计算说明书.docx

10mm玻璃切割机的设计【三维SW模型】【全套含CAD图纸+PDF图】

收藏

资源目录
跳过导航链接。
10mm玻璃切割机的设计三维SW模型全套含CAD图纸PDF图.zip
10mm玻璃切割机的设计【三维SW模型】【全套含CAD图纸】
计算说明书.docx---(点击预览)
毕业答辩PPT.ppt---(点击预览)
3D-SW三维图
二维CAD图纸
0总装配
三轴联动
BLQGJ-03-06(行走机构下底板)A3.PDF---(点击预览)
BLQGJ-03-06(行走机构下底板)A3.dwg---(点击预览)
BLQGJ-03-0515(滚珠丝杠上底板)A4.PDF---(点击预览)
BLQGJ-03-0515(滚珠丝杠上底板)A4.dwg---(点击预览)
BLQGJ-03-0514(电机侧板)A4.PDF---(点击预览)
BLQGJ-03-0514(电机侧板)A4.dwg---(点击预览)
BLQGJ-03-0513(螺母座)A4.PDF---(点击预览)
BLQGJ-03-0513(螺母座)A4.dwg---(点击预览)
BLQGJ-03-0512(轴承座)A4.PDF---(点击预览)
BLQGJ-03-0512(轴承座)A4.dwg---(点击预览)
BLQGJ-03-0511(滚珠丝杠)A3.PDF---(点击预览)
BLQGJ-03-0511(滚珠丝杠)A3.dwg---(点击预览)
BLQGJ-03-0510(轴承座)A3.PDF---(点击预览)
BLQGJ-03-0510(轴承座)A3.dwg---(点击预览)
BLQGJ-03-0509(电机下底板)A3.PDF---(点击预览)
BLQGJ-03-0509(电机下底板)A3.dwg---(点击预览)
BLQGJ-03-0508(SFU1605)A4.PDF---(点击预览)
BLQGJ-03-0508(SFU1605)A4.dwg---(点击预览)
BLQGJ-03-0507(左螺母座)A4.PDF---(点击预览)
BLQGJ-03-0507(左螺母座)A4.dwg---(点击预览)
BLQGJ-03-0506(侧板)A4.PDF---(点击预览)
BLQGJ-03-0506(侧板)A4.dwg---(点击预览)
BLQGJ-03-0505(切割夹板)A3.PDF---(点击预览)
BLQGJ-03-0505(切割夹板)A3.dwg---(点击预览)
BLQGJ-03-0504(导轨底板)A4.PDF---(点击预览)
BLQGJ-03-0504(导轨底板)A4.dwg---(点击预览)
BLQGJ-03-0503(导轨)A3.PDF---(点击预览)
BLQGJ-03-0503(导轨)A3.dwg---(点击预览)
BLQGJ-03-0502(滑块)A4.PDF---(点击预览)
BLQGJ-03-0502(滑块)A4.dwg---(点击预览)
BLQGJ-03-0501(滚珠丝杠下底板)A4.PDF---(点击预览)
BLQGJ-03-0501(滚珠丝杠下底板)A4.dwg---(点击预览)
BLQGJ-03-05(切割升降装置)A1.PDF---(点击预览)
BLQGJ-03-05(切割升降装置)A1.dwg---(点击预览)
BLQGJ-03-0413(电机机架)A3.PDF---(点击预览)
BLQGJ-03-0413(电机机架)A3.dwg---(点击预览)
BLQGJ-03-0412(增高板)A4.PDF---(点击预览)
BLQGJ-03-0412(增高板)A4.dwg---(点击预览)
BLQGJ-03-0410(轴承座(右))A4.PDF---(点击预览)
BLQGJ-03-0410(轴承座(右))A4.dwg---(点击预览)
BLQGJ-03-0409(轴承座(左))A4.PDF---(点击预览)
BLQGJ-03-0409(轴承座(左))A4.dwg---(点击预览)
BLQGJ-03-0408(滚珠丝杠)A3.PDF---(点击预览)
BLQGJ-03-0408(滚珠丝杠)A3.dwg---(点击预览)
BLQGJ-03-0407(橡胶盖80 x80)A3.PDF---(点击预览)
BLQGJ-03-0407(橡胶盖80 x80)A3.dwg---(点击预览)
BLQGJ-03-0406(肋板)A3.PDF---(点击预览)
BLQGJ-03-0406(肋板)A3.dwg---(点击预览)
BLQGJ-03-0405(导轨)A3.PDF---(点击预览)
BLQGJ-03-0405(导轨)A3.dwg---(点击预览)
BLQGJ-03-0404(滚珠丝杠底板)A3.PDF---(点击预览)
BLQGJ-03-0404(滚珠丝杠底板)A3.dwg---(点击预览)
BLQGJ-03-0403(行走机构底座)A3.PDF---(点击预览)
BLQGJ-03-0403(行走机构底座)A3.dwg---(点击预览)
BLQGJ-03-0402(横梁)A3.PDF---(点击预览)
BLQGJ-03-0402(横梁)A3.dwg---(点击预览)
BLQGJ-03-0401(立柱)A2.PDF---(点击预览)
BLQGJ-03-0401(立柱)A2.dwg---(点击预览)
BLQGJ-03-04(行走机构)A0.PDF---(点击预览)
BLQGJ-03-04(行走机构)A0.dwg---(点击预览)
BLQGJ-03-03(电机机架)A3.PDF---(点击预览)
BLQGJ-03-03(电机机架)A3.dwg---(点击预览)
BLQGJ-03-02(齿条).PDF---(点击预览)
BLQGJ-03-02(齿条).dwg---(点击预览)
BLQGJ-03-01(齿轮).PDF---(点击预览)
BLQGJ-03-01(齿轮).dwg---(点击预览)
BLQGJ-03-00(三轴联动).PDF---(点击预览)
BLQGJ-03-00(三轴联动).dwg---(点击预览)
03-0515(滚珠丝杠上底板)A4.PDF---(点击预览)
03-0515(滚珠丝杠上底板)A4.dwg---(点击预览)
03-0514(电机侧板)A4.PDF---(点击预览)
03-0514(电机侧板)A4.dwg---(点击预览)
03-0513(螺母座)A4.PDF---(点击预览)
03-0513(螺母座)A4.dwg---(点击预览)
03-0512(轴承座)A4.PDF---(点击预览)
03-0512(轴承座)A4.dwg---(点击预览)
03-0511(滚珠丝杠)A3.PDF---(点击预览)
03-0511(滚珠丝杠)A3.dwg---(点击预览)
03-0510(轴承座)A3.PDF---(点击预览)
03-0510(轴承座)A3.dwg---(点击预览)
03-0509(电机下底板)A3.PDF---(点击预览)
03-0509(电机下底板)A3.dwg---(点击预览)
03-0508(SFU1605)A4.PDF---(点击预览)
03-0508(SFU1605)A4.dwg---(点击预览)
03-0507(左螺母座)A4.PDF---(点击预览)
03-0507(左螺母座)A4.dwg---(点击预览)
03-0506(侧板)A4.PDF---(点击预览)
03-0506(侧板)A4.dwg---(点击预览)
03-0505(切割夹板)A3.PDF---(点击预览)
03-0505(切割夹板)A3.dwg---(点击预览)
03-0504(导轨底板)A4.PDF---(点击预览)
03-0504(导轨底板)A4.dwg---(点击预览)
03-0503(导轨)A3.PDF---(点击预览)
03-0503(导轨)A3.dwg---(点击预览)
03-0502(滑块)A4.PDF---(点击预览)
03-0502(滑块)A4.dwg---(点击预览)
03-0501(滚珠丝杠下底板)A4.PDF---(点击预览)
03-0501(滚珠丝杠下底板)A4.dwg---(点击预览)
03-05(切割升降装置)A1.PDF---(点击预览)
03-05(切割升降装置)A1.dwg---(点击预览)
03-0413(电机机架)A3.PDF---(点击预览)
03-0413(电机机架)A3.dwg---(点击预览)
03-0412(增高板)A4.PDF---(点击预览)
03-0412(增高板)A4.dwg---(点击预览)
03-0410(轴承座(右))A4.PDF---(点击预览)
03-0410(轴承座(右))A4.dwg---(点击预览)
03-0409(轴承座(左))A4.PDF---(点击预览)
03-0409(轴承座(左))A4.dwg---(点击预览)
03-0408(滚珠丝杠)A3.PDF---(点击预览)
03-0408(滚珠丝杠)A3.dwg---(点击预览)
03-0407(橡胶盖80 x80)A3.PDF---(点击预览)
03-0407(橡胶盖80 x80)A3.dwg---(点击预览)
03-0406(肋板)A3.PDF---(点击预览)
03-0406(肋板)A3.dwg---(点击预览)
03-0405(导轨)A3.PDF---(点击预览)
03-0405(导轨)A3.dwg---(点击预览)
03-0404(滚珠丝杠底板)A3.PDF---(点击预览)
03-0404(滚珠丝杠底板)A3.dwg---(点击预览)
03-0403(行走机构底座)A3.PDF---(点击预览)
03-0403(行走机构底座)A3.dwg---(点击预览)
03-0402(横梁)A3.PDF---(点击预览)
03-0402(横梁)A3.dwg---(点击预览)
03-0401(立柱)A2.PDF---(点击预览)
03-0401(立柱)A2.dwg---(点击预览)
03-04(行走机构)A0.PDF---(点击预览)
03-04(行走机构)A0.dwg---(点击预览)
机架
BLQGJ-01-10(地脚安装板)A3.PDF---(点击预览)
BLQGJ-01-10(地脚安装板)A3.dwg---(点击预览)
BLQGJ-01-09(张紧座)A4.PDF---(点击预览)
BLQGJ-01-09(张紧座)A4.dwg---(点击预览)
BLQGJ-01-08(电机底座)A3.PDF---(点击预览)
BLQGJ-01-08(电机底座)A3.dwg---(点击预览)
BLQGJ-01-07(方通c)A3.PDF---(点击预览)
BLQGJ-01-07(方通c)A3.dwg---(点击预览)
BLQGJ-01-06(方通b)A3.PDF---(点击预览)
BLQGJ-01-06(方通b)A3.dwg---(点击预览)
BLQGJ-01-03(04)(05)(方通a)A3.PDF---(点击预览)
BLQGJ-01-03(04)(05)(方通a)A3.dwg---(点击预览)
BLQGJ-01-02(轴承座)A4.PDF---(点击预览)
BLQGJ-01-02(轴承座)A4.dwg---(点击预览)
BLQGJ-01-01(轴承座梁)A3.PDF---(点击预览)
BLQGJ-01-01(轴承座梁)A3.dwg---(点击预览)
BLQGJ-01-00(机架)A1.PDF---(点击预览)
BLQGJ-01-00(机架)A1.dwg---(点击预览)
01-10(地脚安装板)A3.PDF---(点击预览)
01-10(地脚安装板)A3.dwg---(点击预览)
01-09(张紧座)A4.PDF---(点击预览)
01-09(张紧座)A4.dwg---(点击预览)
01-08(电机底座)A3.PDF---(点击预览)
01-08(电机底座)A3.dwg---(点击预览)
01-07(方通c)A3.PDF---(点击预览)
01-07(方通c)A3.dwg---(点击预览)
01-06(方通b)A3.PDF---(点击预览)
01-06(方通b)A3.dwg---(点击预览)
01-03(04)(05)(方通a)A3.PDF---(点击预览)
01-03(04)(05)(方通a)A3.dwg---(点击预览)
01-02(轴承座)A4.PDF---(点击预览)
01-02(轴承座)A4.dwg---(点击预览)
01-01(轴承座梁)A3.PDF---(点击预览)
01-01(轴承座梁)A3.dwg---(点击预览)
01-00(机架)A1.PDF---(点击预览)
01-00(机架)A1.dwg---(点击预览)
输送系统
BLQGJ-02-07(链轮)A4.PDF---(点击预览)
BLQGJ-02-07(链轮)A4.dwg---(点击预览)
BLQGJ-02-06(蜗杆)A4.PDF---(点击预览)
BLQGJ-02-06(蜗杆)A4.dwg---(点击预览)
BLQGJ-02-05(涡轮)A4.PDF---(点击预览)
BLQGJ-02-05(涡轮)A4.dwg---(点击预览)
BLQGJ-02-0402(橡胶环)A4.PDF---(点击预览)
BLQGJ-02-0402(橡胶环)A4.dwg---(点击预览)
BLQGJ-02-0401(过渡套筒)A4.PDF---(点击预览)
BLQGJ-02-0401(过渡套筒)A4.dwg---(点击预览)
BLQGJ-02-04(小输送辊).PDF---(点击预览)
BLQGJ-02-04(小输送辊).dwg---(点击预览)
BLQGJ-02-03(传动轴)A4.PDF---(点击预览)
BLQGJ-02-03(传动轴)A4.dwg---(点击预览)
BLQGJ-02-02(输送轴)A4.PDF---(点击预览)
BLQGJ-02-02(输送轴)A4.dwg---(点击预览)
BLQGJ-02-0103(隔 套)A4.PDF---(点击预览)
BLQGJ-02-0103(隔 套)A4.dwg---(点击预览)
BLQGJ-02-0102(张紧链轮)A4.PDF---(点击预览)
BLQGJ-02-0102(张紧链轮)A4.dwg---(点击预览)
BLQGJ-02-0101(张紧杆)A4.PDF---(点击预览)
BLQGJ-02-0101(张紧杆)A4.dwg---(点击预览)
BLQGJ-02-01(张紧组件)A4.PDF---(点击预览)
BLQGJ-02-01(张紧组件)A4.dwg---(点击预览)
BLQGJ-02-00(输送系统)A1.PDF---(点击预览)
BLQGJ-02-00(输送系统)A1.dwg---(点击预览)
02-07(链轮)A4.PDF---(点击预览)
02-07(链轮)A4.dwg---(点击预览)
02-06(蜗杆)A4.PDF---(点击预览)
02-06(蜗杆)A4.dwg---(点击预览)
02-05(涡轮).PDF---(点击预览)
02-05(涡轮).dwg---(点击预览)
02-0402(橡胶环)A4.PDF---(点击预览)
02-0402(橡胶环)A4.dwg---(点击预览)
02-0401(过渡套筒)A4.PDF---(点击预览)
02-0401(过渡套筒)A4.dwg---(点击预览)
02-04(小输送辊).PDF---(点击预览)
02-04(小输送辊).dwg---(点击预览)
02-03(传动轴)A4.PDF---(点击预览)
02-03(传动轴)A4.dwg---(点击预览)
02-02(输送轴)A4.PDF---(点击预览)
02-02(输送轴)A4.dwg---(点击预览)
02-0103(隔 套)A4.PDF---(点击预览)
02-0103(隔 套)A4.dwg---(点击预览)
02-0102(张紧链轮)A4.PDF---(点击预览)
02-0102(张紧链轮)A4.dwg---(点击预览)
02-0101(张紧杆)A4.PDF---(点击预览)
02-0101(张紧杆)A4.dwg---(点击预览)
02-01(张紧组件)A4.PDF---(点击预览)
02-01(张紧组件)A4.dwg---(点击预览)
02-00(输送系统)A1.PDF---(点击预览)
02-00(输送系统)A1.dwg---(点击预览)
外文翻译
论文
压缩包内文档预览:(预览前20页/共33页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:130776033    类型:共享资源    大小:92.09MB    格式:ZIP    上传时间:2021-05-30 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
三维SW模型 10 mm 玻璃 切割机 设计 三维 SW 模型 全套 CAD 图纸 PDF
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,图纸为CAD格式可编辑,【有疑问咨询QQ:414951605 或 1304139763】

内容简介:
1 绪论1.1 课题的研究背景及意义随着科技的发展,人们生活水平的提高,玻璃在国民经济中的应用越来越广泛。不仅在机械、汽车、航空等方面发挥着重要作用,而且在建筑领域也得到了广泛的运用。尤其是玻璃马赛克,其耐酸碱、耐腐蚀、不褪色等优良性能被广泛运用于装修行业,如做外墙装饰的保护层、门面装璞室内墙面、阳台外侧装饰。在玻璃马赛克应用日益广泛的前提下,人们对玻璃马赛克需求量也日益增加。当然,随着玻璃马赛克求量的增加,必然带动了玻璃马赛克等脆性材料加工设备的发展,同时也对产品的加工质量提出了更高的要求。传统的玻璃马赛克加工设备具有自动化程度不高,厚的玻璃难以切割,以及废品率太高等缺陷,严重影响了生产的需要。目前,先进的玻璃切割机绝大部分在来源于国外一些大型跨国公司,虽然我国自20世纪80年代始,先后从意大利、德国等国家引进了很多先进的加工设备,国内也有许多企业和研究机构也逐步建立了硬脆性材料数控加工中心。但是,对于玻璃马赛克的加工精度来讲,玻璃切割机远远落后于国际先进水平。随着玻璃马赛克应用越来越广泛,而且产品的加工质量要求也越来越高,因此,对于玻璃马赛克切割机研究的重要性就显得更为突出。本课题旨在提高生产效率,降低企业的加工成本和减轻工人的劳动强度,对玻璃切割机机械结构的设计来实现对马赛克玻璃的高效加工。不仅能够增强市场的竞争力,而且希望能够产生强大的社会效益和经济效益,也有利于提高国内玻璃马赛克加工水平的提高。1.2 玻璃马赛克的概述1.2.1玻璃马赛克的现状玻璃马赛克还有两个专业术语,叫作玻璃锦砖和玻璃纸皮砖,它是新型建筑装饰材料,靠用硅砂等原料经熔制和成型退火等工艺制成的。一般规格为20毫米20毫米、30毫米30毫米、40毫米40毫米。厚度为4 -6毫米,具有耐热性、耐酸碱性、防水性好、强度高,而且还有不变色、不积灰、容重轻、粘结牢等优良性能,再加上成本低廉,施工方便,多用于外墙装饰保护层、门面装璞室内墙面、阳台外侧装饰,并可镶嵌成各种图案壁画,用来制成工艺装饰品。玻璃马赛克作为一种外装饰材料,已经在我国的机关大楼、高级宾馆、饭店、民用住宅之中流行了起来。1.2.2玻璃马赛克的发展趋势 玻璃马赛克的市场供求的潜力还是非常大的,有一种上升的趋势。主要有以下三点:一是将玻璃马赛克作为一种工艺品,它具有很高的艺术价值;二是我国经济的迅速发展,人民生活水平的提高,普通老百姓都向往过上更有价值、更有品位的生活;三是作为消费主力的90后,以他们追求个性,讲究独异的性格,玻璃马赛克也正好具有这些特点,能满足消费主力军的爱好。但是与之不同的是,玻璃马赛克的销售却只限于省会城市和大城市,主要的问题是,一是玻璃马赛克铺贴非常麻烦,因为玻璃马赛克的规格非常小,所以要求铺贴的工人有非常高的技巧,二是铺设计,要融入设计师的想法,要考虑空间的大小,所以要完成铺贴玻璃马赛克,还需要一位出色的设计师。1.2.3玻璃马赛克的生产现状玻璃马赛克在全世界的发展情况是各不相同,其中发展较快的国家有:日本、意大利、德国等国家,他的玻璃马赛克的制造技术非常成熟,加工方面也是一流的, 不但品种繁多,而且各具特点,其中要数最厉害的便是意大利,它的彩色金星玻璃马赛克产几乎占据了全球市场。但是过的玻璃马赛克行业与国外相比,差距就非常大了,这些差距主要体现在玻璃马赛克的制造、加工、设计等方面。就拿玻璃马赛克的加工来说吧,国内的玻璃马赛克加工只是停留在初级阶段,甚至还有纯手工现象存在。从产品质量上来讲,国内非常好的玻璃马赛克,它的品质也就50%-60%,与国外相差很大,这些即是玻璃马赛克行业的难题,又是行业的挑战。1.3玻璃切割产业研究现状目前,国内外大多的玻璃切割方法是机械切割,即是靠金刚石在一定的压力下沿玻璃表面进行滑动,从而在玻璃表面上形成一条宽度与深度相等的切口,这种切割方法也非常适用于玻璃马赛克的加工。1.4主要研究内容10mm玻璃切割机适用于玻璃马赛克加工的工艺需求。玻璃原片由输送滚轮输送到指定切割位置,它是通过电机带动链轮,链轮带动传动轴,传动轴带动蜗轮蜗杆,从而带动输送轴和小输送棍来带动玻璃原片。玻璃切割通过采用三轴联动机械来完成刀具线速度定位和切割路径控制,要求为切割刀具能在X、Y、Z三个方向中实现进给,各个方向都需要采用直流伺服电动机,从而保证切割方向始终与XY方向垂直,同时也要保证切割效率和切割质量。以达到全自动化的要求。1.5本章小结通过上面的论述,我们知道了以玻璃马赛克为基础,研究10mm玻璃切割机的的目的,国内外的研究情况。对此,本次毕业设计我们主要解决玻璃马赛克的加工问题,以玻璃马赛克的自动输送和自动切割为主要研究方向。2玻璃切割机的总体设计2.1玻璃切割机设计的基本概述10mm玻璃切割机主要适用于玻璃马赛克加工的工艺需求。玻璃原片由输送滚轮输送到指定切割位置,玻璃切割通过采用三轴联动机械来完成刀具线速度定位和切割路径控制,玻璃切割通过采用三轴联动机械来完成刀具线速度定位和切割路径控制,要求为切割刀具能在X、Y、Z三个方向中实现进给,各个方向都需要采用直流伺服电动机,从而保证切割方向始终与XY方向垂直,同时也要保证切割效率和切割质量。以达到全自动化的要求。2.2玻璃切割机设计方案本次毕业设计主要是结合工程实际情况,依靠计算机辅助设计(CAD)来设计10mm玻璃切割机的输送系统和三轴联动系统(行走机构和切割装置),从而来解决玻璃马赛克的加工过程中自动化程度不高,厚的玻璃难以切割,以及废品率太高的问题。对此我准备采取以下四个步骤去拟定最合理的机械结构方案。1. 认真落实机械设备的功能和参数。2. 找出设计结构方案的参照物。3. 根据参照物找出其工作原理。4. 根据原理拟定最合理的结构方案2.2.1输送系统方案的选择玻璃输送系统的机械部分一般是由机械传动、输送小球、输送带以及机架组成,这次我们主要考虑的是机械传动部分。为了确保输送玻璃的稳定性,我们要求传送玻璃时输送偏差不大于2mm,无跳动现象产生。对此,我借鉴各类输送系统装置来设计我们的输送系统。方案一:此输送系统是通过带传动而进行设计的,同步带轮和输送小球是通过轴连在一起,轴的两端用调心轴承座做支承。此输送系统最大特点结构简单,缺点无法进行长距离的输送。 方案二:此输送系统是通过链传动和蜗杆传动而进行设计的,涡轮和输送小球是通过输送轴连在一起,输送是轴靠调心轴承座做支承。涡杆和链轮是通过传动轴连在一起,传动轴是轴靠调心轴承座做支承。此输送系统最大的特点是传动轴是通过并联方式传递动力和扭矩给输送轴。缺点是传递效率不高。方案三:输送系统是通过套筒滚子链传动而进行设计的,剖视A-A左右两个链轮是通过用轴做链接,轴的两端是通过滚动轴承做支承。此输送系统最大他点同一时间能进行来回输送工质,缺点无法进行长距离输送。1为链轮,2为链条,3为轴承,4为电动机减速器。获选方案:方案二获选理由:方案一,输送传动靠带传动,虽然拥有结构简单、传动平稳、减震缓冲等优点,但是在本装置中,结合任务要求,输送的长度决定的他的传动方案不合理,因为带传动是通过串联的方式进行传动,传动过程中功率损失严重。方案三,虽然看上去比较合理,但是结合任务要求,输送长度决定了传动方案不合理,传动过程中功率损失严重,再加上是只有一根链条,链条所需要的拉力远远超过链条本身的抗拉强度,故不合理。方案二:传动轴是靠链传动来进行的,与带传动相比,链传动具有无整体打滑现象和无弹性滑动现象,很好的解决了带传动的传动效率不高问题,传动轴通过蜗杆传动来带动输送轴的运动,与带传动相比,它具有很好的自锁性。结构优化:1. 蜗杆传动是否可以用其他传动替代?输送轴和传动轴的交角为90,交错轴齿轮机构拥有交错轴斜齿轮传动、蜗杆涡轮传动。准双线曲线齿轮传动,而准双线曲线齿轮传动由于制造苦难,从经济性的角度来讲,如果其他方案满足任务要求的话,不宜选择,交错轴斜齿轮传动与蜗杆涡轮传动相比,虽然交错轴斜齿轮传动传递的速度和效率比蜗杆涡轮传动要好,但是此输送系统传递速度要求不高,而主要要的要求是提高传递的稳定性和精确度,而涡轮蜗杆传动的传动平稳性能和自锁性能正好满足正好满足这要求,相比交错轴斜齿轮传动的高传动效率更具有优势。2.方案二的输送系统是否能有三轴联动有效的进行进行组合?不能,考虑到输送系统方案要与三轴联动系统方案进行组合,所以需要将输送系统的方案进行一下优化,借鉴方案一的优势,将方通的一个侧面进行切割处理,与方案一的侧面方通结构相似,与之不同的是轴承座是靠方通的底面进行连接固定的,如此处理的原理,是基于任务要求的考虑,为三轴联动方案留下足够的空间。结构优化后,结构如下图。2.2.2三轴联动方案的借鉴与创新:三轴联动是机电一体化的内容,它的机械部分主要是由机械转动、支承部件及执行机构组成,为了保证机械部分的执行精度和工作的稳定性,我们要求机械部分要具有高精度、高刚度、低摩擦、良好的稳定性等要求。对此,根据自身的经验,我设计出方案一,通过平时积累的三维模型提出剩下三种种方案。 方案一:此三轴联动,x轴靠滚珠丝杠传动,y轴靠燕尾槽进行传动,z轴靠滚轴丝杠进行传动,xyz都是通过伺服电机传动,其中燕尾槽是靠步进电机加丝杠传动的方式进运动的,在此图中并未显示。缺点,经济性不高。方案二:此三轴联动,最主要的特点是它引入的齿轮齿条传动。缺点是精度不高。方案三:此联动机构,最主要的特点是,相对方案一而言,执行部分和支承部分的结构更加合理可靠。缺点是我们的任务要求联动机构具有行走机构。方案四:此三轴联动,最主要的特点是,相对方案一而言,执行部分和支承部分的结构更加合理可靠,相对方案三而言,此三轴联动具有行走机构,最大的缺点就是当此方案与输送系统进行组合时,他的行走机构需要改进,而且经济性不高。借鉴与创新:评价:此方案是在方案三的基础上,结合任务要求,对薄弱的环节加以改进从而提出来的,增加了联动机构的行走机构,燕尾槽是靠步进电机加齿轮齿条传动的方式进运动的。结构的优化:1. 一根导轨是否晃动是否会很厉害?不会。2. 滚珠丝杠是否可以代替齿轮齿条的传动?燕尾槽是靠步进电机加齿轮齿条传动的方式进运动的,为何不是滚珠丝杠,因为滚珠丝杠的制造周期长,能制造长度长、直径大、精度高的滚珠丝杆的企业较少; 另外长度较长的丝杆本身的自重引起的挠度较大,需要增加丝杆托持机构等,使结构变得复杂。虽然齿轮齿条之间的间隙在装配时较难消除,但齿轮齿条传动可以不受长度限制,齿条可以根据长度需要拼接,相对长丝杆要增加托持机构来说,在结构上可简单化。在精度允许的情况下,选择齿轮齿条传动比较经济。3 输送系统的设计3.1电机的选择计算项目计算内容计算结果1、选择电机的类型根据根据玻璃马赛克加工自动化程度不高,废品率高等缺点,我们提出输送系统用来提高自动化程度,增加输送系统的稳定性和精确度可以降低废品率,对此,我们选择SWE R系列减速电机。R系列减速电机为平行轴斜齿轮减速电机。SWE R系列减速电机。2、确定电机的功率电动机所需工作功率:Pd=PWaPw=FV1000w根据的运输系统类型,可取工作机效率w=0.96。传动装置的总效率: a=链并因为转动装置时混合机构,而其中的并联机构各个子机构结构相同,虽然传动装置中传动轴靠联轴器相接,但是在并联机构中按最大转动效率计算,故:并=蜗轴承查阅课本机械设计课程设计的第94页,根据表10-2机械传动和轴承效率概略值,从而确定各部分效率为:链传动滚子链的传动效率为链=0.96 ;蜗杆传动单头蜗杆的传动效率为蜗=0.75 ,调心轴承的传动效率为轴承=0.99 ,代入得 a=链并=0.960.750.99=0.713所需电动机功率为Pd=FV1000wa=10000.510000.960.713kw=0.73kw因为载荷十分平稳,还需考虑影响电机功率的因素,如电机的工作质,环境等,故电动机额定功率Pcd应该略大于Pd即可,由课本机械设计课程设计第19章,根据表19-1所示Y系列三相异步电动机的技术参数,从而选定电动机的额定功率Pcd为0.75KW。w=0.96链=0.96蜗=0.75轴承=0.99Pd=0.73KWPcd=0.75KW3、确定电动机的转速工作转速为n=601000vD=6010000.53.14100=95.54r/min根据输送系统的类型,可取输送系统一般传动比的范围是840,则总传动比合理范围为ia,=40,因此电动机转速的可选范围为:nd,=ia,n=174095.54rmin=1624.183821.6r/min查阅课本机械设计课程设计第19章,根据表19-1所示Y系列三相异步电动机的技术参数,从而确定符合这一范围的同步转速只有2830r/min,即选定电动机型号为Y80M1-2。n=95.54r/minnd,=1624.183821.6r/min电动机型号为SEW-RX57 DT80N4。3.2链传动设计计算项目计算内容计算结果1、选择链轮齿数因为要防止链条与机架相接触,所以取小链轮齿数z1=15,大链轮的齿数为z2=iz1=115=15z1=15z2=152、确定计算功率查阅课本机械设计第178页,根据表9-6工况系数kA,可得kA=1.0,查阅课本机械设计第179页,根据图9-13主动链轮系数kz,可得kz=1.75,单排链,则计算功率为Pca=KAKZP=1.01.750.75=1.31KWPca=1.31KW3、选择链条型号和节距根据Pca=1.3125KW,n1=446r/min 和PcaPc,查阅课本机械设计第176页,根据图9-11 A系列、单排滚子链额定功率曲线,可选08A的滚子链。查阅课本机械设计第167页,以表9-1 滚子链规则和主要参数为依据,可选链条节距P=12.7mm。P=12.7mm4、计算链节数和中心距初选中心距 a0=3050p=305012.7=381635mm。取 a0=600mm。相应的链长节数为:Lp0=2a0p+z1 +z22+(z2-z12)2pa0=260012.7+15+152+(14-142)212.7600=109.48因为链长节数为整数,故取链长节数Lp=110。查阅课本机械设计第181页,根据表9-8链传动的布置,对于垂直传动a、i任意,故将a定为600mm a0=381635Lp0=109.48Lp=1105、计算链速V,确定润滑方式v=n1z1p601000=4461512.7601000m/s=1.41m/s由v=1.41m/s和链号08A,查阅课本机械设计第181页,根据图9-14润滑范围选择图,可知应采用滴油润滑。v=1.41m/s6、计算压轴力FP有效圆周力为:Fe=1000Pv=10000.758.99N=83.43N垂直传动,压轴力系数KFP=1.05,则压轴力为FPKFPFe=1.0583.43N=87.60NFe=83.43NKFP=1.05FP=87.60N3.3蜗杆传动设计3.3.1涡轮蜗杆的设计计算项目计算内容计算结果1、选择蜗杆传动类型为了能够保证传动的精度,根据GB/T 100851988的推荐,并且查阅课本机械设计第242页,依据( 四)蜗杆传动类型的选择,为了提高传递精度,降低玻璃废品率,应该采用渐开线蜗杆(ZI)比较合适。渐开线蜗杆(ZI)2、选择材料考虑到需要蜗杆传动功率并不是不大,速度也只是中等而已,所以蜗杆的材料用45钢;因为希望拥有效率更高,且耐磨性更好,故蜗杆螺旋齿面应要求淬火,而且硬度应为4555HRC。涡轮的材料应选用铸锡磷青铜ZCuSn10P1比较好,金属模铸造,但是为了节约贵重的有色金属材料,仅齿圈用青铜制造,而轮芯则用灰铸铁HT100制造。涡轮ZCuSn10P1蜗杆45钢3、确定传动比蜗杆头数z1=4蜗轮齿数z2=32由以上大小齿轮的齿数可知:i12=Z2Z1=324=8z1=1z2=32i12=84.确定模数和压力角按标准选择,模数为m=1.6ZI蜗杆的法向压力角取标准值a=20m=1.6a=205.蜗杆分度圆直径d1因为要考虑到蜗杆与传动轴的装配关系,故此蜗杆分度圆直径不能按照课本机械设计第245页的表11-2普通圆柱蜗杆基本尺寸和参数来计算,综合传动轴的直径考虑,此蜗杆分度圆确定为48mm。此蜗杆传动需校核齿根弯曲疲劳强度校和齿面接触疲劳强d1=48mm4、计算涡轮传递的转矩因为电动机的输出功率为0.75KW,而且加上链传动的传动效率为0.96,一共14组蜗轮蜗杆,且并联,故单组蜗轮蜗杆的输入功率P单=0.750.9614KW=0.05KW按z1=4,故取效率0.85,则T2=9.55106P2n2=9.55106Pn1/i12=9.551060.750.050.85446/8Nmm=5460.20NmmT2=5460.20Nmm3.3.1蜗杆的主要参数与尺寸确定参数计算项目计算内容计算结果轴向齿距papa=m=3.141.6=5.024mmpa=5.02mm齿顶圆直径da1da1=d1+2ha1=48+21.6=51.2mm=蜗杆轴向齿厚df1=d1-2hf1=48-22=44mm=3.18蜗杆轴向齿厚sa=12m=0.53.141.6=2.51mm3.3.2涡轮的主要参数与尺寸确定参数计算项目计算内容计算结果蜗轮分度圆直径d2d2=mz2=1.632mm=51.2mm误差在允许范围内蜗轮齿根圆直径df2df2=d2-2hf2=51.2-22mm=47.2mmdf2=47.2mm蜗轮齿顶圆直径da2da2=d2+2ha2=51.2+21.6mm=54.4mmda2=54.43.3.3校核齿根弯曲疲劳强度F=1.53KT2d1d2mYFa2YF计算项目计算内容计算结果确定载荷系数K为齿向载荷分布系数,因为工作载荷比较稳定,故取载荷分布不均系数K=1;由机械设计第251页表11-5使用系数KA选取使用系数KA=1.2;由于转速不高,且冲击并不是十分大,则可取动载系数Kv=1.05;则K=KAKKv=1.211.051.26K=1.26确定涡轮的需用弯曲应力F 根据涡轮材料为锡磷青铜ZCuSn10P1,而且为金属模铸造,再加上螺杆螺旋齿面硬度45,可从课本机械设计第253页,根据表11-8涡轮的基本许用弯曲应力F,可查得涡轮的基本许用弯曲应力F=56MPa。应力循环次数 N=60jn2Lh=6014468830010=8.028108寿命系数 KFN=9106N=91068.028108=0.48则 F=FKFN=0.4856MPa=26.88MPa F=26.88MPa计算F值F=1.53KT2d1d2mYFa2Y=1.531.265460.2051.2481.62.560.986=6.75MPaF=6.75MPa判断是否满足要求F45,可从课本机械设计第251页,根据表11-7铸锡青铜涡轮的基本接触许用应力H,查得涡轮的基本许用弯曲应力H=268MPa。应力循环次数 N=60jn2Lh=6014468830010=8.028108寿命系数 KHN=8107N=81078.028108=0.77则 H=HKHN=2680.77MPa=206.36MPa H=206.36MPa计算F值H=480KT2d1m2z22=4801.265460.20481.62322=112.24MPaH=112.24MPa判断是否满足要求HS,丝杠是安全的,不会发生失稳现象。2) 高速长丝杠工作时可能发生共振,因此需验算其不会发生共振的最高转速。要求丝杠的最大转速临界转速(r/min):nxcr=9910fc2d2ulx2=99103.92720.01759231.0752=5234r/minnycr=9910fc2d2uly2=99103.92720.01759230.2302=114337r/min该丝杠工作转速: nx=100r/minnxcrny=100r/minnycr3) 滚珠丝杠副还受值的限制,通常要求Don=20100=20007104杠工作转速所以该丝杠副工作稳定 Ia=4.710-9m4 FXcr=1.86104NSx=37.2Sy=812nxcr=5234r/minnycr=114337r/min丝杠副工作稳定刚度验算滚珠丝杠在工作负载F(N)和转矩共同作用下引起每个导程的变形量为式中,A表示丝杠截面积,;表示丝杠的极惯性矩,;G表示丝杠切变模量,对钢;为转矩。式中,为摩擦角,其正切函数值为摩擦系数;为平均工作负载。本题取摩擦系数为,则。T=50020220210-3tan(211+840)Nm=0.20Nm按最不利的情况取(其中)则丝杠在工作长度上的弹性变形所引起的导程误差为L=lL0p=1.0743.99710-2410-3um=10.73um通常要求丝杠的导程误差应小于其传动精度的1/2,即,该丝杠满足刚度要求。 L=3.99710-8L=10.73umL=20um7、效率验算滚珠丝杠副的传动效率为=tantan+=tan211tan(211+840)=0.939要求是在90%95%之间,所以我们的丝杠副合格。=93.9%5总结经过三个多月的奋战,终于把毕业设计做好了,从一开始的毫无头绪、一无所知到现在即使工作量再大,人再忙,也要注重细节,加强创新。在此期间,我也回顾了自己大学四年的学习,大一的机械制图,在用caxa制图时,时常会感受自己对知识的遗忘之快,所以作图时,我经常把大一的机械制图放在电脑旁边,有时机械制图课本无法解释我的困惑,我就会去查阅课外书,如梁德本的机械制图手册,更多的是拿自己以前画的图作为参考,因为从很早开始我就在积累经典图纸,有自己画的,有别的公司的,也有同学的,这次在作图中,这个习惯确实给了我了很大的帮助。大四的机械设计,在考虑方案和编写计算说明书时,我时常用到此书,对于机械传动,让我有了清晰的认识,如链传动、齿轮齿条的传动、蜗杆传动、螺旋传动等,大四的机械设计课程设计也给了我很大的帮助,如电动机的选择。大四的机电一体化系统设计,对于10mm切割机来讲,三轴联动系统多亏了她。当然还有很多课程给了我很大的帮助,在这我就不一一举列了。在设计10mm玻璃切割机时,我查阅了大量的资料,方案改了又改,其中所用时间最多的要数行走机构了,就是现在的三轴联动,其实最早我是想用步进电机带动皮带轮,同步皮带带动滑块,从而带动行走机构的。到后来用滚珠丝杠带动控制XYZ三个方向,但考虑到Y轴的距离过大,滚珠丝杠的精度就要求很高,所以最后就决定Y轴用燕尾槽机构来实现运动目标。10mm玻璃切割机作品,还是存在很多问题的,比如说,既然是三轴联动,为什么还要设计输送系统,那是因为刚开始定方案的时候,还考虑的他的瓣片系统,当玻璃切割完成时,输送系统运动,玻璃进入瓣片系统中进行瓣片,然后玻璃再进入900旋转系统中,输送系统再运动,进入瓣片系统中。瓣片系统和旋转系统的方案大致定下来了,但是关键的细节问题还是没有处理好,如瓣片系统,怎样时它机械结构的体积减小,如旋转系统,上升靠气缸,旋转靠电动机带动斜齿轮,但是两者的机架很难搞定。再加上时间的不足,所以这两者没有能在此设计中体现出来,这是一个遗憾,也是一个挑战。三个月多月的努力过去了,与其说是做了一次毕业设计,倒不如说是对这四年所学的进行了一次总结!6经济分析报告 本次所设计的10mm玻璃切割机属于玻璃行业的中型设备,该精度高、性能良好、结构新颖,适用于玻璃马赛克加工的工艺需求。玻璃原片由输送滚轮输送到指定切割位置,它是通过电机带动链轮,链轮带动传动轴,传动轴带动蜗轮蜗杆,从而带动输送轴和小输送棍来带动玻璃原片。玻璃切割通过采用三轴联动机械来完成刀具线速度定位和切割路径控制,三轴机械中X,Y,Z形成一个三维空间,保证切割刀具的行走方向始终与想X,Y合成运动方向保持一致,从而有效的保证切割效率和质量以及延长切割刀具的寿命,三轴的联动性要求比较高,运动控制精度比较高,以达到全自动化的要求可以压制,有巨大的市场潜力,对我国玻璃加工行业的创新有重要意义,而且有比较好的经济效益。6.1市场预测(含同类项目的国内外市场情况)10mm玻璃切割机是电、机一体化的高级设别。研究10mm玻璃切割机是很有现实意义的,根据建筑行业和汽车行业的蓬勃发张,未来的十几年之中,市场还是非常大的。我所设计的玻璃切割使用现代设计方法设计进行设计,它具有精度高,稳定性强等优点。二三十年来,我国从一个完全进口的玻璃切割机国家发展成为如今的世界玻璃生产大国,销售也从国内拓展到国外。6.2 经济效益分析a) 假设所设计的10mm玻璃切割机销售价格为3.6万元/台(含税销售价),该价格是同类进口产品价格的65%左右,以年产量4000台计算,含税销售收入14400万元。b) 经营成本: 项目 金额铸锻钢件1.8万元/台4000台=7200万元动力及工具低值品0.275万元/台4000=1100万元工人工资250万元固定资产折旧100万元管理费用300万元其中:管理人员工资:120万元福利费用:60万元设备修理费:120万元财务费用100万元销售费用200万元可变成本合计7050万元固定成本合计500万元经营成本合计7550万元 c)应交增值税用及附加税: 项目 金额 备注应交增值税385.5万元附加税69.39万元以应交增值税的18%计算d)通过计算分析,可以得出一下盈利估算表: 项目 金额 备注销售收入(不含税)9125.45万元销售收入(含税)10800万元生产成本(可变成本)7050万元经营成本(总成本)7550万元销售税金(缴税额)454.89万元以增值税规定及附加税计算经营利润11237.68万元所得税金352.7328万元按现时政策的33%计算税后利润856.06万元6.3 社会效益分析(a) 假设所设计的10mm玻璃切割机的销售价格约为同类进口舍别的65%左右,以年产4000台计算。每年可以为国家节约外汇800万美元左右,为国内用户减少设备投资2568万元左右。(b) 该产品达产后,每年可为国家和地方政府增加税金454.89万元左右。(c) 该产品达产后,将为建筑、汽车行业的厂家创造一定的效益,也为国家和地方政府创造一定的税金。 综上分析,课件该项目产品有较好的社会经济效益。致 谢大学生活即将结束,四年的大学生活教会了我很多,很多。回首求学的那四年,我内心充满感激,感谢你们,与你们相遇相知,真的很好。我首先要感谢的是我的毕业设计指导老师胡伟文,是他带领着我在大学最后一个学期的学习总结,正是通过这一次学习的总结,我对机械专业知识,有着更深入、更系统的了解。我很感谢他,很感谢他所出的题目,让我知道自己有哪些方面的不足,同时也巩固了以前的薄弱环节,提出了新的学习方向与其思路。感谢他的认真与负责,不管有多晚,都会细心的听我在毕业设计的困惑,指明正确的道路。感谢我们的班主任,感谢他在毕业论文给予我的帮助。感谢我们的所有任课老师,感谢他们教会我知识,给予我谟生的本领。人因梦想而变得伟大,作为一名机械专业的学生,设计产品,改善每一个人的生活便是我们的使命!参 考 文 献1 濮良贵 陈固定 吴立言 主编 机械设计第九版 高等学校出版社 20132 冯清秀 邓星钟 主编 机电传动控制 第五版 华中科技大学出版社 2014 3 成大先 主编 机械设计手册 第五版 化学工业出版社 20084 孔庆华 母福生 刘传绍 主编 极限配合与测量技术基础 第二版 江西高校出版社 20135 涂晓斌 钟红生 习俊梅 杨中芳 主编 机械制图 江西高校出版社 20106 王知行 邓宗全 主编. 机械原理 第二版 哈尔滨工业大学 20067 朱张校 姚可负 主编 工程材料 第四版 北京 清华大学出版社 20118 刘鸿文 主编 材料力学 第五版 高等教育出版社 20129 冯 浩 汪建新 赵书尚 主编 机电一体化系统设计 华中科技大学出版社 201310 Ye Zhonghe Lan Zhanghui M.R.Smith MECHANISMS AND MECHINE THEORY Highier Educotion Press 201111 Ashraf Ei Din Zein Ei Din PLC-Based Speed Control of DC Motor 2006 5th International Power electronics and motion control Conference 200612 Guoping Yang ,Jian Fang Structure Parameters Optimszation Analysis of Hydraulic Hammer System Modern Mechanical Engineering 2012Introduction to D.C. MachinesD.C. machines are characterized by their versatility. By means of various combinations of shunt-, series-, and separately excited field windings they can be designed to display a wide variety of volt-ampere or speed-torque characteristics for both dynamic and steady state operation. Because of the ease with which they can be controlled, systems of D.C. machines are often used in applications requiring a wide range of motor speeds or precise control of motor output.The essential features of a D.C. machine are shown schematically. The stator has salient poles and is excited by one or more field coils. The air-gap flux distribution created by the field winding is symmetrical about the centerline of the field poles. This is called the field axis or direct axis.As we know, the A.C. voltage generated in each rotating armature coil is converted to D.C. in the external armature terminals by means of a rotating commutator and stationary brushes to which the armature leads are connected. The commutator-brush combination forms a mechanical rectifier, resulting in a D.C. armature voltage as well as an armature m.m.f. Wave then is 90 electrical degrees from the axis of the field poles, i.e. in the quadrature axis. In the schematic representation the brushes are shown in quadrature axis because this is the position of the coils to which they are connected. The armature m.m.f. Wave then is along the brush axis as shown. (The geometrical position of the brushes in an actual machine is approximately 90 electrical degrees from their position in the schematic diagram because of the shape of the end connections to the commutator.)The magnetic torque and the speed voltage appearing at the brushes are independent of the spatial waveform of the flux distribution; for convenience we shall continue to assume a sinusoidal flux-density wave in the air gap. The torque can then be found from the magnetic field viewpoint.The torque can be expressed in terms of the interaction of the direct-axis air-gap flux per pole and space-fundamental component of the armature m.m.f.wave. With the brushes in the quadrature axis the angle between these fields is 90 electrical degrees, and its sine equals unity. For a pole machine (1-1)In which the minus sign gas been dropped because the positive direction of the torque can be determined from physical reasoning. The space fundamental of the sawtooth armature m.m.f.wave is times its peak. Substitution in above equation then gives (1-2)Where, =current in external armature circuit; =total number of conductors in armature winding; =number of parallel paths through winding.And (1-3)is a constant fixed by the design of the winding.The rectified voltage generated in the armature has already been discussed before for an elementary single-coil armature. The effect of distributing the winding in several slots is shown in figure. In which each of the rectified sine wave is the voltage generated in one of the coils, commutation taking place at the moment when the coil sides are in the neutral zone. The generated voltage as observed from the brushes and is the sum of the rectified voltages of all the coils in series between brushes and is shown by the rippling line labeled in figure. With a dozen or so commutator segments per pole, the ripple becomes very small and the average generated voltage observed from the brushes equals the sum of the average values of the rectified coil voltages. The rectified voltage between brushes, Known also as the speed voltage, is (1-4)where is the design constant. The rectified voltage of a distributed winding has the same average value as that of a concentrated coil. The difference is that the ripple is greatly reduced.From the above equations, with all variable expressed in SI units, (1-5)This equation simply says that the instantaneous power associated with the speed voltage equals the instantaneous mechanical power with the magnetic torque. The direction of power flow being determined by whether the machine is acting as a motor or generator. The direct-axis air-gap flux is produced by the combined m.m.f. of the field windings. The flux-m.m.f. Characteristic being the magnetization curve for the particular iron geometry of the machine. In the magnetization curve, it is assumed that the armature m.m.f. Wave is perpendicular to the field axis. It will be necessary to reexamine this assumption later in this chapter, where the effects of saturation are investigated more thoroughly. Because the armature e.m.f. is proportional to flux times speed, it is usually more convenient to express the magnetization curve in terms of the armature e.m.f. at a constant speed . The voltage for a given flux at any other speed is proportional to the speed, i.e. (1-6)There is the magnetization curve with only one field winding excited. This curve can easily be obtained by test methods, no knowledge of any design details being required.Over a fairly wide range of excitation the reluctance of the iron is negligible compared with that of the air gap. In this region the flux is linearly proportional to the total m.m.f. of the field windings, the constant of proportionality being the direct-axis air-gap permeance.The outstanding advantages of D.C. machines arise from the wide variety of operating characteristics that can be obtained by selection of the method of excitation of the field windings. The field windings may be separately excited from an external D.C. source, or they may be self-excited; i.e. the machine may supply its own excitation. The method of excitation profoundly influences not only the steady-state characteristics, but also the dynamic behavior of the machine in control systems. The connection diagram of a separately excited generator is given. The required field current is a very small fraction of the rated armature current. A small amount of power in the field circuit may control a relatively large amount of power in the armature circuit; i.e. the generator is a power amplifier. Separately excited generators are often used in feedback control systems when control of the armature voltage over a wide range is required. The field windings of self-excited generators may be supplied in three different ways. The field may be connected in series with the armature, resulting in a series generator. The field may be connected in shunt with the armature, resulting in a shunt generator, or the field may be in two sections, one of which is connected in series and the other in shunt with the armature, resulting in a compound generator. With self-excited generators residual magnetism must be present in the machine iron to get the self-excitation process started.In the typical steady-state volt-ampere characteristics, constant-speed prime movers being assumed. The relation between the steady state generated e.m.f. and the terminal voltage is (1-7)where is the armature current output and is the armature circuit resistance. In a generator, is larger than and the electromagnetic torque is a counter torque opposing rotation.The terminal voltage of a separately excited generator decreases slightly with increase in the load current, principally because of the voltage drop in the armature resistance. The field current of a series generator is the same as the load current, so that the air-gap flux and hence the voltage vary widely with load. As a consequence, series generators are normally connected so that the m.m.f. of the series winding aids that of the shunt winding. The advantage is that through the action of the series winding the flux per pole can increase with load, resulting in a voltage output that is nearly usually contains many turns of relatively small wire. The series winding, wound on the outside, consists of a few turns of comparatively heavy conductor because it must carry the full armature current of the machine. The voltage of both shunt and compound generators can be controlled over reasonable limits by means of rheostats in the shunt field.Any of the methods of excitation used for generators can also be used for motors. In the typical steady-state speed-torque characteristics, it is assumed that motor terminals are supplied from a constant-voltage source. In a motor the relation between the e.m.f. generated in the armature and terminal voltage is (1-8)where is now the armature current input. The generated e.m.f. is now smaller than the terminal voltage , the armature current is in the opposite direction to that in a generator, and the electron magnetic torque is in the direction to sustain rotation of the armature.In shunt and separately excited motors the field flux is nearly constant. Consequently increased torque must be accompanied by a very nearly proportional increase in armature current and hence by a small decrease in counter e.m.f. to allow this increased current through the small armature resistance. Since counter e.m.f. is determined by flux and speed, the speed must drop slightly. Like the squirrel-cage induction motor, the shunt motor is substantially a constant-speed motor having about 5% drop in speed from no load to full load. Starting torque and maximum torque are limited by the armature current that can be commutated successfully.An outstanding advantage of the shunt motor is case of speed control. With a rheostat in the shunt-field circuit, the field current and flux per pole can be varied at will, and variation of flux causes the inverse variation of speed to maintain counter e.m.f. approximately equal to the impressed terminal voltage. A maximum speed range of about 4 or 5 to I can be obtained by this method. The limitation again being commutating conditions. By variation of the impressed armature voltage, very speed ranges can be obtained.In the series motor, increase in load is accompanied by increase in the armature current and m.m.f. and the stator field flux (provided the iron is not completely saturated). Because flux increase with load, speed must drop in order to maintain the balance between impressed voltage and counter e.m.f. Moreover, the increased in armature current caused by increased torque is varying-speed motor with a markedly drooping speed-load characteristic. For applications requiring heavy torque overloads, this characteristic is particularly advantageous because the corresponding power overloads are held to more reasonable values by the associated speed drops. Very favorable starting characteristics also result from the increase flux with increased armature current.In the compound motor the series field may be connected either cumulatively, so that its m.m.f. adds to that of the shunt field, or differentially, so that it opposes. The differential connection is very rarely used. A cumulatively compounded motor has speed-load characteristic intermediate between those of a shunt and a series motor, the drop of speed with load depending on the relative number of ampere-turns in the shunt and series fields. It does not have disadvantage of very high light-load speed associated with a series motor, but it retains to a considerable degree the advantages of series excitation.The application advantages of D.C. machines lie in the variety of performance characteristics offered by the possibilities of shunt, series and compound excitation. Some of these characteristics have been touched upon briefly in this article. Still greater possibilities exist if additional sets of brushes are added so that other voltages can be obtained from the commutator. Thus the versatility of D.C. machine system and their adaptability to control, both manual and automatic, are their outstanding features.A D.C machines is made up of two basic components:The stator which is the stationary part of the machine. It consists of the following elements: a yoke inside a frame; excitation poles and winding; commutating poles (composes) and winding; end shield with ball or sliding bearings; brushes and brush holders; the terminal box.The rotor which is the moving part of the machine. It is made up of a core mounted on the machine shaft. This core has uniformly spaced slots into which the armature winding is fitted. A commutator, and often a fan, is also located on the machine shaft.The frame is fixed to the floor by means of a bedplate and bolts. On low power machines the frame and yoke are one and the same components, through which the magnetic flux produced by the excitation poles closes. The frame and yoke are built of cast iron or cast steel or sometimes from welded steel plates.In low-power and controlled rectifier-supplied machines the yoke is built up of thin (0.51mm) laminated iron sheets. The yoke is usually mounted inside a non-ferromagnetic frame (usually made of aluminum alloys, to keep down the weight). To either side of the frame there are bolted two end shields, which contain the ball or sliding bearings.The (main)excitation poles are built from 0.51mm iron sheets held together by riveted bolts. The poles are fixed into the frame by means of bolts. They support the windings carrying the excitation current.On the rotor side, at the end of the pole core is the so-called pole-shoe that is meant to facilitate a given distribution of the magnetic flux through the air gap. The winding is placed inside an insulated frame mounted on the core, and secured by the pole-shoe.The excitation windings are made of insulated round or rectangular conductors, and are connected either in series or in parallel. The windings are liked in such a way that the magnetic flux of one pole crossing the air gap is directed from the pole-shoe towards the armature (North Pole), which the flux of the next pole is directed from the armature to the pole-shoe (South Pole).The commutating poles, like the main poles, consist of a core ending in the pole-shoe an
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:10mm玻璃切割机的设计【三维SW模型】【全套含CAD图纸+PDF图】
链接地址:https://www.renrendoc.com/paper/130776033.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!