中心传动刮泥机动力系统设计【全套含10张CAD图纸】
收藏
资源目录
压缩包内文档预览:(预览前20页/共57页)
编号:129371227
类型:共享资源
大小:1.18MB
格式:ZIP
上传时间:2021-05-23
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
中心
传动
机动力
系统
设计
全套
10
CAD
图纸
- 资源描述:
-
喜欢就充值下载吧。资源目录里展示的全都有,下载后全都有,图纸均为CAD原图,有疑问咨询QQ:414951605 或1304139763
- 内容简介:
-
图书分类号:密 级:摘要传统的悬挂式刮泥机运行控制系统采用的是继电器逻辑控制线路。采用这种控制线路,存在易出故障、维护不便、运寿命较短、占用空间大等缺点。所以本课题采用PLC自动控制技术取代了传统继电器接触器电气控制系统,实现了对中心传动刮泥机的自动控制,可编程控制器是一种广泛应用于工业现场的新型控制器,具有结构简单,抗干扰性强,编程方便等特点,本课题所研究的利用电气控制系统的设计实现了的控制悬挂式中心传动刮泥机自动化,方便了工人实际操作。由于PLC电气控制系统与继电器接触器电气控制系统相比,具有结构简单,编程方便,调试周期短,可靠性高,抗干扰能力强,故障率低,对工作环境要求低等一系列优点。因此,本论文将把PLC控制技术应用到控制刮泥机中去,从而大大提高刮泥机的工作性能。完成了电气控制系统硬件和软件的设计,其中包括PLC机型的选择、I/O端口的分配、I/O硬件接线图的绘制、PLC梯形图程序的设计。对PLC控制刮泥机的工作过程作了详细阐述,论述了采用PLC取代传统继电器接触器电气控制系统从而提高刮泥机工作性能的方法,给出了相应的控制原理图。关键词 可编程控制器;梯形图;电气控制系统AbstractThe traditional hanging mud scraper operating control system uses is the relay logic control line. Uses this kind of control line, exists easily to crash, the maintenance inconveniently, transports the life to be short, to take the space in a big way and so on the shortcomings. Therefore this topic used the PLC automatic control technology to substitute for the traditional relay - contact device electricity control system, has realized to the central transmission mud scraper automatic control, The programmable controller is one kind widely applies in the industry scene new controller, has the structure to be simple, anti-jamming, characteristics and so on programming convenience, this topic studies the use electricity control system design has realized the control hanging center transmission mud scraper automation, has facilitated the worker actual operation. Because the PLC electricity control system and the relay - contact device electricity control system compares, has the structure to be simple, the programming is convenient, the debugging cycle is short, the reliability is high, ant jamming ability, the failure rate is low, to working conditions request low status a series of merits. Therefore, the present paper will apply the PLC control technology controls in the mud scraper, thus will enhance the mud scraper greatly the operating performance Has completed the electricity control system hardware and the software design, including the PLC type choice, the I/O port assignment, the I/O hardware wiring diagram plan, the PLC trapezoidal chart procedure design. Has made the detailed elaboration to the PLC control radial drill drilling machine work process, thus elaborated has used the PLC substitution tradition relay - contact device electricity control system to enhance the engine bed operating performance the method, has given the corresponding control scheme.Keywords programmable controller trapezoidal chart electricity control system目 录1绪论11.1我国的环保形势11.2刮泥机11.2.1刮泥机的分类11.2.2各种类刮泥机的适用条件和优缺点21.3中心传动刮泥机41.3.1原理41.3.2产品特征41.4中心传动刮泥机参数:41.5 设计任务51.6研究意义52刮泥机总体构成62.1刮臂的形式92.2刮板102.3水下轴承112.4工作桥123动力系统设计与计算133.1传动装置的设计133.2电动机的选择133.2.1选择电动机的类型和结构形式133.2.2确定电动机的功率143.3联轴器的设计163.4泵的选择183.4.1进水泵183.4.2出水泵193.5蜗轮、蜗杆的设计、计算203.5.1蜗轮、蜗杆材料及精度选择203.5.2涡轮、蜗杆计算和校核203.5.3计算和校核203.6传动立轴的设计与计算223.6.1轴的概述223.6.2轴的材料223.6.3轴的强度计算233.6.4轴的刚度计算233.2.5刮泥机传动立轴的计算244中心传动刮泥机电气控制系统硬件软件部分的设计254.1 PLC型号的选择254.1.1 根据PLC的物理结构264.1.2 根据PLC的指令功能264.1.3 根据PLC的输入输出点数264.1.4 根据PLC的存储容量274.1.5 根据输出模块的类型274.2刮泥机动力系统泥机总体方案说明274.3电气控制原理图的设计284.3.1主电路的设计284.3.2 交流控制电路的设计284.3.3 主要参数设计294.3.4 PLC的I/O端口分配表294.3.5 PLC的I/O电气接线图的设计304.4悬挂式中心传动刮泥机电气控制系统软件部分的设计31结论36致谢37参考文献38附录39附录139附录242531绪论1.1我国的环保形势 自从改革开放以来,我国科技,经济快速发展,工厂在各个城市林立,但随之而来的是环境污染。现在环境保护是我国的基本国策。世界经济发展的实践证明,为实现经济的持续稳定的发展,必须解决好发展与环境保护的矛盾。随着我国社会和经济的高速发展,城市环境污染特别是水污染的问题日趋严重。城镇生活污水的排放量逐年增加,2002年全国工业和城镇生活废水排放总量为439.5亿吨,比上年增加1.5%。其中工业废水排放量207.2亿吨,比上年增加2.3%;城镇生活污水排放量232.3亿吨,比上年增加0.9%,其中仅有10%得到处理。生活污水中含有较高的氮、磷等营养物质,未经处理直接排入江河湖海,是导致水域富营养化污染的主要原因。2002年监测数据显示,辽河、海河水系污染严重,劣V类水体占60%以上;淮河干流水质以III-V类水体为主,支流及省界河段水质仍然较差;黄河水系总体水质较差,干流水质以III-IV类水体为主,支流污染普通严重;松花江水系以III-IV类水体为主;珠江水系水质总体良好,以II类水体为主;长江干流及主要一级支流水质良好,以II类水体为主。由于“污染性”造成的水资源短缺,已成为严重制约我国社会经济持续发展的突出问题,有待解决。目前我国水污染控制的重点已从以工业点源为主,逐步转变为以城市污水污染为主的控制。国家非常重视环境污染问题,制定了相应的法律法规。从节约水资源和保护环境出发, 我国政府提出落实科学发展观,走可持续发展的道路。如果直接清理污染河道,代价肯定是巨大的,因此治污必须从源头抓起,污水必须经过净化方可排放。建设具有一定净水能力的污水处理厂势在必行。根据预测到2010年我国城市污水排放总量为1050亿m3,城市污水处理率要达到50%,预计需新建污水处理厂1000余座,而决定城市污水处理厂投资和运行成本的主要因素是污水处理工艺和技术的选择,因此开发适合我国国情的、高效、低耗、能满足排放要求、基建和运行费用低的污水处理新技术,具有十分重要的现实意义。 刮泥机就是污水处理的一种重要设备。该设备在国外的应用较为广泛的一种。1.2刮泥机1.2.1刮泥机的分类表1-1 刮泥机的分类平流式沉淀池行车式吸泥机泵吸式单管扫描式多管并联式虹吸式虹吸泵吸式刮泥机翻板式提板式链板式单列链式双列链式螺旋输送式水平式倾斜式辐流式沉淀池中心传动式垂架式刮泥机双刮臂式四刮臂式吸泥机水位差自吸式虹吸式空气提升式悬挂式周边传动式刮泥机吸泥机1.2.2各种类刮泥机的适用条件和优缺点我国有多种刮泥机,有行车式虹吸、行车式提板刮泥机、链板式刮泥机螺旋、输送式刮泥机泵吸泥机、悬挂式中心、传动刮泥机周边传动吸泥、刮泥机等。下表1-2是各种类刮泥机的适用条件和优缺点表1-2各种类刮泥机的适用条件和优缺点序号机种名称池形池径或池宽( m )池底坡度适用范围(吸)刮泥转速(m/min)优缺点1行车式虹吸、泵吸泥机矩形8 30平底( 1 )给水平流沉淀池。( 2 )排水二次沉淀池。( 3 )斜管沉淀池。( 4 )悬浮物含量应低于 5000mg/L 。( 5 )固体重量度不大于 2.5mg/ 粒0.61优点(1)边行进边吸泥,效果较好(2)根据污泥量多少,调节排泥次数(3) 往返工作,排泥效率高。缺点: (1)除采用液下泵外, 吸泥前须先引水,操作较麻烦。 (2) 池内不均匀沉泥,吸泥浓度不一致。 (3) 吸出污泥的含水率较高 续表1-22行车式提板刮泥机矩形4 300.0110.002( 1 )给水平流沉淀池。( 2 )排水初次沉淀池。0.6优点:(1)排泥次数可由污泥量确定.(2) 传动部件可脱离水面. 检修方便.(3) 回程时,收起刮板,不扰动沉泥缺点:电器原件如设在户外,易损坏3链板式刮泥机矩形 60.01(1) 沉砂池 (2) 排水初次沉淀池 (3) 排水二次沉淀池30.60.3优点:(1)排泥效高,在循环的牵引链上,每隔2m左右装有一块刮板,因此整个链上的刮板较多,使刮泥保持连续(2)刮泥撇渣两用,机构简单 . 缺点:(1)池宽受到刮板的限制通常不大于 6m.(2) 链条易磨损,对材质要求较高 .4螺旋输送式刮泥机矩形或圆形 5 40长槽(1) 沉砂池 .(2) 初沉池 .(3) 最大安装角 30 . (4) 最大输送距离 : 水平布置为 20m 倾斜布置为 10m1040r/min(1)严禁较大或带状的悬浮物进入.(2) 中间支撑不得阻碍泥砂输送.(3) 池外传动密封要求可靠.(4) 泥砂沉积时间不宜超过8h5悬挂式中心传动刮泥机圆形 6 120.0830.1(1) 给水幅流式沉淀池 (2) 排水初沉池 (3) 排水二次沉淀池刮泥 (4) 排水二次沉淀池吸泥(5) 污泥浓缩池最外缘刮板端 13优点:(1) 结构简单.(2) 运转连续,管理方便缺点:刮泥速度受刮板外缘的速度控制 .6垂架式中心传动吸泥机、刮泥机 14 600.0250.05最外缘刮板端 137周边传动吸泥、刮泥机 14 1000.250.167最外缘刮板端 138机械搅拌澄清池刮泥机圆形 36 7150.083 抛物线机械搅拌澄清池最外缘刮板端1.83.4优点:排泥彻底缺点:(1)水下传动部件的检修较困难.(2) 销齿磨损,不易察觉 . 续表1-29钢索牵引刮泥机矩形圆形40Z164342323121Z229362832275228725081288040所以传动比 I=n/n1=31查阅机械设计手册,取I=31查阅实用机械设计手册初选:动载荷系数,当涡轮圆周速度时,反之取1.11.2啮合质量系数,取值范围0.951.2;小时载荷率系数;环境温度系数(由表34.1-18);工作情况系数(由表34.1-19);风扇系数,(由图34.1-7);综上,载荷系数载荷系数。3.5.3计算和校核由题意知:使用寿命10年,每年工作300天,每天工作16小时,每小时载荷时间为15分钟应力循环次数:N=60t =2.6,查阅机械传动设计第四卷图34.1-9 查得=0.9。以估算的蜗轮圆周速度,确定采用浸油润滑,查得润滑速度影响系数=0.87,许用接触应力:=150=1151.00.9=103.5:N时涡轮材料的许用接触应力见表34.1-21;:滑动速度影响系数,又图34.1-8查取(侵油润滑曲线):寿命系数,由N=2.6查图34.1-9 =152.3:传动效率取0.72 项目代号公式计算结果轴相角蜗杆的直径系数10变位系说取值()中心距180(mm)模 数 10(mm)蜗杆头数涡轮齿数61传动比30.5蜗杆、涡轮分度圆直径50305蜗杆、涡轮节圆直径55305蜗杆分度圆导程角蜗杆、涡轮齿顶高57.5蜗杆、涡轮齿根高611蜗杆、涡轮齿顶圆直径60320蜗杆、涡轮齿根圆直径38298涡轮宽度61蜗杆螺纹长度大于135.5校核 =7888齿根弯曲强度计算: a设计公式:,YFS为蜗轮复合齿形系数,按及变位系数x2=0.25查图2-3近似求得YFS =4.5 为蜗轮齿根许用应力按下式计算: =YN,其中为NL=106时的轮缘材料许用弯曲应力,蜗轮材料及NL=107时的许用接触应力 ,蜗轮材料及NL=106时的许用弯曲应力,查表取=35 ,YN为弯曲强度计算的寿命系数,查得YN=1计算得:158.33369.37 所以满足要求b验算公式:, 为导程角系数,用公式=1-计算得0.96,满足设计要求:蜗轮轮齿弯曲强度计算 4.6 =203.6传动立轴的设计与计算3.6.1轴的概述作为回转运动的零件都要装在轴上来实现其回转,大多数轴起着转矩的作用,根据轴的承载情况可分为转轴、心轴和传动轴类。刮泥机传动立轴主要用于传动力矩,属于传动轴。3.6.2轴的材料 轴的材料主要采用碳素钢和合金钢。碳素钢比合金钢价廉,对应力集中的敏感较小,所以广泛应用。 常用的碳素钢有3050钢,最常用的是45钢。为保证其力学性能,应进行调质或正火处理。刮泥机的传动立轴采用45钢。3.6.3轴的强度计算轴的强度主要有三种方法:许用切应力计算;许用弯曲应力的计算;安全系数计算。许用切应力的计算只需知道转矩的大小,方法简便,但计算精度较低。它主要用于下列情况1)传递以转矩为主的传动轴;2)初步估算轴径以便进行结构设计;3)不重要的轴。弯矩的影响,可在计算中适当降低许用应力。 许多弯曲应力的计算必须先知道作用力的大小和作用点的位置、轴承跨距、各段轴径等参数。为此,常先按转矩估算轴的结构。设计后,即可画出轴的弯矩合成图,然后计算危险截面的最大弯曲应力。它主要用于计算一般重要的、弯矩复合的轴,计算精度中等。安全系数校核计算也要在结构设计后进行,不仅要定出轴的各段直径,而且要定出过渡圆、轴配合、表面粗糙度等细节。它主要用于重要的轴,计算精度较高,但计算较复杂,且常需要足够的资料才能进行。安全系数校核计算能判断各危险截面的危险截面的安全程度,从而改善各薄弱环节,有利于提高轴的疲劳强度。刮泥传动立轴主要用于传动扭矩,因此根据以上使用条件,只需进行许用切应力计算。受转矩T(Nm)的实心圆轴,其切应力为见式(3.1)。= 式(3.1)式中轴的抗扭截面系数,;P轴传递的功率kW;n轴的转速,r/min;许用切应力。3.6.4轴的刚度计算 轴受载荷以后要发生弯曲和扭转变形,如果变形过大,会影响轴上零件正常工作。例如,若车床丝杆扭角过大,会影响车刀进给,降低加工精度;发动机的凸轮轴扭转角过大,会影响气阀开关时间,镗床的主轴或磨床的传动轴如扭转角过大,将会引起扭转振动,影响工件的精度和光洁度。所以,要限制一些轴的扭转变形。轴的变形有三种:绕度、转角、和扭角。在各种机器中对轴的刚度要求不一致。刮泥机的传动立轴在传动过程中要保证扭角。 受转矩T(Nm)作用,其扭角,由此可得单位轴长扭角为见式(3.2) 式(3.2)式中L轴受转矩作用长度;轴截面的极惯性矩;G轴材料的切变模量。3.2.5刮泥机传动立轴的计算刮泥机传动立轴采用45号钢,并采用实心轴。 1)按扭转强度计算,可有公式得d最小轴径(mm);M轴所传递的扭矩(Nm);许用扭转剪应力。根据表查得30;有公式N=带入数据得M4630 Nm,d92mm。2)按扭转刚度计算d最小轴径(mm);M轴所传递的扭矩(Nm);许用扭转角()。根据表查得1.5();M4630 Nm带入数据得122mm;根据以上计算可得:采用45钢的传动立轴轴径选130mm。3) 对传动立轴进行校核强度校核,其中,T=M,代入数据得=1.4Mpa,刚度校核,其中,G80Gpa,代入数据得0.12() 。4中心传动刮泥机电气控制系统硬件软件部分的设计悬挂式中心传动刮泥机的电气控制系统的设计方案由两部分组成,一部分为电气控制系统的硬件设计,也就是PLC的机型的确定;另一部分是电气控制系统的软件设计,就是PLC控制程序的编写。具体方案如下:4.1 PLC型号的选择刮泥机电气控制系统普遍采用的是传统的继电器接触器控制方式。因其所要控制的电机较多所以电路较复杂,经常发生电气故障,从而影响处理污水。另外,一些复杂的控制,如:时间用继电器接触器控制方式较难实现, PLC电气控制系统可以有效的弥补上述系统的这一缺陷。可编程逻辑控制器(Programmable Logic Controller)简称PLC,是从早期的继电器逻辑电气控制系统发展而来,它不断吸收微型计算机控制技术,使之功能不断增强,逐渐适合复杂的电气控制系统。PLC之所以有较强的生命力,在于它更加适应工业现场和市场要求。可靠性高,抗干扰能力强、编程方便、价格低、寿命长。与单片机相比,它的输入/输出端更接近现场设备,不需添加太多的中间部件,这样可以大大节省用户的开发时间与生产成本。现在应用于各种工业控制领域的PLC种类繁多,规模大小和功能强弱千差万别,但他们具有以下一些共同的特点。可靠性高。可靠性是用户的首选要求,目前各厂家生产的PLC,平均无故障时间都大大超过IEC规定的10万小时,例如:西门子、ABB、松下、三菱等微小型PLC,而且都有完善的自诊断功能,判断故障迅速。 灵活组态。可编程控制器是系列化产品,通常采用模块化结构来完成不同的任务组合。输入输出端口选择灵活,有多种机型,组合方便。功能强大,除基本的逻辑控制、定时、计数、算术运算功能外,配合特殊功能模块还可实现点位控制、PTO运算、过程运算、数字控制等功能,为方便工厂管理又可以与上位机通信,通过远程模块可以控制远程设备。因此,PLC几乎是全能的工业控制计算机。编程方便,易于使用。PLC的编程可采用与继电器极为相似的梯形图语言,直观易懂,深受现场电气人员的欢迎。近年来又发展了面向对象的顺控流程图语言(Sequential Function Chart),使编程更加简单方便。运行速度快。传统的机电接触电气控制系统通过大量触点的机械动作进行控制,速度很慢,而且系统愈大速度愈慢。PLC的控制速度则由CPU工作速度和扫描速度决定。因此更适合处理高速复杂的控制任务,它与微型计算机之间的差别越来越小。同时,PLC还具备了网络功能,能进行多台PLC或PLC与PC机之间的联网通讯,使用PLC可以很方便的构成“集中管理、分散控制”的分布式电气控制系统,通过现场总线的PLC通讯网络,可使工厂的各种资源共享,就更适合于工厂自动化的需要,为工厂自动化提供了技术保证。此次设计提高PLC编程水平和实践能力,为今后在实际工作中熟练使用PLC进行工业系统的设计打好基础。 早在上世纪六十年代国外就已经出现了可编程序控制器(PLC)的应用,之后世界各国争相在该领域投入大量资金进行新产品的开发,在1995年西门子又成功地开发出了S7200、S7300系列,它具有 TD 200和 COROS OPS操作模板为用户提供了方便人机界面,用户程序三级口令保护,极强的计算性能,完善的指令集,MPI接口和通过工业现场总线PROFD3US以及以太网联网的网络能力,强劲的内部集成功能,全面的故障诊断功能;模块式结构可用于各处性能的扩展,脉冲输出晶闸管步进电机和直流电机;快速的指令处理大大缩短了循环周期,并采用了高速计数器,高速中断处理可以分别响应过程事件,大幅度降低了成本。由于电气控制系统的可靠性日益受到人们的重视,一些公司己将自诊断技术、冗余技术、容错技术广泛应用到现有产品中,推出了高可靠性的冗余系统,并采用热备用或并行工作、多数表决的工作方式。由于PLC的众多优点,使其迅速在工业控制中得到推广。虽然国内PLC技术的应用前景很大,并且取得了一定的经济效益,而相比之下,由于受经济和技术水平的限制,很多厂家使用的刮泥机的电气控制系统,还是采用采用继电器接触器控制方式,而这种控制方式存在着明显的缺陷和隐患。极易发生故障。此次设计主要用PLC进行控制实现了对刮泥机系统的自动控制,从而提高了刮泥机的工作效率、工作稳定性和可靠性,而且,还大大降低了工人的劳动强度,降低了设备故障率。选择电气控制系统的PLC机型,应从以下几个方面来考虑:4.1.1 根据PLC的物理结构根据物理结构的不同,PLC分为整体式、模块式和叠装式。整体式的每一I/O点的平均价格比模块式便宜,小型电气控制系统一般使用整体式可编程控制器。此次所设计的电气控制系统属于小型开关量电气控制系统没有特殊的控制任务,整体式PLC完全可以满足控制要求,且在性能相同的情况下,整体式PLC较模块式和叠装式PLC价格便宜,因此,中心传动刮泥机电气控制系统的PLC选用模块。4.1.2 根据PLC的指令功能 考虑到任何一种PLC都可以满足开关量电气控制系统的要求,据此本课题将尽量采用价格便宜的PLC。 4.1.3 根据PLC的输入输出点数如表4-1和表4-2所示,悬挂式刮泥机的电气控制系统需要12输入口8输出口,PLC的实际输入点数应等于或大于所需输入点数12,PLC的实际输出点数应等于或大于所需输出点数8,在条件许可的情况下尽可能留有10%-20%的余量。4.1.4 根据PLC的存储容量PLC存储器容量的估算方法:对于仅有开关量输入/输出信号的电气控制系统,将所需的输入/输出点数乘以8,就是所需PLC存储器的存储容量(单位为bit)即(12+8)8=160bit根据输入模块的类型,输入模块的输入电压一般为DC24V和AC110V或AC220V。直流输入电路的延迟时间较短,可以直接与接近开关、光电开关等电子输入装置连接。交流输入方式的触点接触可靠,适合于在有油雾、粉尘的恶劣环境下使用。由于刮泥机的电气控制系统的工作环境并不恶劣,且对电气控制系统操作人员来说DC24V电压较AC110V电压安全些。因此,电气控制系统的PLC输入模块应选直流输入模块,输入电压应DC24V电压。4.1.5 根据输出模块的类型PLC输出模块有继电器型、晶体管型和双向可控硅型三种。继电器型输出模块的触点工作电压范围广,导通压降小,承受瞬间过电压和过电流的能力较强,每一点的输出容量较大(可达2A),在同一时间内对导通的输出点的个数没有限制,但动作速度慢,寿命有一定的限制。晶体管型与双向可控硅型输出模块分别用于直流负载和交流负载,它们的可靠性高,反应带宽快,寿命长,但是过载能力差,每1点的输出量只有0.5A,4点同时输出的总容量不得超过2A。由于悬挂式中心传动刮泥机控制对象对PLC输出点的动作表达速度要求不高,继电器型输出模块的动作速度完全能够满足要求,且每一点的输出容量较大,在同一时间内对导通的输出点的个数没有限制,这将给设计工作带来很大的方便。所以本课题选用继电器输出模块,结合电气控制系统的实际情况,需要输入点数大于14个,输出点数大于8个。综上所述,为了使刮泥机系统能够良好工作,确认三菱公司生产的型PLC模块能够满足上述要求,该类型号PLC体积小,功能强,对于控制器体积要求较高的应用系统是一种很好的选择。该PLC编程口可以直接和编程器或计算机连接,使用非常方便,且性价比较高,使用方便。该型PLC具有悬挂式中心传动刮泥机电气控制系统所需的所有指令功能,其总输入点数为16点,总输出点数为16点,输入模块电压为DC24V,输出模块为继电器输出型。由此可知,型号PLC模块的技术性能指标完全能满足上述要求。4.2刮泥机动力系统泥机总体方案说明污水处理过程:当水池中的污水处于低水位时或无水时,进水泵会打开纳入污水,当进水至高水位时,进水泵停止泵入水,当污水升至一定的高度是行走电机开启进行刮泥处理,经过两小时的水质处理使水达到一定的标准,行走电机停转,出水泵开启开始把水排出去,当水处于低水位时进水泵重新开启,此过程循环运行。(1) 刮泥机动力控制系统控制对象进水泵出水泵电动机均由交流接触器完成起停控制。(2) 水池中的水位检测开光,在选型考虑抗干扰性能,选用电极考虑耐腐蚀行。(3) 行走电机其内部设有过载检测开关,为常闭触点,作为过载保护信号,PLC控制电路考虑该信号逻辑关系。(4) 出水泵,进水泵,行走电机分别采用热继电器实现过载保护,其热继电器的常开触点通过中间继电器转换后,作为PLC信号,用以完成各个电动机系统的过载保护。(5)主电路用短路器,各负载回路和控制回路采用熔断器,实现短路保护。(6) PLC选用继电器输出型。4.3电气控制原理图的设计4.3.1主电路的设计(1)KM3,KM4分别控制进水泵M2,出水泵M3,交流接触器KM1,KM2控制行走电机实现正反转功能。(2)电动机M1,M2,M3由热继电器FR1,FR2,FR3实现过载保护。电动机M1控制器内还装有常闭热保护开关,对行走电机实现双重保护。(3)QF为电源总开关,即可完成主电路的短路保护,又起到分断三相交流电源的作用,使用和维修方便。(4)熔断器FU1,FU2,FU3分别实现各负载回路的短路保护,FU4,FU5分别完成交流控制电路和PLC控制的短路保护。电气控制系统具体见下图4-1。图4-1电气控制系统主电路4.3.2 交流控制电路的设计主电路中交流接触器:(1) 控制电路有电源指示灯HL1。PLC供电回路采用隔离变压器TC,以防止电源干扰。(2) 隔离变压器TC的选用根据PLC耗电量配置,可以配置标准型,电压比1:1,容量100V.A隔离变压器。(3) 进水泵,出水泵分别有运行指示灯,由KM3,KM4接触器常开辅助触点控制。(4) 三台电动机M1,M2,M3的过载保护分别由3个热继电器FR1,FR2,FR3实现,将其常闭触点并联后与中间继电器KA1连接构成过载保护信号,KA1还起到电压转换的作用,将220V交流信号转换成直流24V信号送入PLC完成过载保护控制功能。交流控制电路具体见下图4-2。图4-2交流控制电路4.3.3 主要参数设计(1)断路器QF脱扣电流。断路器为供电系统电源开关,其主回路控制对象为电感性负载交流电动机,断路器过电流脱扣值按起动电流的1.7倍整定,该刮泥机系统出水泵电动机起动电流较大,其余凉台起动电流较小,由于三台电动机是单独起动运行,因此可根据三台电动机启动电流最的大选择(既出水泵启动电流)自动开关QF脱扣电流。(2)熔断器FU熔体额定电流,控制电路熔体额定电路选2A。4.3.4 PLC的I/O端口分配表 根据所选PLC的型号进行I/O点的端口分配,如下(表4-1、表4-2)所示:表4-1 输出信号端口分配表序号工作名称文字序号输入口 1启动按钮SB1X0002水池高水位开关信号H1X0013水池高低位开关信号L1X0024行走电机启动按钮SB2X0035行走电机停止按钮SB3X0046进水泵启动按钮SB4X0057进水泵关闭按钮SB5X0068出水泵开启按钮SB6X0079进水泵关闭按钮SB7X01010电动机热保护报警KA1X01111手动(旋纽)SC1-1X01212自动(旋纽)SC1-2X01313输入点备用X013X017表4-2 输出信号端口分配表序号工作名称文字序号输入口 1水池高水位红色指示灯HL5Y0002水池低水位绿色指示灯HL6Y0013行走电机接触器KM1Y0024进水泵接触器KM3Y0035出水泵接触器KM4Y0046进水泵开启指示灯HL2Y0057出水泵开启指示灯HL3Y0068电动机热保护器报警红色指示灯HL4Y0079输入点备用Y010Y0174.3.5 PLC的I/O电气接线图的设计下图4-3为PLC的I/O电气接线图,图中X000、X001、X002、X003、X004、X005、X006、X007、X010、X011、X012、X013共用一个COM端,输入开关的其中一端应并接在直流24V电源上,另一端应分别接入相应的PLC输入端子上。接线时注意PLC输入/输出COM端子的极性。接触器的线圈工作电压若为交流220V,则接触器线圈连接的KM1、KM3、KM4可以共用一个COM2端。信号灯电源电压为6.3V,因此Y000、Y001、Y005、Y006、Y007可以共用一个COM1端。如果输出控制设备存在直流回路,则交流回路直流回路不可共用一个COM端,而应分开使用,本电路的输出端全为交流回路,因此在电源电压相同的接口可共用一个COM端。图4-3 PLC的I/O电气接线图4.4悬挂式中心传动刮泥机电气控制系统软件部分的设计为了使悬挂式中心传动刮泥机在进行电气控制系统改造后仍能够完成原有的动作,本基于PLC的刮泥机电气控制系统的PLC程序应由电气控制系统预开程序、行走电机的起动和停止控制程序、进水泵和出水泵开启和关闭的控制程序、信号的显示程等部分组成。程序控制:根据控制要求,建立处理系统控制流程图,下图,表达出各控制对象的动作顺序,相互间的制约关系。控制流程图具体见图4-4。图4-4控制流程图PLC控制程序如下图(另在附录1中有相关的程序):X011为电路的总热继电器,PLC每次运行督要检测三台电动机是否过载,如过载,热继电器报警指示灯Y007亮,并置位M10。首先检查水池的水位十分处于高水位,如果处于高水位,则打开行走电机进行处理,如果不处于高水位,则打开进水泵,直到泵水到高水位为止。选择手动操作还是自动运行,如果手动操作执行以下程序,如自动运行,则直接调用P1子程序。水池不处于高水位,需要先向里面泵水,直到泵水到高水位为止,泵满水同时关闭进水泵。关闭进水泵的同时,打开行走电机进行两小时的污水处理;计时两小时利用M8014,M8014是1分钟计时脉冲,30S上升沿,30S下降沿,1分钟脉冲 30s通30s断, 1分中计一次数。120次 就是120分钟 也就是2小时时间到了 C0就会导通。计时两小时满,打开出水泵知道水位低停止。以下是子程序P1,运行过程和以上一样。结论经过近半年的努力,通过在图书馆查阅有关资料,了解了刮泥机的结构,并且加深了对刮泥机运行过程、控制系统的认识,熟悉了可编程序控制器在污水控制系统中的运用。可编程控制器是一种广泛应用于工业现场的新型控制器,具有结构简单,抗干扰性强,编程方便等特点,本课题采用PLC自动控制技术取代了传统继电器接触器电气控制系统,实现了对刮泥机系统的自动控制,从而提高了刮泥机的工作效率、工作稳定性和可靠性,而且,还大大降低了工人的劳动强度,降低了设备故障率。另外,通过这次毕业设计使我对PLC和电控方面的知识又有了更加深刻的理解和掌握,为今后走向工作岗位从事相关工作奠定了很好的基础。在设计的过程中,围绕保证传动的要求展开的,通过对比几套方案的优缺点,最后定下了本篇论文的设计方案,该方案不但较好的实现了传动所要的传动比,而且利用PLC可编程控制器,节省了一定的人力和物力。由于时间精力有限,还有许多功能有待扩展、完善。系统仅限于逻辑开关量的控制,对于PLC的许多高级指令没有应用到。以上问题有待今后进一步研究解决。在设计的过程中遇到了不少的问题,经过自己的努力和指导老师的细心指导,终于完成了该项设计任务,并且对产品进行了经济分析,较为合理的阐述了自己的设计思路与创新点,我感觉自己在设计的过程中学会了不少的知识,不但温习了曾经学习的专业课知识,而且还学会了好多新的PLC和机械方面的知识,总的来说收获是很大的。鉴于本人所学知识有限,经验不足,又是初次研究这种复杂的设计,在此过程中难免存在一些错误和不足之处,恳请各位老师给予批评和指正。致谢时间过的好快,转眼间大学四年的生活在匆忙中即将过去。大学的四年学习生活是丰富多彩的,是充实而有意义,这大学四年了我一直学着自己从小有着极大兴趣的机械专业,所以专业课方面有了很大的提高,在设计中掌握了大量有关机械,PLC方面的理论知识,毕业实习中又将大量的理论知识运用于实践,为毕业设计打下了实践基础,使我又强化了专业了知识的实际运用能力,收获颇丰。本论文是在导师蔺老师的精心的指导和帮助下完成的。没有所有辛勤培育我的老师们就没有我今天所取得的一切成绩。其间于老师对我学习上的严格要求和生活上的关怀,让我终身难忘。在此表示我最诚挚的感谢和崇高的敬意!另外在此向各位领导、老师及在此次毕业设计中给予我帮助的所有同学表示衷心的感谢。愿我最敬爱的老师们工作顺利,身体健康,合家欢乐,万事如意。最后,我要把该论文送给含辛茹苦培养我的父母。您们多年如一日地默默奉献着,支持着我完成学业。谢谢您们!参考文献1张展.实用机械传动手册.科学出版社.19952王启义.中国机械设计大典.江西科学技术出版社.20023雷光.传动装置选用手册.机械工业出版社.19994李桂和.电器及其控制.重庆大学出版社.19935石油和化学工业局.HG/T20700-2000.可编程控制器系统设计与规定.国家石油和化学工业局.20016谢剑英.微型计算机控制技术.国防工业出版社.20017袁任光.可编程序控制器应用技术.华南理工大学出版社.20008周邓则.电器与可编程序应用技术.机械工业出版社.19979陈奥初.单片机应用系统设计和实.北京航空航天大学出版社10陈在平.可编程控制器技术与应用系统设计.机械工业出版社.200211二代龙震工作室.Auto CAD 2004中文版机械设计高级应用.电子工业出版社.199612郭玲文.Auto CAD 2005中文版机械绘图教程.电子工业出版社.200513唐金松.机械零件设计手册 .上海科技出版社.200014李亚东.用PLC实现位置控制的方法.上海交通大学学报.200215王培良.发电机自动检测的PLC电气控制系统.电气自动化.200416李桂芹.提高PLC电气控制系统可靠性的措施. 电气自动化.2006附录附录1PLC程序1 LD M80022 ZRST S0 S1277 LD Y0028 OR Y0039 OR Y00410 ANI X01111 OUT T014 LD T015 OUT Y00716 SET M1017 LD X00718 AND X00119 OUT Y00020 LD Y00021 ANI X00222 OUT Y00123 LD X00024 MPS25 ANDP X01227 SET S029 MPP30 AND X01331 CALL P134 STL S035 LDI M1036 SET S2138 STL S2139 LDI M1040 MPS41 ANI X00142 SET S2243 STL S2244 MPP45 AND X00143 SET S2248 STL S2249 LDI M1050 OUT Y00251 MPS52 ANDP M801454 OUT C057 MPP58 AND C059 SET S2361 RST C063 STL S2364 LDI M1065 OUT Y00466 LDI M1067 OUT Y00668 LDI X00169 SET S071 RET72 FEND73 P174 LDP X01376 ZRST S081 LD X00382 ANI X00483 SET Y00284 LD X00485 ANI X00386 RST Y00287 LD X00588 ANI X00689 SET Y00390 LD X00691 ANI X00592 RST Y00393 LD X00794 ANI X01095 SET Y00496 LD X01097 ANI X00798 RST Y00499 END附录2英文原文Industrial Robot and its systems componentsThere are a variety of definitions of the term robot. Depending on the definition used, the number of robot installations worldwide varies widely. Numerous single purpose machines are used in manufacturing plants that might appear to be robots. These machines are hardwired to perform a single function and can not be reprogrammed to perform a different function. Such single-purpose machines do not fit the definition for industrial robots that is becoming widely accepted. This definition was developed by the robot Institute of America:A robot is a reprogrammable muhifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.Note that this definition cymbals the words reprograrnmable and multifunctional. It is these two characteristics that separate the true industrial robot from the various single-purpose machines used in modern manufacturing firms. The termreprogrammableimplies two things: The robot operates ace)riding to a written program, and this program can be rewritten to accommodate a variety of manufacturing tasks.The term multifunctional means that the robot can, through reprogramming and the use of different cod-effectors, perform a number of different manufacturing tasks. Definitions written around these two critical characteristics are becoming the accepted definitions among manufacturing professionals.The fits articulated arm came about in 1951 and was used by the U.S. Atomic Energy Commission. In 1954, the first programmable robot was designed by George Devon. It was based on two important technologies:(1) Numerical control (NC) technology. (2) Remote manipulation technology. Numerical control technology provided a foam of machine control ideally suited to robots. It allowed for the control of motion by stored programs. These programs contain data points to which the robot sequentially moves, timing signals to initiate action and to stop movement, and logic statements to allow for decision rimming.Remote manipulation technology allowed a machine to be more than just another NC machine. It allowed such machines to become robots that can perform a variety of manufacturing tasks in both inaccessible an unsafe environments. By miring these two technologies, Devil developed the first industrial robot, an unsophisticated programmable materials handling machine.The first canon racially produced robot was developed in 1959. In 1962, the first industrial robot to be used oil a production line was installed by General Motors Corporation. This robot was produced by Animation. A major step forward in robot control occurred in 1973 with the development of the T-3 industrial robot by Cincinnati Milacron. The T-3 robot was the first commercially produced industrial robot controlled by a minicomputer.Numerical control and remote manipulation technology prompted the wide scale development and use of industrial robots. But major technological developments do not take place simply because of such new capabilities. Something must provide the impetus for taking advantage of these capabilities. In the case of industrial robots, the impetus was economies.The rapid inflation of wages experienced in the 1970s tremendously increased the personnel costs of manufacturing firms. At the same time, foreign competition became a serious problem for U. S. manufacturers. Foreign manufacturers who had under taken automation on a wide scale basis, such as those in Japan, began to gain an increasingly large share of the U.S. and world market for manufactured goods, particularly automobiles.Through a variety of automation techniques, including robots, Japanese manufacturers, beginning in the 1970s, were able to produce better automobiles more cheaply than no automated U.S. manufacturers. Consequently, in order to survive, U.S. manufacturers were forced to consider any technological developments that could help improve productivity.It became imperative to produce better proudest at lower costs in order to be competitive with foreign manufacturers. Other factors such as the need to find better ways of performing dangerous maim factoring tasks contributed to the development of industrial robots. However, the principal rationale has always been, and is still, improved productivity.One of the principal advantages of robots is that they can be used in settings that are dangerous to humans. Welding and parting are examples of applications where rotates can be dangerous to humans. Even though robots are closely associated with safety in the workplace, they can, in themselves, be dangerous.Robots and robot cells must be carefully designed and configured so that they do not endanger human workers and other machines. Robot work envelops should be accurately calculated and a danger zone surrounding the envelop clearly marked off. Red flooring strips and barriers can be used to keep human workers out of a robots work envelope.Even with such precautions it is still a good idea to have an automatic shutdown system in situations where robots are used. Such a system should have the capacity to sense the need for an automatic shutdown of operations. Fault-tolerant computers and redundant systems can be installed to ensure proper shutdown of robotics systems to ensure a safe environment.Industrial robots is the science of designing, building, and applying industrial robots. What are robots? In the late 1970s the Robotic Industries Association defined a robot as” a manipulator, designed to move material, parts, tools or specialized devices through variable programmed motions for the performance of a variety of tasks. Although this definition does not directly include pick and place arms as robots, teleoperamrs and remotely controlled devices are often referred to also as robots. The International Standards Organization (ISO) has a more lengthy definition of an industrial robot:A machine formed by a mechanism including several degrees of freedom, often having tile apparition of one or several arms ending in a wrist capable of holding a tool or a work piece or an inspection device. In particular, its control unit must use a memorizing device and .sometimes it can use sensing or adaptation appliances taking into account environment and circumstances. These multipurpose machines are generally designed to carry out a repetitive function and can be adapted to other functions.The RIA and ISO definitions both stress the multifunctional and programmable capabilities and, therefore, exclude special-purpose hard automation tools and equipment typically found in high volume production. Also excluded are manual remote manipulators, which are extensions of human hands for use in, for example, sterile, hot, or radioactive environments.In Japan, the Japanese Industrial Robot Association (JIRA) classifies industrial robots by the method of input informant and the method of teaching: 1. Manual Manipulators. Manipulators directly activated by the operator. 2. Fixed-sequence Robot. Robot that once programmed for a given sequence of operations is not easily changed. 3. Variable-sequence Robot. Robot that can be programmed for a given sequence of operations and can easily be changed or reprogrammed. 4. Playback Robot. Robot that memorizes work sequences taught by a human being who physically leads the device through the intended work pattern; the robot can then create this sequence repetitively from memory. 5. Numerically Controlled (NC) Robot. Robot that operates from and is controlled by digital data, as in the form of punched tape, cards, or digital switches; operates like a NC machine. 6. Intelligent Robot. Robot that uses sensory perception to evaluate its environment and make decisions and proceeds to operate accordingly. The first-generation of robot systems was defined for the various robots with limited computer power. Their main intelligent functions include programming by showing a sequence of manipulation steps by a human operator using a teach box. Without any sensors, these robots require a prearranged and relatively fixed factory environment and, therefore, have limited use.The second-generation of robot systems was enhanced by the addition of a computer processor. A major step in industrial robotics development was the integration of a computer with the industrial robot mechanism. This has provided real-time calculation of trajectory to smooth the motions of the end effectors and integration of mine simple force and proximity sensors to obtain external signals. The main applications of second generation robots include spot and arc welding, spray painting, and some assembly. Third-generation robot systems incorporate multiple computer processors and multiple arms that can operate asynchronously to perform .several functions. Distributed hierarchical imputer organization is preferred, because it can coordinate motions and interface with external sensors, other machines, and other robots and can communicate with other computers. These robots can already exhibit intelligent behavior, including knowledge-based control and learning abilities. Japan ranks as the worlds top robot-producing and robot-using country, with more than 40% of the worlds industrial robot installations. The reasons for this penetration are sociological-and technological factors that are unique to Japan: industrial robots brought productivity and quality gains in Japanese industry,coupled with improvements of the work environment. These have perpetuated theocrat-demand for more robots as well as increased the expectation from this technology. Current and emerging robot applications in industry can be categorized on the complexity and requirements of the job. They range from simple, low technology pick-and place operations through medium technology painting, some assembly and welding operations to high technology precision assembly an inspection operations. Pick-and-place Operations The earliest applications of robots were in machine loading unloading, pick-and-place, and material transfer operations. Such robots typically were not servo controlled and worked with pneumatic or hydraulic power. The Accad-carrying requirements were high, working in dirty or hazardous factory environments. Replacing unskilled human labor often in hazardous jobs, these robots had to be robust and low in initial and maintenance costs. Painting and Welding Operations The next level in the sophism tuition of industrial robot applications was in spray painting, and spot and arc welding. These applications complemented or replaced certain skilled human labor. Often the justification was by eliminating dangerous environmental exposures. These applications often require tracking complex trajectories such as painting surface mentors, hence move controlled articulated or spherical robot structures were used. Lead-through teaching modes became common, and sometimes sophisticated sensors are employed to maintain process consistency. Experience has shown that when properly selected and implemented, these robotic applications usually lead to reduced overall manufacturing costs and improved product quality compared with manual method. Assembly Operations The most advanced level of technology employing third-generation industrial robots is found in assembly. System repeatability is of utmost importance. End-of-arm tooling must be compliant, i.e., have both force and displacement control to adjust part insertions, which require that the robot actually feel its way along. This technology usually requires a measure of artificial intelligence. Assembly robots generally are electronically driven and operate in clean environments. Assembly robots are expected to exceed further technology applications.Other Applications Other typical applications of robots include inspection,quality control, and repair; processing such as laser and water jet cutting and drilling, riveting, and clean room operations; and applications in the wood, paper,and food-processing industries. As industrial robot technology and robot intelligence improve even further, additional applications may be justified effectively. The components of a robot system could be discussed either from a physical point of view or from a systems point of view. Physically, we would divide the system into the robot, power system, and controller (computer). Likewise, the robot itself could be partitioned anthropomorphically into base, shoulder, elbow, wrist,gripper, and tool. Most of these terms require little explanation. Consequently, we will describe the components of a robot system from the point of view of information transfer. That is, what information or signal enters the component; what logical or arithmetic operation does the component perform; and what information or signal does the component produce? It is important to note that the same physical component may perform many different information pores. shirk operations (e.g.,a central computer performs many different calculations on different data). Likewise, two physically separate components may perform identical information operations ( e.g., the shoulder and elbow actuators both convert signals to motion in very similar ways).Actuator Associated with each joint on the robot is an actuator which causes that joint to move. Typical actuators are electric motors and hydraulic cylinders. Typically, a robot system will contain six actuators, since six are required for full control of position and orientation. Many robot applications do not require this full flexibility, and consequently, robots are often built with five or fewer actuators. Sensor To control an actuator, the computer must have information regarding the position and possibly the velocity of the actuator. In this context, the term position refers to a displacement from some arbitrary zero reference point for that actuator. For example, in the case of a rotary actuator , position would really the angular position and be measured in radians. Many types of sensors can provide indications of position and velocity. The various types of sensors require different mechanisms for interfacing to the computer. In addition, the industrial use of the manipulator requires that the interface be protected from the harsh electrical environment of the factory. Sources of electrical noise such as arc welders and large motors can easily make a digital system useless unless care is taken in design and construction of the interface. Computation We could easily have labeled the computation module computer,as most of the Functions to be described are typically perfumed by digital computers. However, many of the Functions may be performed in dedicated custom hardware or networks of computers We will, thus, discuss the computational component as if it were a simple computer, recognizing that tile need for real-time control may require special equipment and that some of this equipment may even be analog, although the current trend is toward fully digital systems. One further note: We will tend to avoid the use of the term microprocessor in this book and simply say computer, although many current robot manufacturers use one or more microprocessors in their systems. The computation component performs the following operations: Servo Given the current position and/or velocity of an actuator, determine the appropriate drive signal to move that actuator toward its desired position. This operation must be performed for each actuator.Kinematics Given the current stately of the actuators (position and velocity ),determine the current state of the gripper. Conversely, given a desired state of the hand, determine the desired state for each actuator. Dynamics Given knowledge of the loads on the arm (inertia, friction, gravity, acceleration), use this information to adjust the servo operation to achieve better performance. Workplace Sensor Analysis Given knowledge of the task to be performed, determine appropriate robot motion commands. This nays include analyzing a TV picture of the workplace or measuring and compensating for forces applied at the hand. In addition to these easily identified co. moments, there are also supervisory operations such as path planning and operator interaction.中文翻译工业机器人及其系统组成 有许多关于机器人这个术语的定义。采用不同的定义,全世界各地机器人的数量就会发生很大的变化。在制造T 厂中使用的许多单用途机器可能会看起来像机器人。这些机器是硬连线的,不能通过新编程的方式去完成不同的工作。这种单用途的机器不能满足被人们日益广泛接受的关于工业机器人的定义。这个定义是由美国机器人协会提出的: 机器人是一个以改编程序的多功能操作器,被设计涉及用束按照预先编制的、能够完成多种作业的运动程序运送材料、零件、工具或者专用设备。 注意在这个定义中包含“可以改编程序”和“多功能”这两个词。正是这两个词将真证的机器人与现代制造工厂中使用的单一用途的机器区分开来。“可以改编程序”这个术语意味着两件事:机器人根据编写的程序工作,以及可以通过重新编写程序来适应不同种类的制造工作的需要。“多功能”这个词意味着机器人能够通过编程和使用的末端执行机构,完成不同的制造上作。围绕着这两个关键特征所撰写的定义正在变成制造业的专业人员所接受的定义。 第一个带有活动关节的于臂于1951年被研制出来,由美国原子能委员会使用。在1954年,第一个可以编程的机器人由乔治狄弗设计出来。它基于下面两项重要技术: (1)数字控制(NC)技术; (2)远程操作技术。 数字控制技术提供一种非常适合于机器人的机器控制技术。它可通过存储的程序对运动进行控制。这些程序包含机器人进行顺序运动的数据,开始运动和停止运动的时间控制信号,以及做出决定所需要的逻辑语句。 远程操作技术使得一台机器的性能超出一台数控机器。它可以使这种机器能够在不容易进入和不安全的环境中完成各种制造任务。通过融合上述两项技术,狄弗研制出第一个机器人,它是一个不复杂的,可以编程的物料运送机器人。第-台商业化生产的机器人在1959年研制成功。通用汽车公司在 1962 年安装了第一台用于生产线上的工业机器人,它是尤尼梅森公刊生产的。在 1973 年,辛辛哪挺米兰克朗公司研制出 T 3 工业机器人,存机器人的控制方面取得了较大的进展。T 3 机器人是第一台商业化生产的采用计算机控制的机器人。 数字控制技术和远程操作技术推动了大范围的机器人研制和应用。但是主要的技术进步并不仅仅是由于这些新的应用能力而产生的,而是必须由利用这些能力所得到的效益来提供动力。就工业机器人而古,这个动力是经济件。在 20 世纪 70 年代中,丁资的快速增长大大增加了制造业的企业中的人工费用。与此同时,来自国外的竞争成为美国制造业所面临的一个严峻的考验。诸如日本等外国的制造厂家在广泛地应用自动化技术之后,其工业产晶,特别是汽车,在美国和世界市场上占据了日益增大的份额。 通过采用包括机器人在内的各种自动化技术,从20世纪70 年代开始,口本的制
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。