屈曲分析在汽车底盘开发中的应用_第1页
屈曲分析在汽车底盘开发中的应用_第2页
屈曲分析在汽车底盘开发中的应用_第3页
屈曲分析在汽车底盘开发中的应用_第4页
屈曲分析在汽车底盘开发中的应用_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、將品好文档.推荐学习交涼屈曲分析在汽车底盘开发中的应用屈曲分析在汽车底盘开发中的应用1概述在汽车底盘结构中,有一些受压部件会由于刚度不足而出现失效,从而影响该部件乃至整个系 统的正常工作,如转向系统中的转向拉杆,多连杆式悬架中的控制臂,制动操纵机构中的踏板臂 等,这些现象屈于屈曲问题。在工程结构中,压杆稳定性是一种典型的屈曲问题。细长杆件受压时,当压力増加到某一极限 值时,压杆将由直线平衡变为曲线平衡,表现出与强度失效全然不同的性质,这个压力的极限值称为临界压力,压杆丧失其直线形状的平衡而过渡为曲线平衡,称为丧失稳 定,简称失稳,也称为屈曲。杆件失稳后,压力的微小増加将引起弯曲变形的显著变大,

2、杆件已丧 失了承载能力。这是因失稳造成的失效,可以导致整个机器或机构的损坏。但细长压杆失稳时,应 力并不一定很鬲,有时甚至低于比例极限。可见这种形式的失效,并非强康不足,而是稳定性不 够。除了压杆外,其它构件也存在稳定失效问题。例如,圆柱形薄壳在均匀外压作用下,壁内应力 变为压应力,则当外压达到临界值时,薄壳的圆形平衡就变为不稳定,会突然变成由虚线表示的长 圆形。与此相似,板条或工字梁在最大抗弯刚度平面内弯曲时,会因载荷达到临界值而发生侧向弯 曲。薄壳在轴向压力或扭矩作用下,会出现局部折皱。这些都是稳定性问题。屈曲分析主要用于估计结构刚性的分歧点,以及结构承担轴向的、膜向、或弯曲变形,解决屈

3、曲前的小变形问题或结构在崩塌前产生非线性问题。结构的屈曲在实际中表现为两种形式:快速通 过失稳和分叉失稳。快速通过失稳形式表现为从一个平衡位罟快速通过,跳跃到另一个平衡位詈, 也称为后屈曲。另一种失稳形式常用分叉来描述,失稳出现在两个或多个平衡路径的交点。2屈曲分析的一般原理对于结构简单的部件,可以采用经典的欧拉公式计算临界载荷,相应的变形可以从截面的惯性 矩判断,结构的弯曲变形一定发生于抗弯能力最小的纵向平面内。下面以两端较支细长压杆为例, 对屈曲分析的一般原理进行说明。设细长压杆的两端为球较支座,轴线为直线,压力P与轴线重合。当压力达到临界值时,压杆 将由直线平衡形态转变为曲线平衡形态。可

4、以认为,使压杆保持微小弯曲平衡的最小压力即为临界 压力。仅供学习与交潦,如冇侵权请联系网站刊除谢谢6精品好文档.推荐学习交流选取坐标系如图所示,距原点为X的任意截面的挠度为V,弯矩H的绝对值为Pj若只取压力P的绝对值,则v为正时,M为负;v为负时,M为正。即H与的符号相反,所以:对微小的弯曲变形,挠曲线的近似微分方程为:d2v _M _ Pv乔一!7一一17式中的I应是横截面最小的溃性矩。对上式进行分析求解,得到临界力为:7V2EI这是两端较支细长压杆临界力的计算公式,也称为两端较支压杆的欧拉公式c下面以一矩形截面的简支梁为例,应用欧拉公式求解临界载荷。设梁长400,裁面宽10mm,高15mm

5、,左端为固定较支,右端为滑动较支,在简支梁的右端施加轴向。图1简支梁结构示意图400T bhp 3I, = 1.23 x 10 厂y 17简支梁截面的最小惯性矩1 -,带入欧拉公式得到临界载荷为:= = 16192N3屈曲问题的有限元法求解屈曲问题的有限元分析方法大致有两类:一类是通过特征值分析计算屈曲载荷,根据是否考虑 非线性因素对屈曲载荷的影响,这类方法又细分为线性屈曲和非线性屈曲分析;另一类是利用结合 Newton-Raphson迭代的弧长法来追踪确定加载方向,追踪失稳路径的増呈非线性分析方法能有效的 分析非线性屈曲和失稳问题,本文只针对第一种方法中的线性屈曲分析进行讨论,这种方法通过提

6、 取使线性系统刚度矩阵奇异的持征值来获得结构的临界失稳载荷及失稳模态。以节2中的简支梁为例,应用MSC Nastran软件进行线性屈曲分析。有限元分析得到直杆在 轴向1000N的压力作用下的屈曲特征值为15.913,从而计算得到该杆能够承受的临界压力为15913仅供学习与交潦,如冇侵权请联系网站刊除谢谢6精品好文档.推荐学习交流图2两端较支杆的变形对比有限元分析与欧拉公式计算结果不难看出,有限元分析得到的临界压力与欧拉公式计算得 到的临界压力基本趋于一致,同时从变形位移图可以看到直杆的一阶特征值对应的为绕Y轴的弯 曲,这也进一步说明了杆件的微小弯曲变形一定发生在抗弯能力最小的纵向平面内,欧拉公

7、式中的 I为横截面最小的惯性矩4屈曲分析实例汽车底盘中的很多零部件,主要承受轴向拉压或横力弯曲载荷的作用,这些零部件的形状比较 复杂,截面持性也随轴线不断变化,因此不能用欧拉公式直接计算。采用有限元法能够比较容易解 决此类问题。下面是屈曲分析在汽车底盘结构分析中的一些典型的应用实例。4.1控制臂屈曲分析在多连杆式独立悬架中,控制臂的受力接近二力杆,受力方向主要为两连接点的直线方向。控 制臂的轴向刚度及稳定性直接影响车轮的定位参数,进而影响到整车的操纵性能。因此,对控制臂 对行屈曲分析,确定其最大承受的临界压力是非常有必要的。图3连杆的有限元模型图4静载作用下的变形计算得到控制臂在1000N的轴

8、向力作用下的特征值为48. 421,从而能够承受的临界压力为484 21N,从振型来看,弯曲变形发生在两个钱支点连线与厚度方向构成的平面内。42制动踏板臂制动踏板臂的截面通常为矩形截面,为了减小踏板臂的变形,设计中一般采用抗弯刚度大的截 面方向来承受操纵力引起的附加弯矩。在操纵力作用下,发生最大弯矩平面内弯曲时,会因载荷达 到临界值而发生侧向弯曲。仅供学习与交渡如冇侵权请联系网站制除谢谢6图6静载作用下的变形图5制动踏板臂受力示意图某车型的制动踏板臂的结构如图5所示,在踏板端施加操纵方向的作用载荷1000N,计算得到 特征值为11.438,则结构发生屈曲的临界载荷为11438NO从图6中可以看到,踏板臂发生屈曲变形 为横向弯曲。4.3转向节屈曲分析在双横臂式悬架中,通常采用转向节将上、下横臂连接起来,因此上侧支承臂一般设计得比较 长,如图7所示。转向节的受力状况比较复杂,转向节上侧支承臂受到三个方向载荷的作用:垂向 载荷、纵向载荷和横向载荷,其中垂向载荷最大,在设计中需要重点考祭其垂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论