16MN双动液压机上梁设计-三梁四柱结构【6张CAD图纸+文档全套资料】
收藏
资源目录
压缩包内文档预览:(预览前20页/共66页)
编号:129999751
类型:共享资源
大小:2.42MB
格式:ZIP
上传时间:2021-05-26
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
100
积分
- 关 键 词:
-
16
MN
液压机
上梁
设计
三梁四柱
结构
CAD
图纸
文档
全套
资料
- 资源描述:
-
喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,图纸为CAD格式可编辑,【有疑问咨询QQ:414951605 或 1304139763】
- 内容简介:
-
辽宁工业大学毕业设计(论文) 题目: 16MN双动液压机液压机上梁设计 工学 院(系) 机械设计制造及其自动化 专业 11 班学生姓名 杨佳霖 学 号 指 导 教 师 ( 签 字 ) 日期:2015年5月目 录摘 要IIIAbstractIV第一章绪论11.1压力机发展的概况11.2液压机工作原理11.2.1液压机功能简介11.2.2液压机的工作原理21.2.3液压机的组成21.3液压传动的优缺点及应用41.3.1液压传动的优缺点41.3.2液压机的发展趋势41.4主要设计内容和要求51.4.1主要设计参数51.4.2设计内容5第二章 液压机总体结构设计62.1总体布局62.2立柱设计62.3底座设计112.4横梁设计112.4.1上横梁结构112.4.2活动横梁结构112.4.3下横梁结构122.5液压缸设计122.5.1液压缸的结构设计122.5.2液压缸设计计算与校核14第三章 上梁的设计与校核193.1上梁的结构及尺寸设计193.2上梁的强度计算203.2.1 上梁的受力分析203.2.2 上梁的强度校核213.3上梁的刚度计算253.3.1上梁的刚度计算公式253.3.2上梁的刚度校核263.4上梁的稳定性计算26第四章上梁加工工艺设计274.1上梁的作用274.2上梁的工艺分析274.2.1技术要求分析274.2.2加工方法284.3上梁工艺规程设计284.3.1零件的生产类型284.3.2零件各表面加工顺序的确定294.3.3切削用量的选择294.3.4数据计算30总 结42参考文献43致 谢44英文文献翻译45摘 要液压机是利用液压传动技术进行压力加工的设备,广泛用于金属锻压、冷挤压、粉末冶金以及金属、橡胶和塑料等成型制品加工的压力机械,也是最早应用液压技术的机械之一。其主要由机身、底座、上横梁、活动梁、立柱、液压缸、液压系统等构成。本次设计主要针对16MN双动液压机上梁进行设计。首先,通过对液压机结构及原理进行分析,在此分析基础上提出了液压机的总体结构设计方案;接着,重点对上梁结构尺寸、强度、刚度、稳定性进行了设计计算;最后,通过SolidWorks三维设计软件及AutoCAD软件设计了液压机上梁的三维实体模型、装配图及主要零部件图。通过本次设计,巩固了大学所学专业知识,如:机械原理、机械设计、材料力学、公差与互换性理论、机械制图等;掌握了普通机械产品的设计方法并能够熟练使用SolidWorks及AutoCAD软件,对今后的工作于生活具有极大意义。关键词:液压机,上梁,设计,校核 AbstractHydraulic machine is the use of hydraulic drive technology equipment pressure processing, widely used in metal forging, cold extrusion, powder metallurgy and metal, rubber and plastic molding products processing pressure machine, is the first application of hydraulic technology machinery. Which is mainly composed of the body, the base, on the beam, walking beam, column, hydraulic cylinders, hydraulic systems and other accessories.The design focused on 16MN double-acting hydraulic beam design. First, by performing the hydraulic machine structure and principles of analysis, this analysis presents the overall structure design of hydraulic machine basis; then, focusing on the beam structure size, strength, stiffness, stability of the design calculations; and finally, by SolidWorks three-dimensional design software and AutoCAD software design three-dimensional solid model of a hydraulic machine beams, assembly drawings and major components Fig.Through this design, the consolidation of the university is the professional knowledge, such as: mechanical principles, mechanical design, mechanics of materials, tolerances and interchangeability theory, mechanical drawing and the like; mastered the design of general machinery products and be able to skillfully use SolidWorks and AutoCAD software, the future work of great significance in life.Keywords: Hydraulic machine, Beam, Design, VerificationIV第一章绪论1.1压力机发展的概况压力机的发展历史只有100年。压力机是伴随着工业革命的的进行而开始发展的,蒸汽机的出现开创了工业革命的时代,传统的锻造工艺和设备逐渐不能满足当时的要求。因此在1839年,第一台蒸汽锤出现了。此后伴随着机械制造业的迅速发展,锻件的尺寸也越来越越大,锻锤做到百吨以上,即笨重又不方便。在1859-1861年维也纳铁路工厂就有了第一批用于金属加工的7000KN、10000KN和12000KN的液压机,1884年英国罗切斯特首先使用了锻造钢锤用的锻造液压机,它与锻锤相比具有很好的优点,因此发展很快,在1887-1888年制造了一系列锻造液压机,其中包括一台40000KN的大型水压机,1893年建造了当时最大的12000KN的锻造水压机。在第二次世界大战后,为了迅速发展航空业。美国在1955年左右先后制造了两台31500KN和45000KN大型模锻水压机。近二十年来,世界各国在锻造操作机与锻造液压机联动机组,大型模锻液压机,挤压机等各种液压机方面又有了许多新的发展,自动测量和自动控制的新技术在液压机上得到了广泛的应用,机械化和自动化程度有了很大的提高。再来看一下我国的情况,在解放前,我国属于半殖民地半封建社会的国家,没有独立的工业体系,也根本没有液压机的制造工业,只有一些修配用的小型液压机。解放后我国迅速建立独立自主的完整的工业体系,同时仿造并自行设计各种液压机,同时也建立了一批这方面的科研队伍。到了六十年代,我国先后成套设计并制造了一些重型液压机,其中有300000KN的有色金属模锻水压机,120000KN有色金属挤压水压机等。特别是近十年来,又有了一些新的发展。比如,设计并制造了一批较先进的锻造水压机,并已向国外出口,与此相应的,我国也陆续制造了各种液压机的系列及零部件标准。但是,我们也应清楚地意识到我们与发达国家相比还有很大的差距,还不能满足国民经济和国防建设的需要。许多先进的设备和大型机仍需进口,目前应充分发挥我们的优势,加强我国在这方面的竞争力,这不仅是有助于我们从制造业大国向制造业强国的转变也是国家安全的需要。1.2液压机工作原理1.2.1液压机功能简介液压机是利用液压传动技术进行压力加工的设备,广泛用于金属锻压、冷挤压、粉末冶金以及金属、橡胶和塑料等成型制品加工的压力机械,也是最早应用液压技术的机械之一。与其他压力机相比,它具有压力和速度可在大范围内无极调整,可在任意位置输出全部功率和保持所需压力、结构布置灵活,各执行结构可很方便地达到所希望的动作配合等优点。压力机有多种型号规格,其压制力从几十吨到上万吨。按工作介质可分为水压机和油压机两种。用乳化液做介质的液压机,称为水压机,其压制力很大,多用于重型机械厂和造船厂等。用矿物油型液压有做介质的液压机成为油压机,产生的压智力较水压机小,在许多工业部门得到广泛的应用。1.2.2液压机的工作原理液压系统是有泵、滤芯、管路、和各种阀体组成的,最基本的要有一个液压泵提供压力,一个溢流阀防止系统压力过高及时卸荷。换向阀控制液压缸油液的流向来控制液压缸的伸缩。另外还有很多如:减压阀、节流阀、液控单向阀等等是根据工作需要选择的,建议你看一下各种基本阀体的工作原理和实现功效,这样方便理解。现在机械上多数是组合阀,各种不同的阀体组合在一起实现功效,挺复杂,不过要是单纯理解原理知道他是咋干活的,不涉及到计算和研究还是很好理解的!无非是两种控制 一种是压力控制阀芯的开启,一种是电磁产生磁力控制阀芯的开启。液压原理图和咱们当初学电路画电路图有的一拼,但是相对更直观更好理解,因为东西都看的见摸得着。比如节流阀,你完全可以把它当成个水龙头,控制液体流量的么。开大点流量大开小点流量小!四柱液压机的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。四柱液压机的工作原理油泵把液压油输送到集成插装阀块,通过各个单向阀和溢流阀把液压油分配到油缸的上腔或者下腔,在高压油的作用下,使油缸进行运动.液压机是利用液体来传递压力的设备。液体在密闭的容器中传递压力时是遵循帕斯卡定律。1.2.3液压机的组成图1-1为一台四柱液压机系统原理基本组成。我们可以通过它进一步理解一般液压机系统应具备的基本性能和组成情况。图1-1 四柱液压机在图1-1中,四柱液压机是利用液压泵将原动机的机械能通过液压控制系统换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和液压控制管路的传递进入油缸,推动固定在上横梁上的主缸带动上下活动梁来回移动,由四个立柱导向将上下模具闭合,压制所需要的工件,再于顶出缸把压制好的工件顶出。在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。 液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。(1)动力元件(油泵) 它的作用是把液体利用原动机的机械能转换成液压力能;是液压传动中的动力部分。(2)执行元件(油缸、液压马达) 它是将液体的液压能转换成机械能。其中,油缸做直线运动,马达做旋转运动。(3)控制元件 包括压力阀、流量阀和方向阀等。它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。(4)辅助元件 除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,它们同样十分重要。(5)工作介质 工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。1.3液压传动的优缺点及应用1.3.1液压传动的优缺点液压机传动与其他传动方式相比较,有如下的优点:(1)液压传动能方面地实现无极调速,调速范围大。(2)在相同功率情况下,液压传动能量转换元件的体积减小,重量较轻。(3)工作平稳,换向冲击小,便于实现频繁换向。(4)便于实现过载保护,而且工作油液能使传动零件实现自润滑,故使用寿命较长。(5)操作简单,便于实现自动化。特别是和电气控制联合使用时,易于实现复杂的自动工作循环。(6)液压元件易于实现系列化、标准化和通用化。液压机传动的主要缺陷是:(1)液压传动中的泄漏和液体的可压缩性使传动无法保证严格的传动比。(2)液体传动有较多的能力损失(泄漏损失、摩擦损失等),故传动效率不高,不宜作远距离传动。(3)液压传动对油温的变化比较敏感,不宜在很高和很低的温度下工作。(4)液压传动出现故障时不易找出原因。总的来说,液压传动的优点是十分出的,它的缺点将随着科学科技的发展而逐渐得到克服。1.3.2液压机的发展趋势(1)高速化,高效化,低能耗。提高液压机的工作效率,降低生产成本。 (2)机电液一体化。充分合理利用机械和电子方面的先进技术促进整个液压系统的完善。 (3)自动化、智能化。微电子技术的高速发展为液压机的自动化和智能化提供了充分的条件。自动化不仅仅体现的在加工,应能够实现对系统的自动诊断和调整,具有故障预处理的功能。 (4)液压元件集成化,标准化。集成的液压系统减少了管路连接,有效地防止泄漏和污染。标准化的元件为机器的维修带来方便在1964年开始从国外引进液压元件生产技术,同时自行设计液压产品以来,我国的液压件生产已经形成系列,并在各种机械设备上得到了广泛的使用。目前,我国机械工业在认真消化、推广从国外引进的先进液压技术的同时,大力研制开发国产液压件新产品(如高压齿轮泵、比例阀、叠加阀及新系列中高压阀等)加强产品质量可靠性和新技术应用的研究,积极采用国际标准的执行性的国际标准,合理调整产品结构,对一些性能差的不符合国家标准的液压件产品采取逐步淘汰的措施。可以看出,液压传动技术在我国的应用与发展已经进入了 一个崭新的历史阶段。1.4主要设计内容和要求1.4.1主要设计参数压机结构型式:三梁四柱结构公 称 力: 1600KN液体工作压力:25Mpa传 动 方 式: 油泵直接传动活动横梁最大行程:1700mm活动横梁移动速度: a空程下降:80mm/s (Max) b回程速度:60mm/s (Max) 1.4.2设计内容(1)根据所给参数设计粉末成型液压机上梁部分,其中包括:1)设计上梁结构草图。2)进行各方面的强度、刚度与稳定性校核。3)对草图进行改进确定最终上梁结构如。(2)对上梁设计图进行三维实体建模并转化成工程图。(3)编写论文及翻译外文资料。第二章 液压机总体结构设计2.1总体布局三梁四柱式上传动机架是最常见的结构形式,广泛应用于各种用途的液压机中。在这种结构中,上下横梁与立柱应组成一个刚性封闭框架,它要承受液压机的全部工作载荷,不应有任何松动,因此液压机的地基是不承受工作载荷的。图2-1三梁四柱式液压机2.2立柱设计(1)立柱设计计算先按照中心载荷进行初步核算,许用应力不应大于55,并参照同类型液压机的立柱,初步定出立柱直径。按标准选取立柱螺纹。立柱螺纹区到光滑区过渡圆角应尽可能取大些,最好在3050mm之间。原设计主要参数为:压机结构型式:三梁四柱结构公 称 力: 1600KN液体工作压力:25Mpa传 动 方 式: 油泵直接传动活动横梁最大行程:1700mm活动横梁移动速度: a空程下降:80mm/s (Max) b回程速度:60mm/s (Max) 立柱材料为45#钢,中频淬火620MPa,375MPa中心载荷时的应力: =22.2 (5-1)偏心载荷静载荷合成应力 由于小型液压机,可将立柱考虑为插入端的悬臂梁,m=0.25=+=+=22.2+74.1=96.3 (5-2) 150,因此是安全的。对于截面的45#钢,375MPa,尺寸系数已考虑在内,立柱表面为精车,对于正火的45#钢,表面质量系数为0.9,因此可取为300MPa.过渡圆角半径为30mm.疲劳强度校核: =0.1 (5-3) =0.107 (5-4)从文献【10】中查出=1.58 K=1=0.70(1.58-1)=1.41 (5-5) =K=1.4196.3=104.4300 (5-6)为200MPa, 因此是安全的。立柱是四柱液压机重要的支承件和受力件,同时又是活动横梁的导向基准。因此,立柱应有足够的强度与刚度,导向表面应有足够的精度,光洁度和必要的硬度。(2)连结形式立柱式机架是常见的机架形式,一般由4根立柱通过螺母将上、下横梁紧固地连结在一起,组成一个刚性的空间框架。在这个框架中,既安装了液压机本体的主要零部件,又在液压机工作时,承受液压机的全部工作载荷,并作为液压机运动部分的导向。整个机架的刚度与精度,在很大程度上取决于立柱与上、下横梁的连接形式与连接的紧固程度。图2-2中、小型液压机立柱连结形式在中、小型液压机中,常用的连结形式有以下4种:(a)立柱用台肩分别支承上、下横梁,然后用外锁紧螺母上、下予以锁紧。这种结构中,上横梁下表面(工作台)上表面间的距离与平行度,全靠4根立柱台肩间尺寸的一致性来保证,因此装配简单,不需调整,装配后机架的精度也无法调整,且对立柱台肩间尺寸精度的加工要求很高。因此,这种结构仅在无精度要求的小型简易液压机中采用。(b)内外螺母式,即在立柱上分别用内、外两个螺母来固定上、下横梁,用内螺母来起上述台肩的支承作用,用外锁紧螺母上、下予以锁紧。上横梁下表面的水平度以及下横梁(工作台)上表面的水平度,两个表面之间的平行度与间距的保持,全靠安装时内螺母的调整,因此,对立柱的有关轴向尺寸要求不高,但对立柱螺纹精度(与立柱轴线的平行度)及内螺母精度(内螺母的螺纹对于上、下横梁贴合面的垂直度)要求较高,安装时调整比较麻烦。(c)在与上横梁连结处用台肩代替内螺母,精度调节和加工均不很复杂,但立柱预紧不如第2种方便。(d)与第3种形式基本相同,只是在下横梁处用台肩代替内螺母,但精度调节比第3种简便可靠。在设计中选用的是第四种连结方式。图2-3组合式立柱螺母(3)立柱的螺母及预紧立柱螺母一般为圆柱形,小液压机的立柱螺母是整体的,立柱直径在150mm以上时,做成组合式,由两个半螺栓紧固而成,材料用3545锻钢或铸钢。因为在设计中我选用的立柱为300mm,所以采用此种结构。立柱螺母的尺寸已有机械行业标准JB/T 2001.731999,螺母外径约为螺纹直径的1.5倍,内螺母一般与螺母等高,约为螺纹直径的0.9倍。25MN以下的液压机,其立柱多做成实心的,实心的立柱的两端要钻出预紧螺母用的加热孔。立柱的预紧分加热预紧与液压预紧。本次设计选用的是加热预紧方式。加热预紧 比较常用的方法,为此,立柱端部应钻有加热孔,其深度应大于横梁的高度。在立柱及上横梁安装好后,先将内、外螺母冷态拧紧,然后用电热棒或通入蒸汽等加热方法使立柱端部伸长,达到一定温度后,将外螺母再向下拧过一个角度,一般是用螺母外径上一点转过的弧长来度量。立柱冷却后,就在螺母与横梁之间产生一个很大的预紧力,使螺母不易松动。加热时应注意两对角立柱同时加热。(4)立柱的导向装置活动横梁运动及工作时,一般以立柱为导向,由于活动横梁往复运动频繁,且在偏心加压时有很大的侧推力,因此,不可能让活动横梁与立柱直接接触,互相磨损,必须选择耐磨损、易更换的材料作为两者之间的导向装置。导向装置的质量直接关系到活动横梁的运动精度及被加工件的尺寸精度,也会影响到工作缸密封件与导向面的磨损情况,对模具寿命及机身的受力情况也均有影响,为此,必须合理选择导向装置的结构及配合要求。图2-4 导套导向装置可分为导套与平面导板两大类。(a)导套对于圆截面的立柱,都是在活动横梁的立柱孔中采用导套结构,又可分为圆柱面导套和球面导套。(b)圆柱面导套在活动横梁的立柱孔中,各装有上、下两个导套,它们由两半组成,为了拆装方便,两半导套的剖分面最好有的斜度,导套两端装有防尘用的毡垫。这种导套结构简单,制造方便。本次设计中采用这种形式的导套。导套的材料计算导套材料一般采用铸锡青铜ZQSn6-6-3,小液压机也有用铁基粉末冶金的。导套比压q的计算=1.33 MPa 满足要求 (5-7)式中 T机架计算中求得立柱上的侧推力(N) d导套内孔直径 (m) c导套高度(m) q许用比压 (MPa),对于ZQSn6-6-3,q=68 MPa(5)限程套为防止运动部分超程,有些液压机在下横梁的4个立柱上安装限程套,一般为对开式,上、下两端应平行,4个限程套高度应一致,内孔比立柱直径大1-2mm,用铸铁制造。图2-5立柱安装限程套2.3底座设计底座安装于工作台下部,与基础相连。底座仅承受机器之总重量。底座材料可选用铸铁件或焊接结构。主要考虑到外形的美观,对精度无要求。2.4横梁设计2.4.1上横梁结构横梁由铸造制成,目前以铸造为多,一般采用ZG35B铸钢。 横梁的宽边尺寸由立柱的宽边中心距确定,上梁和活动梁的窄边尺寸应尽可能小些,以便锻造天车的吊钩容易接近液压机中心,梁的中间高度则由强度确定。设计上横梁时,为了减轻重量,根据“ 等强度梁”的概念,设计成图所示的不等高梁,即立柱柱套处的高度h 小于中间截面的高度H。但在过渡区( A处) 会有应力集中。由于上横梁外形尺寸很大,为了节约金属和减轻重量,尽量使各个尺寸在允许的范围内降到最小。梁体做成箱形结构,在安装缸的地方做成圆筒形,安装立柱的地方做成方筒形,中间加设筋板,以提高刚度,降低局部应力。图2-6梁的不等高结构2.4.2活动横梁结构(1)活动横梁的主要作用与工作缸柱塞杆连接传递液压机的压力,通过导向套沿立柱导向面上下往复运动;安装固定模具及工具等。因此需要有较好的强度、刚度及导向结构。活动横梁上部与工作缸柱塞相连,下部与上模座相连,梁体结构和受力状态都很复杂。当液压机工作时,高压液体作用于柱塞的力是通过活动横梁及上砧传递到锻件上而做功,活动横梁的上下运动则依靠梁与立柱的导向装置。(2)活塞杆与横梁的连接刚性连接 柱塞下端插入活动横梁内。此种连接方式在偏心载时,柱塞跟随活动横梁一起倾斜,将动梁所受偏心力矩的一部分传给工缸导向套,使导向套承受侧向水平推力或一对力偶,从而加剧导向套及封的磨损。单缸液压机或三缸液压机的中间工作缸多采取此种结构。在活塞杆焊接法兰用螺钉与横梁连接,用12根M30的螺钉,达到预紧的目的。2.4.3下横梁结构下横梁的刚度要求应略严一些,以保证整个压机的刚性。下横梁直接与立柱、拉杆、工作台、回程缸和顶出器相连,梁体结构和受力状态都很复杂。对于下横梁,其设计原则与上横梁相同,是在满足相连部件最小几何尺寸要求和工艺要求的条件下,尽可能缩减其纵向、横向尺寸,这是有效提高梁的刚度、强度和减轻梁的重量应首先把握的主要原则。2.5液压缸设计2.5.1液压缸的结构设计(1)液压缸的类型图2-7 双作用单活塞杆液压缸液压缸选用双作用单活塞杆液压缸,活塞在行程终了时缓冲。因为工作过程中需要往复运动,从图可见,油缸被活塞头分隔为两腔,侧面有两个进油口,因此,可以获得往复的运动。实质上起到两个柱塞缸的作用。此种结构形式的油缸,在中小型液压机上应用最广。(2)钢筒的连接结构在设计中上、顶出缸都选择法兰连接方式。这种结构简单,易加工,易装卸。主缸采用前端法兰安装,顶出缸采用后端法兰安装。缸口部分采用了Y形密封圈、导向套、O形防尘圈和锁紧装置等组成,用来密封和引导活塞杆。由于在设计中缸孔和活塞杆直径的差值不同,故缸口部分的结构也有所不同。(3)缸底结构缸底结构常应用有平底、圆底形式的整体和可拆结构形式。平底结构具有易加工、轴向长度短、结构简单等优点。所以目前整体结构中大多采用平底结构。圆底整体结构相对于平底来说受力情况较好,因此,在相同应力,重量较轻。另外,在整体铸造的结构中,圆形缸底有助于消除过渡处的铸造缺陷。但是,在液压机上所使用的油缸一般壁厚均较大,而缸底的受力总是较缸壁小。因此,上述优点就显得不太突出,这也是目前在整体结构中大多采用平底结构的一个原因。然而整体结构的共同缺点为缸孔加工工艺性差,更换密封圈时,活塞不能从缸底方向拆出,但由于较可拆式缸底结构受力情况好、结构简单、可靠,因此在中小型液压机中使用也较广。在设计中选用的是平底结构。(4)油缸放气装置通常油缸在装配后或系统内有空气进入时,使油缸内部存留一部分空气,而常常不易及时被油液带出。这样,在油缸工作过程中由于空气的可压缩性,将使活塞行程中出现振动。因此,除在系统采取密封措施、严防空气侵入外,常在油缸两腔最高处设置放气阀,排出缸内残留的空气,使油缸稳定的工作排气阀的结构形式包括整体式和组合式。在设计中选用的是整体式。整体式排气阀阀体与阀针合为一体,用螺纹与钢筒或缸盖连接,靠头部锥面起密封作用。排气时,拧松螺纹,缸内空气从锥面间隙中挤出,并经斜孔排出缸外。这种排气阀简单、方便、但螺纹与锥面密封处同心度要求较高,否则拧紧排气阀后不能密封,会造成泄露。(5)缓冲装置缓冲装置的工作原理是使钢筒低压腔内油液(全部或部分)通过节流把动能转换为热能,热能则由循环的油液带到液压缸外缓冲装置的结构有恒节流面积缓冲装置和变节流型缓冲装置。在设计中我采用的是恒节流面积缓冲装置,此类缓冲装置在缓冲过程中,由于其节流面积不变,故在缓冲开始时,产生的缓冲制动力很大,但很快就降低下来,最后不起什么作用,缓冲效果很差。但是在一般系列化的成品液压缸中,由于事先无法知道活塞的实际运动速度以及运动部分的质量和载荷等,因此为了使结构简单,便于设计,降低制造成本,仍多采用此种节流缓冲方式。(6)结构的基本参数确定(a)主缸的内径(注:所用公式都来源于文献【10】【17】)=0.226M (3-1)按标准取整=0.220m(b)主缸活塞杆直径=0.175m (3-2)按标准取整=0.180m(c)主缸实际压力:= (3-3)(d)主缸实际回程力:= (3-4)(5)活塞杆直径d的校核表4-3 活塞杆所选材料型号MPaMPa%45MnB10308359d=0.05m满足要求F活塞杆上的作用力活塞杆材料的许用应力,=/1.42.5.2液压缸设计计算与校核(1)筒壁厚计算与校核(a)筒壁厚计算公式: =+当0.3时,用使用公式:=0.042 m取 =0.050m-为缸筒材料强度要求的最小,M-为钢筒外径公差余量,M-为腐蚀余量,M-试验压力,16M时,取=1.25P P管内最大工作压力为25 M-钢筒材料的许用应力,M =/n-钢筒材料的抗拉强度,Mn安全系数,通常取n=5当时,材料使用不够经济,应改用高屈服强度的材料。(b)筒壁厚校核:额定工作压力, 应该低于一个极限值,以保证其安全. MPa=0.35=44MPa=外径 D=内径同时额定工作压力也应该完全塑性变形的发生:=2.3320=98.3MPa-缸筒完全塑性的变形压力, -材料屈服强度MPa-钢筒耐压试验压力,MPa=34.441.3 MPa (c)缸筒的暴裂压力 =2.3610=187.4MPa (2)缸筒底部计算与校核(a)缸筒底部厚度计算缸筒底部为平面时:0.4330.433mm 取 mm -筒底厚,MM(b)核算缸底部分强度按照平板公式即米海耶夫推荐的公式计算,缸底进油孔直径为20cm则 =0.6875 = =69.8 MPa 按这种方法计算=100MPa 所以安全(3)缸筒端部法兰设计与校核(a)缸筒端部法兰厚度=40.4mm 取 h=45mm-法兰外圆半径;-螺孔半径; 螺钉 M20b螺钉中心到倒角端的长度=32cm = 42cm =48.5cm = =10cm h=10cm= =37cm = = =47.25cm(b)校核法兰部分强度=0.067cm 其中P=110.2=11.02KN/cm =0.0335 =0.367 =1=0.42所以 =95.1MPa =57.1+34.6=91.7 MPa 满足要求依据上面公式当垫片的厚度为大于10cm时就能满足要求,为了满足横梁的强度和工艺性,垫片厚度选用25cm。因此可以推算横梁的厚度取大于25cm即满足要求。 (4)螺栓的设计与校核(a)缸筒法兰连接螺钉:表2.2 螺钉所选材料型号MPaMPa%3554032017a)螺钉处的拉应力=MPa=4.5MPaz-螺钉数8根; k-拧紧螺纹的系数变载荷 取k=4; -螺纹底径, mb)螺纹处的剪应力: =0.475MPa =MPa-屈服极限 -安全系数; 5(c)合成应力:= MPa (b)垫片与横梁间螺钉的校核:a)螺钉处的拉应力=MPa=3.8MPaz-螺钉数8根; k-拧紧螺纹的系数变载荷 取k=4; -螺纹底径, mb)螺纹处的剪应力: =0.475 MPa = MPa-屈服极限 -安全系数; 5c)合成应力:= MPa 第三章 上梁的设计与校核3.1上梁的结构及尺寸设计上梁作为压力机的主要零件,大部分零部件都安装固定在上面。机身由全钢焊接的上横梁、底座和立柱组成,通过四根拉杆螺栓预紧形成整体框架。三件间通过定位套定位。此三件为压力机的主受力件,采用全钢焊接,并进行消除内应力处理,具有高的强度和刚度。同时用数控机床进行加工,保证高的加工精度。上梁结构设计应满足下列要求:(1)上梁在满足强度、刚度的条件下,力求重量轻、节约金属。(2)结构力求简单,并便装于其上的所有部件、零件容易安装、调整、修理和更换。(3)结构设计应便于铸造或烽接和机加工。(4)必须有足够的底面积,保证压力机的稳定性。(5)结构设计应力求减少振动和噪音。(6)结构设计力求外形美观。上梁结构分为铸造结构和焊接结构两种。铸造结构使用材料有HT2040铸铁、QT4210球铁和ZG35铸钢等。焊接结构使用材料多为钢板,也有用16Mn钢板。铸造结构的材料比较容易供应,消震性能较好。但重量较重,刚度较差。目前,较适合于成批生产。焊接结构与之相反,重量较轻,刚度较好,外形比较美观,但消震性能较差。当前我国钢板材料供应不足,焊接技术和工艺装备有待于进一步提高与充实,因此,只适合于单件小批生产。对于采用铸造还是焊接结构,须视各厂具体条件而定。随着工业的发展,焊接结构必然将更广泛采用。铸造结构尽量使壁厚不要有突然变化,适当加大过渡圆角,减少应力集中。结构设计需使铸造和加工方便。焊接结构尽量设计成具有对称性的截面相对称性的焊缝位置,以减少焊接变形,特别是扭曲变形。要合理布置筋板,数量不宜过多。焊缝应尽量远离应力集中区域,尽量避免用焊缝直接承受主要工作载荷。焊缝避免交叉与聚集,并考虑焊接施工方便。总结以上叙述,以及参考16MN液压压力机的上梁设计,确定了以铸造结构作为此次上梁设计的基础结构。具体的材料和机身各部分的尺寸,可查看具体的零件图。3.2上梁的强度计算3.2.1 上梁的受力分析(a) 机身简图(b)上横梁受力简图 (c) 底座受力简图图3-1双点压力机上横梁和底座的受力简图图3-1为双点压力机上横梁和底座的受力简图。一般把上横梁和底座看成一简支梁,其跨度等于拉紧螺栓之间的距离L。上横梁的载荷是通过芯轴传递的。双点压力机的载荷可看成集中作用在两个压力点上,作用力为公称压力的二分之一,即为。底座的载荷是通过垫板均匀作用在底板上,可看成3/4的长度上均布载荷q作用,q值为 式(3.9)3.2.2 上梁的强度校核如图3-1b图,上横梁的最大弯矩为:N/m 式(3.10)强度计算公式为: 式中 上横梁中央截面的最大拉应力(Pa); 上横梁中央截面的最大压应力(Pa); 上横梁中央截面形心至上横梁底面距离(m); H 上横梁中央截面高度(m); J 上横梁中央截面惯性矩(m);上横梁许用拉应力,材料为Q235时,=31539010Pa;材料为钢板时,=40050010Pa;上横梁许用压应力,材料为Q235时,=35010Pa。按照上述细长梁的计算方法计算上横梁的应力与实测应力有较大出入。例如,北京第二轻工机械厂生产的JB31-160压力机上横梁最大拉应力按上法计算时为14210Pa,而静态实测应力为20910Pa,实测应力比计算的大47%。动态实测应力为24710Pa,比静态的又增大了18%。因此,按细长梁的计算方法计算不太合适,而从应力分布规律分析,则近似于高粱。又有上海锻压机床厂生产的5000千牛的双点压力机,上横梁计算的最大拉应力和静态实测的分别为15010Pa和32010Pa,也有类似的情况。横梁中央危险截面结构简图(b) 上横梁中央危险截面形心简图图3-2 上横梁中央危险截面简图图3-2是此次设计的压力机上横梁中央危险截面的结构简图及计算形心时的简化图。(1)由图(a) 可的危险截面的面积为A=129453=68582mmA=186826=153636 mmA=1346107=144022 mmA=1346107=144022 mmA=186907=168702 mmA=166680=133280 mmF= A+ A+ A+ A+ A+ A=8122cm(2) 计算危险截面的形心组合图形形心坐标的计算公式为:, 式(3.11)由图(b)可得:危险截面形心y为: 由式(3.11)得y=705.5mm(3) 计算危险截面惯性矩J图3-3危险截面惯性矩坐标图 任意平面图形如上图所示,其面积为A。y轴和z轴为图形所在平面内的坐标轴。在坐标(y,z)处取微积分dA,遍及整个图形面积A的积分 = , =分别定义为图形对y轴和z轴的惯性矩。 以表示微面积dA到坐标原点O的距离,下列积分因为,=,于是有:J=+=+若图形为高为h、宽为b的矩形,则:=,=所以:压力机上横梁危险截面惯性矩J,可用上式计算:=1605.4 cm , =956968.1 cm=10575.3 cm , =44293.2 cm=13740.9 cm , =2174391.3 cm=13740.9 cm , =2174391.3 cm=1156521.1 cm, =48636.8 cm=7108.3 cm , =3082717.5 cm=+=1203292 cm =+=10481398.2 cm危险截面惯性矩J: J=+=1203292 +10481398.2=11684690.2=1168.510 cm所以由(1)、(2)、(3)中的数据,可计算:危险截面最大弯矩为=3.510N.m危险截面最大应力为=253.610Pa =105.710Pa , 安全3.3上梁的刚度计算3.3.1上梁的刚度计算公式上横梁受力简图如图3-5(b),其弯曲正应力的变形、弯曲剪应力的变形和总变形为: =m =m=+=+m式中 为上横梁主轴中心至拉紧螺栓中心的距离(米)。3.3.2上梁的刚度校核 令 =400010牛, L=1.666米, J=0.1168米, F=0.8122米G=4.510牛/米,E=0.910牛/米。= =4.87=+=+=0.165mm()L=()1350=0.1690.225mm , 挠度不大、刚度够。3.4上梁的稳定性计算由于上梁只承受弯矩,不受拉压载荷,属于简支梁结构,不属于压杆结构,因此不需要进行稳定性校核。第四章上梁加工工艺设计4.1上梁的作用上横梁是双点机械压力机重要的基础件之一,属于箱体类零件。它支撑和包容着各类传动件,保证其运动动力进行驱动和分配,彼此按一定的传动关系进行协调的运动,因此,必须使众多的轴,套以及齿轮等零件保持其正确的位置关系。所以,上横梁加工质量的好坏直接对整台机器的精度、性能和寿命都有直接的影响。上横梁的毛坯一般采用钢板焊接的方法。上横梁的特点是:梁壁较薄且不均匀,内部筋、隔较多且呈腔形,在上横梁内、外壁上有平面较多的平面和轴承支撑孔及紧固孔等,这些平面和轴承孔的精度和表面粗糙度都有较高的要求。所以,对于上横梁来说,不仅加工的部位较多,而且加工的难度也较大。为了减轻机械加工的工作量要求提高毛坯的精度,尽量减少加工余量。特别是减少孔的加工余量,对提高加工质量和劳动生产率有着重要的意义。箱体类零件加工的工艺方案主要有两种:一、根据粗精分开、先粗后精的原则,对零件的主要孔和平面进行预先加工,然后进行时效处理,再进行精加工,这种方案主要适用于精密、复杂的,箱体类零件。二、是按工艺程序进行加工,主要适用于较高精度的箱体类零件加工。4.2上梁的工艺分析双点压力机上横梁的视图、尺寸、公差和技术要求齐全,正确。零件选用的材料为Q235,该材料能承受较大的应力(抗拉强度375460MN/)。4.2.1技术要求分析1) 面1、2、3、4、5、6、8、15、16 表52 各加工加工面的技术要求表面粗糙度(um)平行度(mm)垂直度(mm)精度等级13.20.08923.20.08933.20.03843.20.02853.20.18612.60.051083.20.0871512.5121612.5122) 同轴孔11、13,12,14220和240、350和400、200和 255同轴度为0.02mm,尺寸公差0.046mm,表面粗糙度为Ra3.2um,公差等级为8级加工时最好在一次装夹下同时加工。孔11,13距底面尺寸935mm,不等高允差为0.1mm.3) 轴承孔7孔表面粗糙度Ra3.2um,与孔14的同轴度为0.02mm,尺寸公差0.049mm,精度等级7级;4) 拉杆安装孔9孔表面粗糙度Ra12.5um,精度等级12级5) 导套定位孔10孔表面粗糙度Ra1.6um ,与底面的垂直度为0.02mm,尺寸公差0.046mm,精度等级7级4.2.2加工方法1) 面1、2、3、5、8:粗铣半精铣精铣:2) 面4、6、15、16:粗铣精铣;3) 同轴孔11、13,12,14:粗镗半精镗精镗;4) 轴承孔7:粗镗半精镗精镗;5) 拉杆安装孔9:粗镗精镗;6) 导套定位孔10:粗镗半精镗精镗金刚镗。注:各加工部分见上横梁加工图(CAD图)4.3上梁工艺规程设计4.3.1零件的生产类型JH36-400上横梁年产量:Q=24(台)备品率:%=2%废品率:%=0.3%生产纲领:N =Qn(1+%)(1+%)=241(1+2%)(1+0.3%)=24(台)查机械制造技术基础(周宏甫 主编)第五页,表0-1可知该零件为小批生产。1) 确定零件毛坯制造形式与选择本零件采用的材料是Q235,根据以下原则,选取毛坯的制造形式:(1)毛坯制造方法应与材料的制造工艺性相适应。Q235材料适合用于铸造获得毛坯。(2)毛坯的制造方法应与生产类型相适应。本零件为小批生产,因此不需要准备模具。(3)上横梁零件的材料Q235,屈服点为215225N.mm,抗拉强度375460 N.mm,毛坯质量16900,生产类型为小批生产,铸件壁厚3060,根据上述资料及加工工艺,分别确定各加工表面的机械加工余量,工序尺寸及毛坯尺寸如下:铸件的基本尺寸长3990,宽1750,高1860。机械加工余量铸为:顶面、底面和侧面为12,所以毛坯尺寸为:长3990+122,宽1750+122,高1860+122。2) 定位基准的选择(1)粗基准的选择必须使重要的表面有足够的且均匀的加工余量。(2)粗基准在同一尺寸方向上只能使用一次。根据以上原则:选轴承孔的毛坯孔为粗基准,加工上平面及定位销孔精基准选择一面两孔定位。4.3.2零件各表面加工顺序的确定1) 零件各表面加工原则(1)根据“基准先行”原则,应先加工定位基准,即上盖接合面和两定位孔。(2)根据“先面后孔、先粗后精”原则,应把平面加工放在孔加工之前,特别是重要表面的粗加工,更应排在前面,以便及时发现原材料的缺陷防止浪费次要表面的加工工时。2) 加工工艺路线的拟订方案一:焊接钳时效喷丸漆划线铣镗钳镗划线钻攻钳库;方案二:焊接钳时效喷丸漆划线铣钳镗划线钻攻钳库;3) 比较加工路线并确定加工方案两个方案的最大区别为铣镗床的选用。方案一中,工件在第一次装夹时,工人利用铣镗床加工零件部分孔,这样可以缩短被加工件的加工时间,减少工件装夹次数,从而保证了工件的加工精度;而方案二没有利用铣镗床。所以,选择方案一。4.3.3切削用量的选择1) 切削用量的选择原则正确地选择切削用量,对提高切削效率,保证必要的刀具耐用度和经济性,保证加工质量,具有重要作用。(1)粗加工切削用量的选择原则粗加工时加工精度和表面粗糙度要求不高,毛坯余量较大,因此,选择粗加工的切削用量时,要尽可能保证较高的单位时间金属切除量和必要的刀具耐用度,以提高生产率和降低加工成本。金属切除率计算公式:式中 单位时间内的金属切除量(); V切削速度(); F进给量(); a切削深度();提高v、f、a都能提高金属切除率。但这三个因素影响刀具耐用度最大的是切削速度其次是进给量,影响最小的是切削深度。a) 削用量的选择原则是:首考虑选择一个尽可能大的吃刀深度a,其次是选择一个大的进给量f,最后确定一个合适的切削速度v。b) 切削深度的选择原则:在保留半精加工,精加工必要余量的前提下,应当尽量将粗加工余量一次切除。只有在总加工余量太大时,一次切不完时,才考虑分几次走刀。进给量的选择原则在工艺系统的刚性和强度好的情况下可选用大一些的进给量;刚性强度较差的情况下,应适当减小进给量。c) 切削速度的选择:主要受刀具耐用度和机床功率的限制。合理的切削速度应根据生产实践经验和有关资料确定。(2) 精加工切削用量选择此时加工精度和表面粗糙度要求较高,加工余量要小且均匀,因此选择切削用量时应着重考虑加工质量,并在此基础上提高生产率。a)切削深度的选择:根据粗加工留下的余量确定,通常加工余量不留得太大,否则切销深度较大时,切削力增加显著,影响加工质量。b)进给量的选择:限制进给量提高的是表面粗糙度,表面粗糙度要求高时应适当减小进给量。(3) 切削速度的选择切削速度提高时切削变形减小,切削力下降,而且不会产生积屑瘤和鳞刺,一般选择切削性能好的刀具材料和合理的几何参数,以尽可能提高切削速度。4.3.4数据计算基本时间:式中 为工件需加工的尺寸。辅助时间: 服务时间: 单件时间: 根据工人的熟练程度现取: ,;(1)粗、半精、精铣面1、2、3、5、8(a)粗铣刀具:YG8硬质合金铣刀 直径D=400mm 细齿Z=36切削用量: 基本时间:= min= min= min= min= min辅助时间:0.16=0.165.1=0.82 min,0.16=0.160.5=0.08 min0.16=0.160.11=0.02min0.16=0.162.24=0.36 min0.16=0.162.26=0.36 min服务时间:=0.05(5.1+0.816)=0.30min=0.05(0.5+0.08)=0.03 min=0.05(0.11+0.02)=0.01 min=0.05(2.5+0.36)=0.14 min=0.05(2.3+0.36)=0.13 min单件时间:=5.1+0.82+0.30=6.22 min=0.5+0.08+0.03=0.61 min=0.11+0.02+0.01=0.14 min=2.5+0.36+0.14=3.00 min=2.3+0.36+0.13=2.79 min(b)精铣刀具:YG8硬质合金铣刀 直径D=400 细齿Z=36 =0.1切削用量:=0.6 =0.136=3.6 由加工时间相同可得: 96=(2)粗、精铣面4、6、15、16(a)粗铣刀具:YG8硬质合金铣刀 直径D=400 细齿Z=36基本时间:= min = min = min = min辅助时间:0.16=0.162.55=0.41 min,0.16=0.1611.55=1.85 min 0.16=0.160.90=0.15min 0.16=0.160.87=0.14 min服务时间:=0.05(2.55+0.41)=2.96min =0.05(11.55+1.85)=13.00 min =0.05(0.90+0.15)=1.05 min =0.05(0.87+0.14)=1.01 min单件时间:=2.55+0.41+2.96=5.92 min =11.55+1.85+0.15=13.55 min =0.90+0.15+1.05=2.1 min =0.87+0.14+1.01=1.98 min(b)精铣刀具:YG8硬质合金铣刀 直径D=400 细齿Z=36 =0.1切削用量:=0.6 =0.136=3.6 由加工时间相同可得: 96 =(3)粗、精镗同轴孔11、13,12,14:刀具:硬质合金镗刀(a)粗镗220孔切削用量:2 = 1 =0.7 = 基本时间:= 辅助时间: = 0.168.0=1.3服务时间:=0.05(8.0+1.3)=0.5单件时间:=8.0+1.3+0.5=9.8(b)粗镗240孔切削用量:2 = 1 =0.5 = 基本时间:= 辅助时间: = 0.168.5=1.36服务时间:=0.05(8.5+1.36)=0.49单件时间:=8.5+1.36+0.49=10.35(c)粗镗200孔切削用量:2 = 1.26 =0.7 = 基本时间:= 0辅助时间:= 0.162.6=0.41服务时间:=0.05(2.6+0.41)=0.15 单件时间:=2.60+0.41+0.15=3.16(d)粗镗255孔切削用量:2 = 1.26 =0.7 = 基本时间:= 辅助时间: =0.162.6=0.45 服务时间:=0.05(0.45+2.6)=0.15单件时间:=0.45+2.6+0.15=3.2(e)粗镗250孔切削用量:2 = 1.06 =0.5 = 基本时间:= 辅助时间: = 0.162.5=0.40服务时间:=0.05(2.5+0.40)=0.15单件时间:=2.5+0.40+0.15=3.05(f)粗镗400孔切削用量:2 = 1.06 =0.5 = 基本时间:= 辅助时间: = 0.163.9=0.63服务时间:=0.05(3.9+0.63)=0.23单件时间:=3.9+0.63+0.23=4.76(g)精镗220孔切削用量:0.15 = 0.15 =1.08 = 基本时间:= 辅助时间: = 0.1634=5.5服务时间:=0.05(34+5.5)=2.0单件时间:=34+5.5+2.0=41.5(h)精镗240孔切削用量:0.15 = 0.15 =1.08 = 基本时间:= 辅助时间: = 0.1637=5.9服务时间:=0.05(37+5.9)=2.2单件时间:=37+5.9+2.2=45.1(i)精镗200孔切削用量:0.2 = 0.18 =1.38 = 基本时间:= 辅助时间:= 0.167.6=1.2服务时间:=0.05(7.6+1.2)=0.44 单件时间:=7.6+1.2+0.44=8.24(j)精镗255孔切削用量:0.2 = 0.18 =1.38 = 基本时间:= 辅助时间: =0.162.6=0.45 服务时间:=0.05(0.45+2.6)=0.15单件时间:=0.45+2.6+0.15=3.2(k)精镗250孔切削用量:0.2 = 0.15 =1.08 = 基本时间:= 辅助时间: = 0.168.0=1.28服务时间:=0.05(8+1.28)=0.46单件时间:=8.0+1.28+0.46=9.7(l)精镗400孔切削用量:0.2 = 0.15 =1.08 = 基本时间:= 辅助时间: = 0.1612.8=2.05服务时间:=0.05(12.8+2.05)=0.74单件时间:=12.8+2.05+0.74=15.6(4)粗、精镗轴承孔7(a)粗镗500孔切削用量:2 = 1.06 =0.7 = 基本时间:= 辅助时间: = 0.160.74=0.12服务时间:=0.05(0.74+0.12)=0.04单件时间:=0.74+0.12+0.04=0.90(b)精镗500孔切削用量:0.2 = 0.15 =1.38 = 基本时间:= 辅助时间: = 0.165.1=0.81服务时间:=0.05(5.1+0.81)=0.30单件时间:=5.1+0.81+0.30=6.21(5)粗、精镗拉杆安装孔9(a)粗镗155孔切削用量:2 = 1.26 =0.7 = 基本时间:= 辅助时间: = 0.160.42=0.07服务时间:=0.05(0.42+0.07)=0.03单件时间:=0.42+0.07+0.03=0.52(b)精镗155孔切削用量:0.2 = 0.15 =1.38 = 基本时间:= 辅助时间: = 0.161.8=0.28服务时间:=0.05(1.8+0.28)=0.11单件时间:=1.8+0.28+0.11=2.19(1)粗、精镗导套定位孔10(a)粗镗185孔切削用量:2 = 1.26 =0.7 = 基本时间:= 辅助时间: = 0.160.22=0.04服务时间:=0.05(0.22+0.04)=0.01单件时间:=0.22+0.04+0.01=0.27(b)精镗185孔切削用量:0.2 = 0.15 =1.38 = 基本时间:= 辅助时间: = 0.160.93=0.15服务时间:=0.05(0.93+0.15)=0.05单件时间:=0.93+0.15+0.05=1.03(7)钻8.5,13.8,26.5孔(a)钻8.5孔刀具:硬质合金麻花钻 8.5切削用量:4.5 =0. 15 =0.25 = 基本时间:= 辅助时间:=0.180.36=0.06 服务时间:0.05(0.36+0.06)=0.02 单件时间:=0.36+0.06+0.02=0.44 (b)钻13.8孔刀具:硬质合金麻花钻 切削用量:6.9 =0.21 =0.25 = 基本时间:= 辅助时间:=0.160.42=0.07 服务时间:=0.05(0.42+0.07)=0.03 单件时间:=0.42+0.07+0.03=0.52 (c)钻26.5孔刀具:硬质合金麻花钻 26.5切削用量:2.125 =0.37 =0.29 = 基本时间:= 辅助时间:=0.160.52=0.08 服务时间:=0.05(0.52+0.08)=0.03 单件时间:=0.52+0.08+0.03=0.63 (8)攻M16,M30螺纹孔(a)攻M16螺纹孔刀具:硬质合金丝锥 M16 深20mm切削用量: =20 1.1 =2 =0.05 = 基本时间:= 辅助时间:=0.160.17=0.03服务时间:=0.05(0.17+0.03)=0.01 单件时间:=0.17+0.03+0.01=0.21min(b) 攻M30螺纹孔,刀具:硬质合金丝锥 M30 深55mm切削用量: =55 1.1 =2 =0.05 = 基本时间:= 辅助时间:=0.160.86=0.14服务时间:=0.05(0.86+0.14)=0.05单件时间:=0.86+0.14+0.05=1.05min(9)顶面锪孔4250、深5,刀具:高速钢可换枢轴套式平面锪钻切削用量: =5 16 =0.14 =0.561 = 基本时间:= min辅助时间:=0.160.83=0.13 min服务时间:=0.05(0.83+0.13)=0.04 min单件时间:=0.83+0.13+0.04=1.0min总 结毕业设计是大学学习阶段一次非常难得的理论与实际相结合的学习机会,通过这次对16MN双动液压机液上梁设计理论知识和实际设计的相结合,锻炼了我的综合运用所学专业知识,解决实际工程问题的能力,同时也提高了我查阅文献资料、设计手册、设计规范能力以及其他专业知识水平,而且通过对整体的掌控,对局部的取舍,以及对细节的斟酌处理,都使我的能力得到了锻炼,经验得到了丰富,并且意志品质力,抗压能力以及耐力也都得到了不同程度的提升。这是我们都希望看到的也正是我们进行毕业设计的目的所在,提高是有限的但却是全面的,正是这一次毕业设计让我积累了许多实际经验,使我的头脑更好的被知识武装起来,也必然让我在未来的工作学习中表现出更高的应变能力,更强的沟通力和理解力。顺利如期的完成本此毕业设计给了我很大的信心,让我了解专业知识的同时也对本专业的发展前景充满信心,但同时也发现了自己的许多不足与欠缺,留下了些许遗憾,不过不足与遗憾不会给我打击只会更好的鞭策我前行,今后我更会关注新科技新设备新工艺的出现,并争取尽快的掌握这些先进知识,更好的为祖国的四化服务。参考文献1 陈启松 .液压传动与控制手册. 上海科学技术出版社,2006.50-982王文斌等.机械设计手册,(新版1-6).机械工业出版社,2004.76-126 3熊良山等.机械制造技术基础.华中科技大学出版社,2007.332-356 4俞新陆.液压机的设计与应用. 机械工业出版社,2007.65-92 5俞新陆、杨津光主编.液压机的结构与控制.北京:机械工业出版社,19896俞新陆主编。液压机。机械工业出版社,1982,77 王步瀛机械零件强度计算的理论和方法M北京:高等教育出版社,19868 天津机械压力机床厂中小型机械压力机设计P天津:天津人民出版社,19779 史宝军,鹿晓阳等JL21系列压力机机身强度刚度计算与分析J锻压机械,1999(4)10 刘鸿文材料力学M北京:高等教育出版社,198911 闵学熊,倪鹏南锻压机械的新进展J锻压机械,1997(4)12 方刚,康达昌,朱信等箱形梁筋板上的孔对其强度的影响M锻压机械,1997(5)13 刑启恩.SolidWorks2007零件设计与案件精粹M.北京:机械工业出版社,200614 American MachinistJ. 1983.127(11).15 Lange K.Lehrbuch der Umformtechnik.Bandl:Springer-VerlagJ,197216 Bradley D A. Mechatronics:Electronics in products and Processes. London:Chpman and Hall,1991.致 谢大学生活即将结束,在这短短的四年里,让我结识了许许多多热心的朋友、工作严谨教学相帮的教师。毕业设计的顺利完成也脱离不了他们的热心帮助及指导老师的精心指导,在此向所有给予我此次毕业设计指导和帮助的老师和同学表示最诚挚的感谢。首先,向本设计的指导老师表示最诚挚的谢意。在自己紧张的工作中,仍然尽量抽出时间对我们进行指导,时刻关心我们的进展状况,督促我们抓紧学习。老师给予的帮助贯穿于设计的全过程,从借阅参考资料到现场的实际操作,他都给予了指导,不仅使我学会书本中的知识,更学会了学习操作方法。也懂得了如何把握设计重点,如何合理安排时间和论文的编写,同时在毕业设计过程中,她和我们在一起共同解决了设计中出现的各种问题。其次,要向给予此次毕业设计帮助的老师们,以及同学们以诚挚的谢意,在整个设计过程中,他们也给我很多帮助和无私的关怀,更重要的是为我们提供不少技术方面的资料,在此感谢他们,没有这些资料就不是一个完整的论文。另外,也向给予我帮助的所有同学表示感谢。总之,本次的设计是老师和同学共同完成的结果,在设计的一个月里,我们合作的非常愉快,教会了大我许多道理,是我人生的一笔财富,我再次向给予我帮助的老师和同学表示感谢!英文文献翻译(1)英文原文Basic Machining Operations and Cutting TechnologyBasic Machining Operations Machine tools have evolved from the early foot-powered lathes of the Egyptians and John Wilkinsons boring mill. They are designed to provide rigid support for both the workpiece and the cutting tool and can precisely control their relative positions and the velocity of the tool with respect to the workpiece. Basically, in metal cutting, a sharpened wedge-shaped tool removes a rather narrow strip of metal from the surface of a ductile workpiece in the form of a severely deformed chip. The chip is a waste product that is considerably shorter than the workpiece from which it came but with a corresponding increase in thickness of the uncut chip. The geometrical shape of workpiece depends on the shape of the tool and its path during the machining operation. Most machining operations produce parts of differing geometry. If a rough cylindrical workpiece revolves about a central axis and the tool penetrates beneath its surface and travels parallel to the center of rotation, a surface of revolution is produced, and the operation is called turning. If a hollow tube is machined on the inside in a similar manner, the operation is called boring. Producing an external conical surface uniformly varying diameter is called taper turning, if the tool point travels in a path of varying radius, a contoured surface like that of a bowling pin can be produced; or, if the piece is short enough and the support is sufficiently rigid, a contoured surface could be produced by feeding a shaped tool normal to the axis of rotation. Short tapered or cylindrical surfaces could also be contour formed. Flat or plane surfaces are frequently required. They can be generated by radial turning or facing, in which the tool point moves normal to the axis of rotation. In other cases, it is more convenient to hold the workpiece steady and reciprocate the tool across it in a series of straight-line cuts with a crosswise feed increment before each cutting stroke. This operation is called planning and is carried out on a shaper. For larger pieces it is easier to keep the tool stationary and draw the workpiece under it as in planning. The tool is fed at each reciprocation. Contoured surfaces can be produced by using shaped tools. Multiple-edged tools can also be used. Drilling uses a twin-edged fluted tool for holes with depths up to 5 to 10 times the drill diameter. Whether the drill turns or the workpiece rotates, relative motion between the cutting edge and the workpiece is the important factor. In milling operations a rotary cutter with a number of cutting edges engages the workpiece. Which moves slowly with respect to the cutter. Plane or contoured surfaces may be produced, depending on the geometry of the cutter and the type of feed. Horizontal or vertical axes of rotation may be used, and the feed of the workpiece may be in any of the three coordinate directions. Basic Machine Tools Machine tools are used to produce a part of a specified geometrical shape and precise I size by removing metal from a ductile material in the form of chips. The latter are a waste product and vary from long continuous ribbons of a ductile material such as steel, which are undesirable from a disposal point of view, to easily handled well-broken chips resulting from cast iron. Machine tools perform five basic metal-removal processes: I turning, planning, drilling, milling, and grinding. All other metal-removal processes are modifications of these five basic processes. For example, boring is internal turning; reaming, tapping, and counter boring modify drilled holes and are related to drilling; bobbing and gear cutting are fundamentally milling operations; hack sawing and broaching are a form of planning and honing; lapping, super finishing. Polishing and buffing are variants of grinding or abrasive removal operations. Therefore, there are only four types of basic machine tools, which use cutting tools of specific controllable geometry: 1. lathes, 2. planers, 3. drilling machines, and 4. milling machines. The grinding process forms chips, but the geometry of the abrasive grain is uncontrollable. The amount and rate of material removed by the various machining processes may be I large, as in heavy turning operations, or extremely small, as in lapping or super finishing operations where only the high spots of a surface are removed. A machine tool performs three major functions: 1. it rigidly supports the workpiece or its holder and the cutting tool; 2. it provides relative motion between the workpiece and the cutting tool; 3. it provides a range of feeds and speeds usually ranging from 4 to 32 choices in each case. Speed and Feeds in Machining Speeds, feeds, and depth of cut are the three major variables for economical machining. Other variables are the work and tool materials, coolant and geometry of the cutting tool. The rate of metal removal and power required for machining depend upon these variables. The depth of cut, feed, and cutting speed are machine settings that must be established in any metal-cutting operation. They all affect the forces, the power, and the rate of metal removal. They can be defined by comparing them to the needle and record of a phonograph. The cutting speed (V) is represented by the velocity of- the record surface relative to the needle in the tone arm at any instant. Feed is represented by the advance of the needle radially inward per revolution, or is the difference in position between two adjacent grooves. The depth of cut is the penetration of the needle into the record or the depth of the grooves. Turning on Lathe Centers The basic operations performed on an engine lathe are illustrated. Those operations performed on external surfaces with a single point cutting tool are called turning. Except for drilling, reaming, and lapping, the operations on internal surfaces are also performed by a single point cutting tool. All machining operations, including turning and boring, can be classified as roughing, finishing, or semi-finishing. The objective of a roughing operation is to remove the bulk of the material as rapidly and as efficiently as possible, while leaving a small amount of material on the work-piece for the finishing operation. Finishing operations are performed to obtain the final size, shape, and surface finish on the workpiece. Sometimes a semi-finishing operation will precede the finishing operation to leave a small predetermined and uniform amount of stock on the work-piece to be removed by the finishing operation. Generally, longer workpieces are turned while supported on one or two lathe centers. Cone shaped holes, called center holes, which fit the lathe centers are drilled in the ends of the workpiece-usually along the axis of the cylindrical part. The end of the workpiece adjacent to the tailstock is always supported by a tailstock center, while the end near the headstock may be supported by a headstock center or held in a chuck. The headstock end of the workpiece may be held in a four-jaw chuck, or in a type chuck. This method holds the workpiece firmly and transfers the power to the workpiece smoothly; the additional support to the workpiece provided by the chuck lessens the tendency for chatter to occur when cutting. Precise results can be obtained with this method if care is taken to hold the workpiece accurately in the chuck. Very precise results can be obtained by supporting the workpiece between two centers. A lathe dog is clamped to the workpiece; together they are driven by a driver plate mounted on the spindle nose. One end of the Workpiece is mecained;then the workpiece can be turned around in the lathe to machine the other end. The center holes in the workpiece serve as precise locating surfaces as well as bearing surfaces to carry the weight of the workpiece and to resist the cutting forces. After the workpiece has been removed from the lathe for any reason, the center holes will accurately align the workpiece back in the lathe or in another lathe, or in a cylindrical grinding machine. The workpiece must never be held at the headstock end by both a chuck and a lathe center. While at first thought this seems like a quick method of aligning the workpiece in the chuck, this must not be done because it is not possible to press evenly with the jaws against the workpiece while it is also supported by the center. The alignment provided by the center will not be maintained and the pressure of the jaws may damage the center hole, the lathe center, and perhaps even the lathe spindle. Compensating or floating jaw chucks used almost exclusively on high production work provide an exception to the statements made above. These chucks are really work drivers and cannot be used for the same purpose as ordinary three or four-jaw chucks. While very large diameter workpieces are sometimes mounted on two centers, they are preferably held at the headstock end by faceplate jaws to obtain the smooth power transmission; moreover, large lathe dogs that are adequate to transmit the power not generally available, although they can be made as a special. Faceplate jaws are like chuck jaws except that they are mounted on a faceplate, which has less overhang from the spindle bearings than a large chuck would have. Introduction of Machining Machining as a shape-producing method is the most universally used and the most important of all manufacturing processes. Machining is a shape-producing process in which a power-driven device causes material to be removed in chip form. Most machining is done with equipment that supports both the work piece and cutting tool although in some cases portable equipment is used with unsupported workpiece. Low setup cost for small Quantities. Machining has two applications in manufacturing. For casting, forging, and press working, each specific shape to be produced, even one part, nearly always has a high tooling cost. The shapes that may he produced by welding depend to a large degree on the shapes of raw material that are available. By making use of generally high cost equipment but without special tooling, it is possible, by machining; to start with nearly any form of raw material, so tong as the exterior dimensions are great enough, and produce any desired shape from any material. Therefore .machining is usually the preferred method for producing one or a few parts, even when the design of the part would logically lead to casting, forging or press working if a high quantity were to be produced. Close accuracies, good finishes. The second application for machining is based on the high accuracies and surface finishes possible. Many of the parts machined in low quantities would be produced with lower but acceptable tolerances if produced in high quantities by some other process. On the other hand, many parts are given their general shapes by some high quantity deformation process and machined only on selected surfaces where high accuracies are needed. Internal threads, for example, are seldom produced by any means other than machining and small holes in press worked parts may be machined following the press working operations. Primary Cutting Parameters The basic tool-work relationship in cutting is adequately described by means of four factors: tool geometry, cutting speed, feed, and depth of cut. The cutting tool must be made of an appropriate material; it must be strong, tough, hard, and wear resistant. The tool s geometry characterized by planes and angles, must be correct for each cutting operation. Cutting speed is the rate at which the work surface passes by the cutting edge. It may be expressed in feet per minute. For efficient machining the cutting speed must be of a magnitude appropriate to the particular work-tool combination. In general, the harder the work material, the slower the speed. Feed is the rate at which the cutting tool advances into the workpiece. Where the workpiece or the tool rotates, feed is measured in inches per revolution. When the tool or the work reciprocates, feed is measured in inches per stroke, Generally, feed varies inversely with cutting speed for otherwise similar conditions. The depth of cut, measured inches is the distance the tool is set into the work. It is the width of the chip in turning or the thickness of the chip in a rectilinear cut. In roughing operations, the depth of cut can be larger than for finishing operations. The Effect of Changes in Cutting Parameters on Cutting Temperatures In metal cutting operations heat is generated in the primary and secondary deformation zones and these results in a complex temperature distribution throughout the tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to the face as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance into the chip. Since virtually all the work done in metal cutting is converted into heat, it could be expected that factors which increase the power consumed per unit volume of metal removed will increase the cutting temperature. Thus an increase in the rake angle, all other parameters remaining constant, will reduce the power per unit volume of metal removed and the cutting temperatures will reduce. When considering increase in unreformed chip thickness and cutting speed the situation is more complex. An increase in undeformed chip thickness tends to be a scale effect where the amounts of heat which pass to the workpiece, the tool and chip remain in fixed proportions and the changes in cutting temperature tend to be small. Increase in cutting speed; however, reduce the amount of heat which passes into the workpiece and this increase the temperature rise of the chip m primary deformation. Further, the secondary deformation zone tends to be smaller and this has the effect of increasing the temperatures in this zone. Other changes in cutting parameters have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the cutting temperatures. Since it has been shown that even small changes in cutting temperature have a significant effect on tool wear rate it is appropriate to indicate how cutting temperatures can be assessed from cutting data. The most direct and accurate method for measuring temperatures in high -speed-steel cutting tools is that of Wright &. Trent which also yields detailed information on temperature distributions in high-speed-steel cutting tools. The technique is based on the metallographic examination of sectioned high-speed-steel tools which relates microstructure changes to thermal history. Trent has described measurements of cutting temperatures and temperature distributions for high-speed-steel tools when machining a wide range of workpiece materials. This technique has been further developed by using scanning electron microscopy to study fine-scale microstructure changes arising from over tempering of the tempered martens tic matrix of various high-speed-steels. This technique has also been used to study temperature distributions in both high-speed -steel single point turning tools and twist drills. Wears of Cutting Tool Discounting brittle fracture and edge chipping, which have already been dealt with, tool wear is basically of three types. Flank wear, crater wear, and notch wear. Flank wear occurs on both the major and the minor cutting edges. On the major cutting edge, which is responsible for bulk metal removal, these results in increased cutting forces and higher temperatures which if left unchecked can lead to vibration of the tool and workpiece and a condition where efficient cutting can no longer take place. On the minor cutting edge, which determines workpiece size and surface finish, flank wear can result in an oversized product which has poor surface finish. Under most practical cutting conditions, the tool will fail due to major flank wear before the minor flank wear is sufficiently large to result in the manufacture of an unacceptable component. Because of the stress distribution on the tool face, the frictional stress in the region of sliding contact between the chip and the face is at a maximum at the start of the sliding contact region and is zero at the end. Thus abrasive wear takes place in this region with more wear taking place adjacent to the seizure region than adjacent to the point at which the chip loses contact with the face. This result in localized pitting of the tool face some distance up the face which is usually referred to as catering and which normally has a section in the form of a circular arc. In many respects and for practical cutting conditions, crater wear is a less severe form of wear than flank wear and consequently flank wear is a more common tool failure criterion. However, since various authors have shown that the temperature on the face increases more rapidly with increasing cutting speed than the temperature on the flank, and since the rate of wear of any type is significantly affected by changes in temperature, crater wear usually occurs at high cutting speeds. At the end of the major flank wear land where the tool is in contact with the uncut workpiece surface it is common for the flank wear to be more pronounced than along the rest of the wear land. This is because of localised effects such as a hardened layer on the uncut surface caused by work hardening introduced by a previous cut, an oxide scale, and localised high temperatures resulting from the edge effect. This localised wear is usually referred to as notch wear and occasionally is very severe. Although the presence of the notch will not significantly affect the cutting properties of the tool, the notch is often relatively deep and if cutting were to continue there would be a good chance that the tool would fracture. If any form of progressive wear allowed to continue, dramatically and the tool would fail catastrophically, i. e. the tool would be no longer capable of cutting and, at best, the workpiece would be scrapped whilst, at worst, damage could be caused to the machine tool. For carbide cutting tools and for all types of wear, the tool is said to have reached the end of its useful life long before the onset of catastrophic failure. For high-speed-steel cutting tools, however, where the wear tends to be non-uniform it has been found that the most meaningful and reproducible results can be obtained when the wear is allowed to continue to the onset of catastrophic failure even though, of course, in practice a cutting time far less than that to failure would be used. The onset of catastrophic failure is characterized by one of several phenomena, the most common being a sudden increase in cutting force, the presence of burnished rings on the workpiece, and a significant increase in the noise level. Mechanism of Surface Finish Production There are basically five mechanisms which contribute to the production of a surface which have been machined. These are:(l) The basic geometry of the cutting process. In, for example, single point turning the tool will advance a constant distance axially per revolution of the workpiecc and the resultant surface will have on it, when viewed perpendicularly to the direction of tool feed motion, a series of cusps which will have a basic form which replicates the shape of the tool in cut. (2) The efficiency of the cutting operation. It has already been mentioned that cutting with unstable built-up-edges will produce a surface which contains hard built-up-edge fragments which will result in a degradation of the surface finish. It can also be demonstrated that cutting under adverse conditions such as apply when using large feeds small rake angles and low cutting speeds, besides producing conditions which lead to unstable built-up-edge production, the cutting process itself can become unstable and instead of continuous shear occurring in the shear zone, tearing takes place, discontinuous chips of uneven thickness are produced, and the resultant surface is poor. This situation is particularly noticeable when machining very ductile materials such as copper and aluminum. (3) The stability of the machine tool. Under some combinations of cutting conditions; workpiece size, method of clamping ,and cutting tool rigidity relative to the machine tool structure, instability can be set up in the tool which causes it to vibrate. Under some conditions this vibration will reach and maintain steady amplitude whilst under other conditions the vibration will built up and unless cutting is stopped considerable damage to both the cutting tool and workpiece may occur. This phenomenon is known as chatter and in axial turning is characterized by long pitch helical bands on the workpiece surface and short pitch undulations on the transient machined surface. (4)The effectiveness of removing swarf. In discontinuous chip production machining, such as milling or turning of brittle materials, it is expected that the chip (swarf) will leave the cutting zone either under gravity or with the assistance of a jet of cutting fluid and that they will not influence the cut surface in any way. However, when continuous chip production is evident, unless steps are taken to control the swarf it is likely that it will impinge on the cut surface and mark it. Inevitably, this marking besides looking. (5)The effective clearance angle on the cutting tool. For certain geometries of minor cutting edge relief and clearance angles it is possible to cut on the major cutting edge and burnish on the minor cutting edge. This can produce a good surface finish but, of course, it is strictly a combination of metal cutting and metal forming and is not to be recommended as a practical cutting method. However, due to cutting tool wear, these conditions occasionally arise and lead to a marked change in the surface characteristics. Limits and Tolerances Machine parts are manufactured so they are interchangeable. In other words, each part of a machine or mechanism is made to a certain size and shape so will fit into any other machine or mechanism of the same type. To make the part interchangeable, each individual part must be made to a size that will fit the mating part in the correct way. It is not only impossible, but also impractical to make many parts to an exact size. This is because machines are not perfect, and the tools become worn. A slight variation from the exact size is always allowed. The amount of this variation depends on the kind of part being manufactured. For examples part might be made 6 in. long with a variation allowed of 0.003 (three-thousandths) in. above and below this size. Therefore, the part could be 5.997 to 6.003 in. and still be the correct size. These are known as the limits. The difference between upper and lower limits is called the tolerance. A tolerance is the total permissible variation in the size of a part. The basic size is that size from which limits of size arc derived by the application of allowances and tolerances. Sometimes the limit is allowed in only one direction. This is known as unilateral tolerance.Unilateral tolerancing is a system of dimensioning where the tolerance (that is variation) is shown in only one direction from the nominal size. Unilateral tolerancing allow the changing of tolerance on a hole or shaft without seriously affecting the fit.When the tolerance is in both directions from the basic size it is known as a bilateral tolerance (plus and minus). Bilateral tolerancing is a system of dimensioning where the tolerance (that is variation) is split and is shown on either side of the nominal size. Limit dimensioning is a system of dimensioning where only the maximum and minimum dimensions arc shown. Thus, the tolerance is the difference between these two dimensions. Surface Finishing and Dimensional Control Products that have been completed to their proper shape and size frequently require some type of surface finishing to enable them to satisfactorily fulfill their function. In some cases, it is necessary to improve the physical properties of the surface material for resistance to penetration or abrasion. In many manufacturing processes, the product surface is left with dirt .chips, grease, or other harmful material upon it. Assemblies that are made of different materials, or from the same materials processed in different manners, may require some special surface treatment to provide uniformity of appearance. Surface finishing may sometimes become an intermediate step processing. For instance, cleaning and polishing are usually essential before any kind of plating process. Some of the cleaning procedures are also used for improving surface smoothness on mating parts and for removing burrs and sharp corners, which might be harmful in later use. Another important need for surface finishing is for corrosion protection in a variety of: environments. The type of protection procedure will depend largely upon the anticipated exposure, with due consideration to the material being protected and the economic factors involved. Satisfying the above objectives necessitates the use of main surface-finishing methods that involve chemical change of the surface mechanical work affecting surface properties, cleaning by a variety of methods, and the application of protective coatings, organic and metallic. In the early days of engineering, the mating of parts was achieved by machining one part as nearly as possible to the required size, machining the mating part nearly to size, and then completing its machining, continually offering the other part to it, until the desired relationship was obtained. If it was inconvenient to offer one part to the other part during machining, the final work was done at the bench by a fitter, who scraped the mating parts until the desired fit was obtained, the fitter therefore being a fitter in the literal sense. J It is obvious that the two parts would have to remain together, and m the event of one having to be replaced, the fitting would have to be done all over again. In these days, we expect to be able to purchase a replacement for a broken part, and for it to function correctly without the need for scraping and other fitting operations.When one part can be used off the shelf to replace another of the same dimension and material specification, the parts are said to be interchangeable. A system of interchangeability usually lowers the production costs as there is no need for an expensive, fiddling operation, and it benefits the customer in the event of the need to replace worn parts. (2)中文翻译基本加工工序和切削技术机床是从早期的埃及人的脚踏动力车和约翰威尔金森的镗床发展而来的。它们为工件和刀具提供刚性支撑并可以精确控制它们的相对位置和相对速度。基本上讲,金属切削是指一个磨尖的锲形工具从有韧性的工件表面上去除一条很窄的金属。切屑是被废弃的产品,与其它工件相比切屑较短,但对于未切削部分的厚度有一定的增加。工件表面的几何形状取决于刀具的形状以及加工操作过程中刀具的路径。大多数加工工序产生不同几何形状的零件。如果一个粗糙的工件在中心轴上转动并且刀具平行于旋转中心切入工件表面,一个旋转表面就产生了,这种操作称为车削。如果一个空心的管子以同样的方式在内表面加工,这种操作称为镗孔。当均匀地改变直径时便产生了一个圆锥形的外表面,这称为锥度车削。如果刀具接触点以改变半径的方式运动,那么一个外轮廓像球的工件便产生了;或者如果工件足够的短并且支撑是十分刚硬的,那么成型刀具相对于旋转轴正常进给的一个外表面便可产生,短锥形或圆柱形的表面也可形成。平坦的表面是经常需要的,它们可以由刀具接触点相对于旋转轴的径向车削产生。在刨削时对于较大的工件更容易将刀具固定并将工件置于刀具下面。刀具可以往复地进给。成形面可以通过成型刀具加工产生。多刃刀具也能使用。使用双刃槽钻钻深度是钻孔直径5-10倍的孔。不管是钻头旋转还是工件旋转,切削刃与工件之间的相对运动是一个重要因数。在铣削时一个带有许多
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。