyball pay to accept, this kind of the turn-over pay accept up, the next two rowses roll over a body, it have bigger contact pressure cape, the turn-over of together other forms pay accept compare can bear very big stalk to carry lotus and tipping gear moment, turn round a base part pass to dangerous piece noodles of strength check with material of make sure the turn-over base, design for promise the structure tightly packed credibility that it turns round a base at it internal designed fuel tank and water tank, pump car turn-over district because of conjunction the turn-over prop up and turn round deceleration machine, for promising turn-over deceleration machine and turn-over prop up to have good and characteristic and turn round part to all design to have bigger just degree, in the design of that district extensively adopt of the way be the conjunction method that thin turn plank adds the increment whole and rigid way and thick turn steel plate, corpus structure part pass to weld completion.Keywords The concrete pump truck The tipping gear moment The stability moment The angulation bearing The swinging base徐州工程学院毕业设计(论文)目 录1 绪 论11.1前言11.2国外的泵车研究现状和发展趋势11.3我国的研究现状和发展趋势21.4 国内外混凝土泵车技术水平比较31.5 混凝土机械发展趋势41.6 泵车现代设计方法概述42 泵车组成、工作原理及技术参数确定62.1混凝土泵车的基本组成与构造62.1.1混凝土泵车基本组成62.1.2混凝土泵车构造62.2 泵车的工作原理72.3 泵车的主要技术参数的确定83混凝土泵车底架设计特点及整体设计103.1混凝土泵车底架结构的特点及主要连接方式103.2混凝土泵车底架设计制造中的难点及重点103.3设计优化理论和计算方法在设计、制造中的应用113.4混凝土泵车底架结构的发展趋势124 混凝土泵车的稳定性134.1 布料杆的组成及结构形式134.1.1 布料杆134.1.2 布料杆的结构134.1.3 布料杆的形式134.2 部件重心的计算144.3 泵车工作时的稳定性计算164.3.1布料杆倾翻力矩的计算164.3.2 布料杆的稳定力矩的计算及稳定性判断175 回转支承的设计195.1回转支承装置的作用195.2回转支承装置的类型195.3 回转支承装置的选择195.3.1 载荷的确定195.3.2 回转支承的受力分析205.4 回转支承选型235.5 回转支承装置的强度计算246 回转底座的焊接加工工艺266.1焊接的特点、分类及其应用266.1.1 焊接266.1.2 焊接成型技术的特点266.1.3 焊接方法及分类276.2 计算校核底座与支腿连接处的强度276.2.1 刚性支承体系276.2.2 柔性支承体系276.2.3 支腿反力计算以及危险截面的强度校核286.3 回转底座的整体焊接306.3.1 回转底座的结构特点306.3.2 焊接装配前的准备316.3.3 焊接中的定位焊316.4 回转底座的主体焊接326.5 回转底座油箱和水箱的焊接366.6 焊接质量检验376.6.1 焊接质量检验的重要性376.6.2 焊接质量检验的过程37结论39致谢40参考文献41附录42附录1422徐州工程学院毕业设计(论文)附录附录1英文原文Computer-Aided Manufacturing System EngineeringC.R. McLeanFactory Automation Systems Division, Manufacturing Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USAAbstractA new type of computer-aided engineering environment is envisioned which will improve the productivity of manufacturing/industrial engineers. This environment would be used by engineers to design and implement future manufacturing systems and subsystems. This paper describes work which is currently underway at the United States National Institute of Standards and Technology (NIST) on computer-aided manufacturing system engineering environments. The NIST project is aimed at advancing the development of software environments and tools for the design and engineering of manufacturing systems. The paper presents an overall vision of the proposed environment, identifies technical issues which must be addressed, and describes work on a current prototype computer-aided manufacturing system engineering environment.Keyword Codes: J.6, I.6.3, D.2.2Keywords: Computer Applications Computer-Aided Engineering Simulation and Modeling, Applications Software Engineering Tools and Techniques1. INTRODUCTIONThe future success of a manufacturing enterprise is likely to be determined by the speed and efficiency with which it incorporates new technologies into its operations. The process which is currently used to engineer, or re-engineer, manufacturing systems is often ad hoc. Computerized tools are used on a very limited basis. Given the costs and resources involved in the construction and operation of manufacturing systems, the engineering process must be made more scientific. Powerful new computing environments for engineering manufacturing systems could help achieve that objective.What is computer-aided manufacturing system engineering (CAMSE)? In much the same way that product designers need computer-aided design systems, manufacturing and industrial engineers need sophisticated computing capabilities to solve the complex problems and manage the vast data associated with the design of a manufacturing system. CAMSE may be defined as: -the use of computerized tools in the application of scientific and engineering methods to the problem of the design and implementation of manufacturing systems.The goal of this engineering process is to find the best solution to a problem, i.e., a factory or subsystem implementation, given a specific set of requirements and constraints.What is the scope of this problem? Engineers must address the entire factory as a system and the interactions of that system with its surrounding environment. Component elements of the factory system include: the physical plant or buildings which house the manufacturing facility, the production facilities which perform the manufacturing operations, the technologies used in the production facility, i.e., processes,methods, and techniques which are used to manufacture the products, the work centers/stations, machinery, equipment, tools, and materials which comprise or are used by the production facilities, the various support facilities and systems which move and store materials, handle manufacturing by-products and waste, manage information resources, maintain machinery and information systems, and support other needs of factory personnel, the staff organization and mechanisms which are instituted to operate and maintain the manufacturing facility, and the interface between the factory and its environment, e.g. movements of goods and materials, human access to the facility, links to utilities, and the controls on various forms of environmental impact (air, water, noise).Manufacturing system engineering must not only be concerned with the initial design and engineering of the factory, it must also address enhancements and other modifications over time.A CAMSE environment should support standard engineering methods and problem-solving techniques, automate many mundane tasks, and provide critical technical reference data to support the decision-making process. The environment should be designed so as to help engineers become more productive and effective in their work. The environment could be implemented on a high performance personal computer or engineering workstation which has been configured with appropriate peripheral devices. Engineering tool developers will have to integrate the functions and data which are used by a number of different disciplines, for example: manufacturing engineering, industrial engineering, plant engineering, materials processing, environmental engineering, mathematical modeling/simulation, quality engineering, statistical process control, economic and cost analysis, computer science, and management science.Most of the methods, formulas, and data associated with these technical areas currently remains embedded in engineering handbooks. Although some computerized tools are available, they are often very specialized, difficult-to-use, and do not share information or work together. Engineering tools built by different vendors be must made plug-compatible through appropriate open systems architectures and interface standards.This paper describes a project underway at the U.S. National Institute of Standards and Technology to accelerate the development of this new type of computing environment. The project is currently funded by the U.S. Navy Manufacturing Technology Program. Section 1 introduces and defines computeraided manufacturing system engineering. Section 2 presents a vision of the proposed computing environment. Section 3 describes some of the technical issues which must be resolved to achieve this vision. Section 4 briefly outlines the work that is currently underway at NIST. Section 5 provides a summary and conclusions.2. VISION OF THE ENGINEERING ENVIRONMENTWhat would the computer-aided factory engineering environment of the future look like? It would be based upon a computer workstation or network of workstations which provide an integrated set of design and engineering tools. These software tools would be used by a companys manufacturing engineering team to continuously improve its production systems. The tools would be used to maintain information about current manufacturing resources, enhance existing production capabilities, and develop new facilities and systems. Engineers working on different workstations would share information through a common manufacturing system engineering database. Using this environment, an engineering team might be able to prepare detailed plans and working models for an entire factory in a matter of days. Many alternative solutions to production problems could be quickly developed and evaluated. This type of capability would be a significant improvement over current manual methods which may require weeks or months of intensive activity. To achieve this ambitious goal, a new set of engineering tools are needed. A companys manufacturing engineering team require a number of different tools to support its mission. Examples of functions which should be supported include: identification of product specifications and production requirements, producibility analysis for individual products, modeling and specification of manufacturing processes, modification of product designs to address manufacturability issues, plant layout and facilities planning, simulation and analysis of system performance, consideration of various economic/cost tradeoffs of different manufacturing processes, systems, tools, and materials, analysis supporting selection of systems/vendors, procurement of manufacturing equipment and support systems, specification of interfaces and the integration of information systems, task and work place design, handling of various organizational and personnel concerns, e.g. labor issues, human factors, health, safety, compliance with various regulations, specifications, and standards, control of hazardous materials, and management, scheduling and tracking of projects.For more information on the types of functions that manufacturing and industrial engineers would need to perform, see 1-3.The tools which implement these functions must be highly automated and integrated. Automation is needed to eliminate, minimize or simplify tasks that are mundane, repetitive, time-consuming, complex, and/or error-prone. Integration is needed to ensure that tools can share common data and operate in a consistent, synergistic manner. Figure 1 illustrates some of the types of tools which might be integrated in a CAMSE environment. The engineering tools, taken by themselves, are not sufficient to achieve productivity goals. The tools need data to be useful. Today, it is unlikely that the data required for a major engineering project could be loaded into the computer in a weeks time. On-line engineering reference libraries are needed to streamline this process. On-line technical reference data must be maintained in a format that is accessible and usable by the engineering tools. Some examples of the information that might be contained in these electronic libraries include: production process models and data, generic manufacturing systems configurations, machinery and equipment specifications, vendor catalogs, recommended methods, practices, algorithms, etc. benchmarking data, typical plant/system layouts, cost estimation models, labor rates, other cost data, budget templates, time standards, project plans, laws/government regulations, and industrial standards.The libraries would minimize the amount of time that the engineer spends entering data. They would also allow engineers to quickly develop solutions based upon the work of others. This on-line reference capability does not exist today. Another critical aspect of this engineering environment is affordability. The engineering capabilities are needed by large and small manufacturing firms alike. Affordability can best be achieved by designing an environment which can be constructed from low cost off-the-shelf commercial products, rather than custombuilt computer hardware and software. The basic engineering environment must be affordable. For both cost and technical reasons, it must be designed to be extensible, i.e., support incremental upgrades. Incremental upgrades would allow companies to add capabilities as they are needed. Commercial software products must be easy to install and integrate with other software already resident in the engineering environment. These capabilities exist to a limited extent in some general purpose commercial software today, e.g., word processors, databases, spreadsheets. Some installation and integration problems have been resolved in these software packages through vendor acceptance of certain de facto standard file formats. Both technical and legal problems have resulted from current dependence upon this type of standard within the software community. In any case, there are virtually no existing standards which directly support the installation and integration of software tools within a CAMSE environment.3. TECHNICAL ISSUESA number of technical issues must be considered in the design and development of new engineering tools for the CAMSE environment. These issues include: required functionality of the tools themselves, formalization and refinement of relevant engineering methods, underlying data management schemes (e.g., object-oriented approach), development of on-line technical reference libraries, user engineering and graphics visualization techniques, system connectivity and information sharing, and integration standards for the computing environment, incorporation of intelligent behavior in the tools.A common conceptual foundation and systems framework for CAMSE could help developers address these issues. Three critical elements of this foundation are:1)common manufacturing systems information model, 2) an engineering life cycle approach, and 3) a software tool integration framework. These elements will help ensure that independently developed systems will be able to work together and share information.The common information model should identify: 1) the elements of the manufacturing system and their relationships to each other, 2) the functions or processes performed by each element, 3) the tools, materials, and information (i.e.,data) that are required to perform those functions, and 4) measures of effectiveness for the model and its component elements. There have been a number of efforts over the years to develop information models for different aspects of manufacturing 4, but no known existing model fully meets the needs of computer-aided manufacturing system engineering. A review of the strengths and weaknesses of existing models is beyond the scope of this paper. A life cycle approach is needed to identify all of the different processes that a CAMSE environment must support. This cradle-to-grave approach to system engineering would define all of the phases of a manufacturing system or subsystems existence. Some of the major phases which may be included in a system life cycle approach are: 1) requirements identification (includes product specification), 2) system design specification, 3) vendor selection and procurement, 4) system development and upgrades, 5) installation, testing, and training, 6) production operations, process monitoring, and benchmarking, and 7) system phaseout and resource recovery. Management, coordination, and administration functions need to be performed during each phase of the life cycle. Phases may be repeated over time as a system is upgraded or re-engineered to meet changing needs or incorporate new technologies. A software tool integration framework would specify how interoperable tools could be independently designed and developed. The framework would define how CAMSE tools would: 1) deal with common services, e.g., user interfaces, peripheral devices, operating system, databases, 2) interact with each other, e.g., exchange data, maintain data integrity, resolve conflicts, and coordinate problem solving activities. Although some existing software products and standards currently address the common services issue, the problem of tool interaction remains largely unsolved. The problem of tool interaction is not limited to the domain of computer-aided manufacturing systems engineering-it is pervasive across the software industry.4. CURRENT WORKAn initial computer-aided manufacturing system engineering environment has been established at NIST from commercial off-the-shelf (COTS) software packages. These packages have been installed on a high performance personal computer. The engineering environment is being used to: 1) demonstrate tools that are commercially available to perform computer-aided manufacturing system engineering, 2) develop a better understanding and define functional requirements for individual engineering tools and the overall environment, 3) identify the integration issues which must be addressed to implement plug-compatible environments in the future. There is no overall integration scheme or sharing of data between the tools in the current environment. Some point-to-point integration and data exchange is possible between selected tools using available data exchange formats, e.g., IGES. The environment reveals many of the integration problems faced by potential users of manufacturing system engineering environments. An engineering demonstration using COTS tools is currently under development by project staff. The demonstration scenario is based upon a valve manufacturing facility. The scenario is designed to illustrate the various types of functions that must be performed in engineering a manufacturing system. Functions supported by the current COTS environment include: system specification/diagramming, process flowcharting, information modeling, computer-aided design of products, plant layout, material flow analysis, ergonomic workplace design, mathematical modeling, statistical analysis, line balancing, manufacturing simulation, investment analysis, project management, knowledge-based system development, spreadsheets, document preparation, user interface development, document illustration, forms and database management. Additional tools are currently under consideration for incorporation into the COTS environment. Other ongoing project activities include: an extensive survey of existing manufacturing system engineering tools, the development of a preliminary requirements specification document for future integrated CAMSE environments, and industry workshops.5. SUMMARY AND CONCLUSIONSThis paper has outlined a vision for a computing environment for engineering manufacturing systems. Such an engineering environment would provide an integrated set of tools to improve the productivity of manufacturing and industrial engineers. An initial environment based upon commercial, off-the-shelf tools has been assembled on a personal computer at the U.S. National Institute of Standards and Technology. The full potential of this engineering environment cannot be realized today due to the incompatibilities which exist between commercial software packages. Incompatibilities could be minimized in the future through the establishment of industry-wide consensus on common models and frameworks for engineering environments. Achievement of this goal will undoubtedly require a concerted effort by system developers, users, research institutions, and standards organizations over a several year period.6. REFERENCES1 J.P. Tanner, Manufacturing Engineering: An Introduction to Basic Functions, Marcel Dekker, New York, 1991.2 G. Salvendy (ed.), Handbook of Industrial Engineering, Wiley Interscience, New York, 1992.3 D. Dallas (ed.), Tool and Manufacturing Engineers Handbook, McGraw- Hill, New York, 1976.4 W.D Compton (ed.), Design and Analysis of Integrated Manufacturing Systems, National Academy Press, Washington, DC, 1988, p. 92, 167.中文译文计算机辅助制造系统工程作者: C.R. McLean单位:美国,Gaithersburg, MD(在美国马里兰州)国家标准技术局, 工业自动化系统部, 制造业工程实验室摘要计算机辅助工程环境正在构想之中,它将改进制造业/工业生产力。工程师们得以将这些技术用到设计及实现未来的制造系统和子系统中。本文描述了美国国家标准技术局(NIST)对计算机辅助制造系统工程当前的研究状况。美国国家标准技术局(NIST)这一工程的目标是为推进工程设计与制造系统软件环境和工具的发展。本文提出了了全面的提议的环境和必须涉及的技术,并描述了当前计算机辅助制造系统工程的状况。关键字代码:J.6, I.6.3, D.2.2关键字:计算机应用 计算机辅助工程学 仿真及建模 应用软件 软件工程 工具与技术 1.绪论未来制造业企业的成功将在很大程度上决定于企业将新技术融入其运转的速度和效率。当前正在使用的设计及再设计制造系统是普遍有缺陷的。计算机工具只在有限的范围内初步使用。考虑到成本以及资源因素,在建设和实施制造系统的过程中,必须使工程工艺过程更加科学化。强大的计算机工程制造环境有助于实现这个目标。什么是计算机辅助制造系统工程(CAMSE)? 正如产品造型工程师需要计算机辅助设计系统一样,制造及工业工程师也需要驾轻就熟的计算机能力去解决复杂和处理浩大的制造系统设计数据。计算机辅助制造系统工程可以定义为:在制造系统的设计和实施过程中,用计算机化的工具去科学的、符合工程学的方法去解决问题。这个工程过程的目标是发现对问题的最佳解答。比如,在工厂及其子系统实施过程中,给定详细而精确的必备条件个约束。 这个问题涉及什么呢?工程师必须着眼整个工厂,视之为系统,并且考虑到系统与其环境的交互作用。作为系统和与之相互作用以它周围环境,工厂系统的组分元素包括: 安置制造设施的物理车间或厂房 进行制造过程的生产设施 生产设备使用的技术, 如在制造产品过程中使用的工艺过程方法和技术。 由生产设施组成的工作场所、机械、 设备、工具、 和材料。 各种各样的支持设施和系统(包括搬运和存放材料设施, 搬运制造副产物和废物设施, 管理信息资源设施, 维护机械和信息系统设施,和支持工作人员其它需求的设施)。 用于维护生产设施的后勤人员和机械设备 厂房及其相互作用的环境。比如,货物和材料的搬运, 设备使用的权限, 以及控制种各各样环境影响(空气, 水, 噪声) 。制造系统工程必须与不仅仅是最初工厂的设计和制造,随着时间的推移,它必须加强和改进。计算机辅助工程环境(CAMSE) 应该支持标准工程方法和解决问题的技术, 时普通的任务自动化, 并且提供重要技术参考数据支持决策过程。这个(计算机)环境应该设计用以帮助工程师在他们工作过程中变得更加多产和高效。这个(计算机)环境要能在个人电脑或配置了适当外围设备工程工作站上高性能运行。工程工具开发者将不得不集成不同学科的各种各样的功能及数据,比如:制造工程学,工业工程学设备安装工程学,材料处理学环境工程学,数学建模与仿真学品管工程学统计过程控制学经济和成本分析学计算机科学管理科学当前,这些方法、规则和数据都被深埋在工程学手册里。虽然有些计算机化的工具是可利用的, 但它们往往非常被专业, 不易使用,并且没有共享信息或协同工作。工程工具开发者的当务之急是通过适当的开放式系统体系机构和接口标准,开发兼容的工具。本文描述了一个在进行中的美国国家标准技术局的项目,这个项目旨在加速发展这一新型的计算机环境。此工程由当前立项在美国海军制造技术计划上。 第一部分介绍和定义计算机辅助制造系统工程。第二部分构想了一个建议的计算机环境版本。第三部分描述了一些为达到设计目标必须解决的问题。第四部分概述开发项目当前在国家标准技术局中的进展。第五部分提供了摘要和结论。2.展望工程环境未来的计算机辅助的工程环境会是什么样子呢?它将是基于集成了一系列设计与制造工具的计算机工作站或网络工作站。公司的制造工程队将利用这些工具软件来不断的改进它的产品系统。这些工具将会被用来维护当前制造资源的信息, 提高现存生产能力, 并且开发新设施和系统。在不同工作站工作的工程师将可以通过制造系统工程数据库分享信息。使用这个环境, 工程队将能够在少数几天的时间内为整个工厂准备详细计划和工作模型。许多生产问题的可选择解决方案能迅速地被开发和评估。这种能力将是对当前也许需要几星期或几个月紧张的工作才能完成的手工方法的重大改善。为了达到这个雄心勃勃的目标, 一系列新工程工具是所必须的。企业的制造工程队就要求一定数量不同的工具来支持它的使命。 例如,支持的功能应该包括:鉴定制品技术规范和生产要求必备的条件单件产品的生产可行性分析制造工艺过程的规范及建模修改产品设计以适应制造工艺车间布局和设施编制对系统性能的模拟和分析对各种制造工艺、系统、工具、材料进行经济/费用折衷系统的支持或用户分析获得制造设备和支撑系统接口的规范化和信息系统的集成化任务和工作地点设计处理各种各样的组织和人员利害关系比如: 劳资问题,人为因素, 健康,
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:混凝土泵车的回转支承和回转底座的部分设计
链接地址:https://www.renrendoc.com/paper/129233145.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!