电磁减震器设计中英文对照_第1页
电磁减震器设计中英文对照_第2页
电磁减震器设计中英文对照_第3页
电磁减震器设计中英文对照_第4页
电磁减震器设计中英文对照_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、附录电磁减震器设计摘要卡车的减震器一般经常在潮湿、振动的路面行驶条件使用,然而由于道路粗糙,在常规能源减震器不使用任何方法得到消退热。蓄热式电磁减震器为这些问题提供了一种解决手段,回收能源、振动消退方面在配置蓄热式电磁减振器研究人员已开发了这个项目:一个线性装置和一个旋转装置,在实验室中测试的立场和在一个小全地形车是形容这些冲击表现。缩略语:Bi磁性(T)f 频率(Hz)F力(N)H圆环高度杆(mm)I 电流(I)K常数L长度(mm)n 转数(次/mm)P 功率(W)Rc线圈的总电阻RL抵抗外部负载v 速度(m/s)V 电压(V)一. 引言 2001年Goldner等人提出的电磁减震器(EM)

2、在电力能源利用方面可以缓解能源衰退。2003年古普塔等人,研究了现有的能源从停止作为吸收剂的小汽车和卡车驱动超过各种类型的道路。2000年格雷夫斯等人,研究了在蓄热式阻尼,他们提到再生能源很少,只有电动车发展才能缓解能源压力。他们还提出如何建立健全的议案的建议,以增加可回收的能源;不过,在车辆动力学方面这可能有负面影响。通过研究人员得到另一个有意义的观察,这样的储存能量装置应是该设备的输出电压必须大到足以克服障碍的能力。在1996年Suda and Shiba研究了一种混合暂停系统,主动控制和被动控制是通过低频率,在通过高频率由一个能源再生阻尼器控制。在1993年Fodor和 Redfield

3、试图设计一套蓄热式阻尼器。然而,这是有必要的,他们碰到设计的局限性健全设备投入的动力机械量,因为现有的能源是能源存储存在短缺。1989年卡诺普研究电磁涉及在设计直线永磁汽车作为变量的机械阻尼器。1986年,布朗等人研究的金额能源消退在汽车减震器。2005年有趣地注意到,Rani在一本杂志上宣布,百色发言人(制造商著名的百色)经过24年的秘密研究已建立了电磁减振器,然而,没有数据可在表现这些能量的休克吸收。二. 蓄热式冲击设计两个蓄热式冲击设计,指定作为Mark1和Mark2,该商标的一减振器安装在一个测试汽车如图1。该商标的一组成几个非常强大的永磁体的展开,以外套筒和动圈式展开一个滑动电枢,磁

4、场产生电力通过线圈如图2。一张照片的Mark2休克安装在同一汽车是显示如图3。Mark2构成一小直流电动机再加上一杆臂由一个系统齿轮,大约为电机之一的杠杆。这个结果在一较大的输出功率,对于给定的位移杆臂的杠杆直接连接到马达。图1 Mark1减振器安装在车辆测试图2永磁线圈装配图3 Mark2减振器安装在车辆测试三. 车辆和车辆动力学测试 测试车辆是一个很小的全地形车(ATV),轴距1.16米,建造该车辆可以轻松地修改暂停制度。减振器内螺旋压缩弹簧位于原来后方,这是可调提供共振机会的特点。为进行测试与测试车辆,原来的减振器是积极的和可以考虑在同向平行测试休克。收集数据,便携式模拟录音机展开,以前

5、行李的载体和动力来自车辆电池。对于一些测试,各种加速度分别采取向汽车悬架系统。那个测试车辆如图4。图4测试车辆与便携式模拟磁带录音机车辆的动态示意图如图5,数字显示,车辆穿越了44矩阵(实际尺寸8989mm)。当汽车的前轮用杠杆支撑,用升降机影响压缩减振器。另外的减振器发生压缩时(1为箭头指向的数字),后轮支撑梁(2为箭头指向的数字)。因此,每一个完整的导线的光束具有两个输出脉冲。为了均匀性,完整的一系列的试验是结论冲压对一超氧化物歧化酶的领域,其中梁仍留在大约在同一地点。四.电磁其次,电磁理论的电磁冲击吸收应用的例子,该商标为休克。这休克共分三个部分:永磁部分、线圈部分、装配部分,显示在图2

6、中。电压在诱导的冲击时,绕组线圈大会的举动相对磁铁装配。那个意见为,使活塞之间的线圈和磁铁装配一样。图5车辆动力学4.1发电机设计磁铁由一同中心地被一更大直径靠外磁铁堆包围的里面磁铁栈构成. 每一栈由三沿轴方向使被两个铁极分开,磁铁有磁性和位于栈的末端的二个附加极磁铁构成。使各向异性的永磁体磁铁被使用,这样以致磁铁的极性被选择光线的磁通发自到双方每一铁极,那个里面的磁极环增加靠外极环。指出从环流的光线的方向与每一环流的末端是相反的。此外,通过两个末端磁环流是在内部极中响应的大约一半的.为了估计准确,一磁环光线的通量密度被假定发自从末端磁环内部0.5T到无穷,线圈由一个同中心地被一个更大直径靠外

7、线圈包围的里面线圈构成.每一线圈由四根连续不断25#电磁线组成,铁随着大约800次打电报.但是,每一线圈是变为四部分损坏了的,分隔的磁铁,每个线圈部分是围绕着不同的铁极。相邻的区段磁盘的方向正好相反,每个线圈相临,以容纳逆转的径向通量,换句话说,在每一段线圈中都有同样的极性引起电压。5运动仿真速度输入到减振器据估计,从一个分析模型卡车得到某一特定道路输入的资料。该模型是基于一份报告,由联邦公路政府当局(Strai等人, 1998年)。政府当局把一辆卡车能被当四分之一,卡车仅(弹起方式或者一半卡车(弹跳和高音方式)或者完整卡车(弹跳,足球场,和轧辊模式),做示范展示的是最简单的四分之一车模型。那

8、个四分之一卡车模范被在图6 中显示: u-道路侧面投入; kt-轮胎跳过常数;mu-不弹起的主体; xu-取代不弹起的主体;ks-悬架弹簧常数 ; CS-悬架阻尼常量;ms-跳过大量跳过主体; xs-损坏了的放置;图6四分之一卡车模型在微米的速度和如同被让步那样ms(x_ux_s)中差异将是向减震器速度输入,等式的空间形式为: 首先减震器相对速度速度的rms是精心设计目的,以及悬浮阻尼协同因素随之发生价值被用来计算能量驱散,为Mark 2震动使用阻尼常数,预言一大约416 W的最大能量在理论上仿真。6.结果Mark1震动是在一个电动力的摇动刷上受试验,震动的底座被从一直立支撑,如图7中展示那样

9、,和活动的杆被通过一个阻抗头儿把装到一个控制棒上,摇动者被运作使用正弦居住在确定频率,里面线圈的末端这样以致合并电压能是很小的,和靠外线圈的一末端被连接的.其它末端被把与各种各样抵抗力连接起来。下一步,产生力量从跨过一闻名抵抗力(这种情况下电阻为33)装入盒子电压的度量,与结果相比,与预测的能力相比。为开路电压Eq. 5作为以及所产生的电力,有接近之间的的理论预测(开路电压为0.69 V、电阻33和阻力3.8瓦特)和实测值(开路电压的0.71 V、电阻33和阻力3瓦特)相比,不过如此的速度0.01m/s,对于如此高的速度为0.05m/s有之间的差异的理论值(开路电压为3.44 V、电阻33和阻

10、力95瓦特)和实测值(开路电压的2.52 V和电阻33 和阻力54瓦特),这可能是由于向下落不明的轴承摩擦产生的。图7 Mark 1电动力震动试验在实验室里,Mark1振动测试之后,它被在ATV上增加和表现被测验。峰值功率所产生的冲击,这当(ATV)到了44驱动梁时,由这震动所产生的是7.4 W,可以归因于到轴承摩擦。这是决定测试的另一个设计与能力,随着产生明确更多力量才能测验另一设计、创造更多的能量。下一步,Mark 2震动被如图2中展示那样,在一个电动力的摇动者上在0.5 g试验. Mark 2试验的结果在如图9中得到. Mark 2 EM震动的阻尼常数是是38.5 N/m/s(0.22

11、lb/in/s)。图8 Mark 2电动力震动试验 图9 Mark 2减震器吸收器振动试验的结果然后,Mark 2震动被在如图3中展示那样ATV中增加,和车辆被超过一44驱动梁,Mark 2的典型输出反应减振器是显示在图10上。振幅规模的修改,录音机以5:1增益减少,这是安装在该车辆如图10显示,有两个大的负面反应,这对应到前方和后方的车轮穿越4 4梁,负极性是由于安装配置减振器对汽车向下运动对减振器结果在一个负面的输出,与此同时一向上运动结果输出,在减震器吸收器上向下运动结果是负输出.第一输出脉冲,#1是前部撞击的结果,与#1相符以箭头指示图5中的线.如同被建设性反应显示立即随着负反应到来那

12、样,有相当大反弹性。这反弹被把归于车辆-骑马者结合的反应频率,甚至负反应更大,#2当后轮给予44梁,#2相应的4梁以箭头指示图5线发生的时候,自减震器吸收器的电击般输出被在一个1个X电阻器中结束以来,产生最大力量完全是88.8 W,他的效率是 21%效率。图10穿越44Mark 2(旋转的)减震器吸收器的典型反应设计和测试二个不同的电磁减震器。峰值功率增加过程中产生的ATV超过44梁,从很小的7.488.8瓦特与当Mark 2休克的设计取代了Mark 2 设计。因为有关车辆燃料效率增加需求探查观念成为必要性,进一步的研究正进行一项较大的直流电动机和机架和齿轮系统。英文Design of ele

13、ctromagnetic shock absorbersAbstract Automobiles and trucks have shock absorbers to damp out the vibration experienced due to roughness of the roads. However, energy in conventional shock absorbers gets dissipated as heat and is not used in any way. Regenerative electromagnetic shock absorbers provi

14、de a means for recovering the energy dissipated in shock absorbers.Two configurations of regenerative electromagnetic shock absorber have been developed for this purpose:a linear device and a rotary device. Performance of these shocks in a laboratory test stand and in a small all terrain vehicle is

15、described.AbbreviationsBi Magnetic flux in T f Frequency in HzF Force in N H Height of pole ring in mmI Current in A K Constant (nhBi) in volt-s/mL Length in mm n Number of turns/mmP Power generated in W Rc Total resistance of coils in Xv Velocity in m/s V Voltage in VRL Resistance of external load

16、in X 1.IntroductionGoldner et al. (2001) proposed electromagnetic (EM)shock absorbers to transform the energy dissipated in shock absorbers into electrical power. Gupta et al. (2003) has studied the available energy from shock absorbers as cars and trucks are driven over various types of roads. Grav

17、es et al. (2000) studied EM regenerative damping. They mention that energy regeneration is small and may be relevant only for electric vehicles. They also propose ways to amplify the motion of the shock in order to increase recoverable energy; however, this may have a negative effect on vehicle dyna

18、mics. Another interesting observation made by Graves et al. is that device output voltage must be large enough to overcome the barrier potential of the storage device.Sudaand Shiba (1996)studied ahybridsuspension system, where active control is adopted at low frequency and passive control by an ener

19、gy regenerative damper is adopted at high frequency.Fodor and Redfield (1993) tried to design a regenerative damper. However, they came across the design limitation of amplifying the mechanical device-input force, which is necessary becauseavailable energy is low and a threshold for energy storage e

20、xists.Karnopp (1989) studied the electromagnetics involved in designing permanent magnet linear motors used as variable mechanical dampers. Browne et al. (1986) studied the amount of energy dissipated in automotive shock absorbers. It was interesting to note that a magazine (Rani 2005) announced tha

21、t Bose (maker of famous Bose speakers) have built electromagnetic shock absorber after 24 years of secretive research. However, no data is available on the performance of these shock absorbers.2 .Design of EM regenerative shocksTwo designs of EM regenerative shocks, designated as Mark 1 and Mark 2,

22、have been fabricated. A photo of the Mark 1 shock absorber mounted on a test vehicle is shown in Fig. 1. The Mark 1 consists of several verypowerful permanent magnets mounted to the outer sleeve and a moving coil assembly mounted to a sliding armature (Fig. 2). The coils moving in the magnetic field

23、 generate electrical power.Fig. 1 Mark 1 shock absorber mounted on test vehicleFig. 2 Schematic of permanent magnet assembly, coilassembly, and case assemblyFig. 3 Mark 2 shock absorber mounted on test vehicleA photo of the Mark 2 shock mounted in the same vehicle is shown in Fig. 3. Mark 2 consists

24、 of a small DC motor coupled to a lever arm by a system of gears, which result in approximately six revolutions of the motor to one of the lever. This results in a larger output power for a given displacement of the lever arm if the lever was directly connected to the motor.3. Test vehicle and vehic

25、le dynamicsThe test vehicle is a small all-terrain vehicle (ATV)with a wheelbase of 1.16 m. The construction of the vehicle allows one to easily modify the suspension system. The original rear shock absorber is located inside of a helical compression spring, which isadjustable to provide for various

26、 ride characteristics.For the tests conducted with the test vehicle, the originalshock absorber was active andcan beconsidered in parallel with the test shock absorber.Tocollect data, a portable analog tape recorder was mounted to thefrontluggagecarrierandpoweredfromthevehicle battery. For some test

27、s, various accelerometers were also mounted to the vehicle suspension system. The test vehicle is shown in Fig.4.Fig. 4 Test vehicle with portable analog tape recorderA schematic of the vehicle dynamics is given in Fig.5. Thefigure shows the vehicle traversinga 44 wooden beam (actual dimensions are

28、8989 mm).When the vehicles front wheels strike the beam, they lift up. The impact compresses the shock absorber(the number 1 set of arrows in the figure). Another compression of the shock absorber occurs when the rear wheels strike the beam (the number 2 set of arrows in the figure). Therefore, each

29、 complete traverse of the beam has two output pulses. For uniformity, the complete series of tests was conducted on a sod field in which the beam remained in approximately the same location.4. ElectromagneticsNext, the electromagnetic theory for EM shock absorbers is applied to the example of the Ma

30、rk 1 shock. This shock consists of three assemblies: the permanent magnet assembly, the coil assembly, and the case assembly, as shown in Fig. 2. Voltage is induced in the shock windings when the coil assembly moves relative to the magnet assemblies. The case assembly aligns and enables the piston-l

31、ike motion between the coil and magnet assemblies.Fig. 5 Vehicle dynamics4.1 Generator designThe magnet assembly consists of an inner magnet stack surrounded concentrically by a larger diameter outer magnet stack. Each stack consists of three axially magnetized ring magnets separated by two iron-pol

32、e rings and two additional pole rings located at the ends of the stack. Sintered anisotropic NdFeB permanent magnets are used. The polarity of the magnets is chosen such that radial magnetic flux emanates from both sides of each iron pole, and the fluxes of the inner pole rings add to that of the ou

33、ter rings. Note that the radial direction of the flux from the pole rings is opposite at opposite ends of each magnet ring. In addition, the flux through the two end pole rings is about half that in the interior pole rings.For purposes of estimating performance, a 1 T radial flux density is assumed

34、to emanate from the interior pole rings and 0.5 T from the end rings. The coil assembly consists of an inner coil surrounded concentrically by a larger diameter outer coil.Each coil consists of four continuously wound layers of #25 magnet wire with approximately 800 turns.However, each coil is broke

35、n into four sections,separatedbyinsulators.Inassembly,eachcoilsection is centered on a different iron pole ring. The winding directionisreversedintheadjacentsectionofeachcoil to accommodate the reversalin radial flux ofadjacent polerings.In other words,the inducedvoltages in each section ofthe coil

36、have the same polarity.4.2 Voltage generationTo first order, the magnetic flux Bi from the magnet assembly radially penetrates each coil section over the heightof the pole ring, h = 10 mm. Thus, for coils with n = 8.26 turns/mm moving axially with a velocity v past a stationary pole emanating fluxde

37、nsity, Bi, a voltage,V = nhvBiis generated in each section of the coil. Assuming Bi = 1T and the coil is at 0.01 m/s, each middle section of the outer coil will generate an open-circuit voltage of 0.169 V. Each middle section of the inner coil will produce, in proportion to its smaller diameter, a s

38、maller voltage of 0.062 V. The bottom and top sections of each coil will generate only half these voltages, since Bi = 0.5 T. For both coils the total voltage isV = Kv(m/s) = 68.9, v = 0.69 volts:5 Motion simulationThe velocity input to the shock absorber was estimated from an analytical model of a

39、truck subjected to a given road input profile. The model is based on a report by the Federal Highway Administration (Strait et al. 1998). A truck can be modeled as quarter-truck (bounce mode only) orhalf-truck (bounce and pitch modes) or full truck (bounce, pitch, and rollmodes).Itwas decided tostar

40、t with the quarter-truck model, which is the simplest. Thequarter truck model is shown in Fig. 6, Fig. 6 Quarter-truck modelu =road profile input, kt=tire spring constant,mu=unsprung mass, xu= displacement of unsprung mass,ks=suspensionspringconstant,cs =suspension damping constant, ms = sprung mass

41、, and xs = displacement of sprung mass. The difference in velocityof mu and ms as given by (x_ux_s) would be the velocity input to the shock absorber.The following parameters were used for the ATV: ms =83kg(182.5lb), mu =41kg(90lb), ks = 45.5 kN/m (259.8 lb/in), cs = 38.5 N-s/m (0.22 lb-in/s) and kt

42、 = 127 kN/m (725.2 lb/in) at 37.9 kPa (5.5 psi).6 ResultsThe Mark 1 shock was tested on an electrodynamic shaker. The base of the shock was supported from a stand, and the moving rod was attached to a stingerthrough an impedance head, as shown in Fig. 7. The shaker was run using sine dwell at certai

43、n frequencies. One end of the inner coil and one end of the outer coil were connected such that the combined voltage can be measured. The other ends were connected with various resistances. Next, power generated was determined from measurement of voltage across a known resistance (in this case 33 ),

44、 and the result compared with the predicted power from Eq. 5. For the open-circuit voltage as well as the power generated, there was close agreement between the theoretical prediction (open circuit voltage of 0.69 V and power with 33 resistance of 3.8 W) and the measured values (open circuit voltage

45、 of 0.71 V and power with 33resistance of 3 W) for the case with the velocity of 0.01 m/s. However, for the case with higher velocity of 0.05 m/s there was discrepancy between theoretical values (open circuit voltage of 3.44 V and power with 33resistance of 95 W) and the measured values (open circui

46、t voltage of 2.52 V and power with 33 X resistance of 54 W),which may be attributed to the unaccounted bearing friction.Fig. 7 Mark 1 shock tested on electrodynamic shakerAfter the Mark 1 shock was tested in the laboratory, it was mounted on an ATV and the performance was tested. Peak power generate

47、d by this shock when the ATV went over a 44 beam was 7.4 W. The insufficient magnitude of the power can be attributed to the bearing friction. It was decided to test another design with the capability to generate more power.Next, the Mark 2 shock was tested on an electrodynamic shaker at 0.5 g, as s

48、hown in Fig. 8.The results of the Mark 2 test are given in Fig. 9. The damping constant of this Mark 2 EM shock was measured to be 38.5 N/m/s (0.22 lb/in/s).Then, the Mark 2 shock was mounted in the ATV as shown in Fig. 3, and the vehicle was driven over a 44 beam. Typical output response of the Mark 2 shock absorber is shown in Fig. 10. The amplitude

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论