北师大版初三数学下册描点法画二次函数的图像_第1页
北师大版初三数学下册描点法画二次函数的图像_第2页
北师大版初三数学下册描点法画二次函数的图像_第3页
北师大版初三数学下册描点法画二次函数的图像_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二次函数的教学设计 老庙镇中心学校:刘学平 教学目标 : 1. 理解二次函数的意义;会用描点法画出函数 y=ax2 的图象,知道抛物线的有关概念; 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性; 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合 思想认识。 教学重点:二次函数的意义;会画二次函数图象。 教学难点 :描点法画二次函数 y=ax2 的图象,数与形相互联系。 教学过程 设计: 一 . 创设情景、建模引入 我们已学习了正比例函数及一次函数,现在来看看下面几个例子: 1写出圆的半径是 R (CM ),它的面积S ( CM2 )与R的关系式 答:S=

2、n R2. 2写出用总长为 60M的篱笆围成矩形场地,矩形面积S ( M2 )与矩形一边长 L ( M )之间 的关系 答: S=L(30-L) =30L-L2 分析:两个关系式中S与R、L之间是否存在函数关系? S 是否是 R、 L 的一次函数? 由于两个关系式中 S不是R、L的一次函数,那么 S是R、L的什么函数呢?这样的函 数大家能不能猜想一下它叫什么函数呢? 答:二次函数。 这一节课我们将研究二次函数的有关知识。 (板书课题) 二. 归纳抽象、形成概念 一般地,如果 y=ax2+bx+c(a , b, c是常数,0), 那么, y 叫做 x 的二次函数 注意:(1)必须0,否则就不是二

3、次函数了 而b,c两数可以是零.(2)由于二次函数的解析式 是整式的形式,所以 x的取值范围是任意实数 练习:1举例子:请同学举一些二次函数的例子,全班同学判断是否正确。 2出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。 (若学生考虑不全,教师给予补充。如: ; ; 的形式。) (通过学生观察、 归纳定义加深对概念的理解, 既培养了学生的实践能力, 有培养了学生的 探究精神。 并通过开放性的练习培养学生思维的发散性、 开放性。 题目用了一些人性化的词 语,也增添了课堂的趣味性。 ) 由前面一次函数的学习, 我们已经知道研究函数一般应按照定义、 图象、性质、求解析式几 个方面进行研

4、究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。 (在这里指出学习函数的一般方法, 旨在及时进行学法指导; 并将此方法形成技能, 以指导 今后的学习;进一步培养终身学习的能力。 ) 三. 尝试模仿、巩固提高 让我们先从最简单的二次函数 y=ax2 入手展开研究 1. 1.尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什 么呢? 请同学们画出函数 y=x2 的图象。 (学生分别画图,教师巡视了解情况。 ) 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下 面师生共同画出函数 y=x2 的图象。 解:一、列表: x -3 -2 -

5、1 0 1 2 3 Y=x2 9 4 1 0 二、描点、连线:按照表格,描出各点然后用光滑的曲线,按照x(点的横坐标)由小到大 的顺序把各点连结起来 . 从而得到画二次函数图象的几点注 对照教师画的图象一一分析学生所画图象的正误及原因, 意。 练习:画出函数 ; 的图象(请两个同学板演) -3 -2 X -1 3 Y=0.5X2 4.5 2 0.5 0 0.5 02 4.5 Y=-X2 -9 -4 -1 0 -1 -4 -9 画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2 的图象是一 条抛物线。 (这里, 教师在学生自己探索尝试的基础上, 示范画图象的方法和过程,

6、希望学生学会画图 象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。 ) 三. 运用新知、变式探究 画出函数 y=5x2 图象 学生在画图象的过程中遇到函数值较大的困难,不知如何是好。 x -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Y=5x2 1.25 0.8 0.45 0.2 0.05 0 0.05 0.2 0.45 0.8 1.25 教师出示已画好的图象让学生观察 注意: 1. 画图象应描 7 个左右的点,描的点越多图象越准确。 2. 自变量 X 的取值应注意关于 Y 轴对称。 3. 对于不同的二次函数自变量

7、X 的取值应更加灵活,例如可以取分数。 四. 归纳小结、延续探究 教师引导学生观察表格及图象,归纳y=ax2的性质,学生们畅所欲言,各抒己见;互相改进, 互相完善。最终得到如下性质: 一般的,二次函数 y=ax2的图象是一条抛物线,对称轴是Y轴,顶点是坐标原点;当 a 0 时,图象的开口向上,最低点为 (0, 0);当av 0时,图象的开口向下,最高点为(0, 0)。 五. 回顾反思、总结收获 在这一环节中, 教师请同学们回顾一节课的学习畅谈自己的收获或多、 或少、或几点、 或全 面,总之是人人有所得, 个个有提高。 这也正是新课标中所倡导的新的理念不同的人在 数学上得到不同的发展。 (在整个一节课上,基本上是学生讲为主,教师讲为辅。一些较为困难的问题,我也鼓励 学生大胆思考,积极尝试,不怕困难,一个人完不成,讲不透,第二个人、第三个人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论