水平定向钻机动力箱设计含开题及12张CAD图
收藏
资源目录
压缩包内文档预览:
编号:145208285
类型:共享资源
大小:2.79MB
格式:ZIP
上传时间:2021-09-16
上传人:QQ14****9609
认证信息
个人认证
郭**(实名认证)
陕西
IP属地:陕西
200
积分
- 关 键 词:
-
水平
定向
钻机
动力
设计
开题
12
CAD
- 资源描述:
-
水平定向钻机动力箱设计含开题及12张CAD图,水平,定向,钻机,动力,设计,开题,12,CAD
- 内容简介:
-
课题名称水平定向钻机动力箱设计一、毕业设计(论文)工作内容和要求1、选题背景非开挖施工技术是20世纪70年代末在西方发达国家星期并逐渐走向成熟的地下管线铺设、修复和更换的新技术。与传统的挖槽施工法相比,非开挖施工技术具有不影响交通、不破坏环境、施工周期短、综合成本低、社会效益显著等优点。因此,有人称其为地下营线施工的一项技术革命。在一些发达国家,非开挖技术的应用已十分普遍,施工工作量急剧增加。随着我国经济的发展,城市通讯、电力、煤气、自来水等地下管线的铺设及陈旧管线的改造任务也逐渐增多。发展我国的非开挖铺管技术,具有十分广阔的市场应用前景和十分重要的意义。2、工作内容与需要提供的基础资料水平定向钻机是目前广泛使用的一种重要的非开挖管道铺设施工机械。动力箱是水平定向钻机的关键部件之一,它以液压马达为动力源,通过传动机构,使钻杆实现旋转和进退运动,克服地层阻力完成钻空作业任务。任务内容与工作要求:(1)结合钻杆输出参数与要求,提出动力箱传动和结构的细化方案;(2)基于载荷分析和强度理论,进行动力箱传动机构的主参数设计;(3)于载荷分析和强度理论,进行动力箱关键零部件的结构参数设计和寿命估计;(4)进行动力箱结构设计,完成部件图和主要零件图。(3)钻杆技术参数:、 最大进给力/回拖力:600kN;(2)最大转矩:40kN.m;、 转动速度范围:0100rpm;(4)移动速度范围:020m/min。动力箱技术要求:、 采用液压马达+直齿轮传动实现钻杆旋转运动;、 采用液压马达+齿轮齿条传动实现钻杆钻进或回拖运动;在满足承载能力要求的前提下,希望传动机构和动力箱结构尽可能紧凑。3、要求完成的成果和相应的技术指标(1)文档3000汉字的英文翻译并附原文;开题报告一份,总字数不少于3000汉字;毕业设计报告(论文)一份,字数不少于10000汉字,符合规范化格式要求。毕业设计业务总结一份(进入学生档案);(2)实物成果(如:图纸、软硬件、产品等)的规格与数量或性能指标要求;完成设计图纸(装配图A0一张,零件图一套);二、工作进度要求(按周次填写)第1周 完成英文翻译,提交英文翻译给指导老师批阅。第2周 英文翻译经指导老师批阅合格并确认后,上传至“毕业设计管理系统”,译文封面用标准模板。围绕课题查阅文献资料。第3周 查阅文献资料,撰写开题报告。第4周 完成开题报告,经指导老师批阅合格并确认后,上传至“毕业设计管理系统”。开题报告封面用标准模板。第5周 完成方案设计、电机选型、运动设计及承载能力设计。第6周 进行初步结构设计。第7周 中期检查,在“毕业设计管理系统”上完成“中期检查报告”的填写。第8周 绘制装配图。第9周 完成装配图。第10周 完成零件图。第11周 完成“毕业设计报告(论文)”的撰写,并提交给指导老师批阅和确认。第12周 上传“毕业设计报告(论文)”和附件至“毕业设计管理系统”。封面用标准模板。第13周 评阅、成果验收,规范化检查。第14周 答辩评分 三、主要参考文献(35篇)1 沙永柏,刘宝仁,于萍非开挖导向钻机给进机构分析J探矿工程(岩土钻掘工程),2005,(5):46-482 张启君,张忠海,常仁齐,郑 华,马瑞永ZDl245ZD2070型水平定向钻机的设计J探矿工程(岩土钻掘工程),2004,(4):38-403 吴晓军,马新,郑午DX300型非开挖导向钻机给进机构的设计J世界地质,2001,20(1):100-1044 吴宗泽机械设计实用手册M北京:化学工业出版社20055 成大先,机械设计手册单行本液压传动M,北京:化学工业出版社,20046 徐成宇有限元方法在非开挖钻机动力头主轴设计中的应用D吉林大学硕士学位论文,2002.57 刘坤,吴磊ANSYS有限元方法精解M北京:国防工业出版社20058 周 宁ANSYS机械工程应用实例M北京:中国水利水电出版社,20069 颜纯文,蒋国盛,叶建良非开挖铺设地下管线工程技术M上海:上海科学技术出版社,200510 王智明,马保松,索忠伟钻孔与非开挖机械M北京:化学工业出版社,200611 张启君,张忠海,常仁齐,郑 华,马瑞永浅谈ZD系列水平定向钻机的结构设计J建筑机械化,2004,(4):66-6812 赵丁选,杨力夫等国内外非开挖定向钻机及智能技术J吉林大学学报(工学版),2005,35(1):44-4813 Struzziery J J,Spruch A A A,Blondin C ATrenchless pipeline for urban renewal projectJJournal of New England Water Environment Association,1998,32(2):118-12514 Wu M C,Tung P C,Hsieh T YImprovement of the horizontal directional drilling method by using an autonomous land vehicle with a radio direction finding systemJAutomation in Construction,2002,(11):75-8815 Xu Li,Zhang Guozheng,Ma Weiguo,Tang Shizhong,Li Yiliang,Ge Xindong,Gu ZhenResearch on no Dig Directional Drilling Pipeline Laying TechniqueThe research on directional drilling toolJEngineering Sciences,2004,2(4):75-82翻译资料名称(外文) Machine 翻译资料名称(中文) 机器 机 器人们给机器这个词下了各种各样的定义,但对本文来说,机器是具有某种独特用途的设备,用来简少或代替人力或畜力,以完成各种体力工作。工具可以是看作最简单的机器。机器的作用可以包括把化学能、热能、电能或核能转换成机械能,或者反过来把机械能转换成其它几种能,或者其作用仅仅是用来改变和传递力和运动。所有的机器都有一个输入端,一个输出端,一个转换或变换装置和传递装置。从天然能源(例如气流、水流、煤、石油或铀)获得其输入能量并将其转换成机械能的机器称作原动机。风车、水轮、汽轮机、蒸汽机和内燃机都是原动机。这些机器的输入端是各不相同的,而输出端则通常都是一根旋转轴,它能用作其它机器(例如发电机、液压泵、或空气压缩机)的输入端,所有这后三种装置都归类为发动机,它们产生的电能、液能或气能能够分别用作电动机、液动机或气动机的输入端。这些发电机能够用来驱动带有各种输出端的机器,诸如材料加工机、包装机或输送机。所有既不是原动机、发电机也不是电动机的机器都归类为工作机。这类机器也包括各种手动机具,例如计算机和打字机。如果工作机是一台由电动机驱动的泵,来自发电站的原动机的能经过发电机和电动机传到工作机,其情况如图1所示。工作机也能直接由一个小型的直接连接的原动机(例如汽油发电机)驱动,如图1虚线所示;然而,对于大多数由动力传动的工作机来说,来自原动机的能是沿图中实线所示的顺序传输的。在某些情况下,上述各种机器都组装成一个机组。例如在柴油发电机车中,柴油机是原动机,它驱动发电机,发电机再把电供给电动机以驱动车轮。下面举汽车中的几个例子。在汽车中,基本问题是利用汽油的爆发力来提供动力使后轮转动。几个汽缸里汽油的爆发推动活塞向下,这种平移运动(线性运动)的传递和转换成曲轴的旋转运动是靠连杆来实现的,连杆把每一个活塞同曲轴(图21)连接起来,曲柄是曲轴的一部分。活塞、汽缸、曲柄和连杆组合称作滑块曲柄机构(也叫曲柄连杆机构);这是将平移转换成旋转(例如发电机)或将旋转转换成平移(例如泵)通常采用的方法。阀门作用在于允许汽油空气混合物进入圆筒中并且耗尽燃烧的气体;这些阀门由凸轮的楔入作用打开和关闭突出部分,通过齿轮或者链传动由曲轴驱动旋转的凸轮轴。在八汽缸四冲程发电机中,曲轴每转1/4圈在沿其长度方向某一点就获得一个推力。为了消除这种断续的推力对曲轴转速的影响以使转速平稳,采用了一个飞轮。飞轮是一个连在曲轴上的重型轮子,它借助其惯性来抵消和减轻转速的任何波动。由于内燃机所传递的扭转(旋转力)取决于它的转速,所以内燃机不能在有负载的情况下起动。为了使汽车发电机能够在无负载状态下起动然后再连到车轮上而又不致使发电机减速、停车或灭火,必须有离合器和变速箱。离合器用来使曲轴和变速箱接合或分离,而变速箱则分几级改变输入轴和输出轴之间的速比和变速箱的扭矩。在低速档,输出转速很低,而输出轴扭矩较发电机的扭矩要大,所以汽车能够起动;在高速档,汽车正在高速前进,因此输入和输出的扭矩和转速是相等的。安装车轮的轴都装在固定在后弹簧上的后桥壳里,并且由变速箱借助主动轴来起动,当汽车行驶时,弹簧随公路上的凸凹不平而上下弯曲,使桥壳同变速箱产生相对运动;要允许运动而不干涉扭矩传输,主动轴的每个末端都有一个万向节。主动轴是垂直于对后桥。直角连接通常用锥齿轮来实现,其传动比使轮轴的转速为主动轴转速的1/3-1/4。后桥壳里还装有差动齿轮,差动齿轮使两个后轮既能由同一根主动轴来驱动,又能在转弯时具有不同的转速。像所有的运动机械装置一样,汽车也不能避免摩擦力的作用。在发电机、变速箱、后桥壳和所有的轴承里,摩擦作用都是有害的,因为摩擦增加了对发电机要求的功率,润滑可以减少但不能消除这种摩擦作用。另一方面,由于轮胎同路面之间以及同制动器之间的摩擦作用,才能实现牵引和制动。驱动风扇、发电机和其它辅助设备的皮带,是一种依靠摩擦作用的装置。摩擦对离合器的工作也是很有用的。上述的某些装置以及下面要谈到的其它一些装置在以各种方式装配起来的用来完成各种体力工作的各种机器里都能找到。由于各种工作机的功能不同,并缺乏共同的特性,所以本文不论述专用的工作机。本文既不讨论原动机的工作性能,也不论述液压装置、气动装置或电器装置的作用。本文只研究作为机器的各组成部分的基本机械装置的作用和结构。大多数这些装置的功能是用来传递和转换力和运动。而另一些装置,例如弹簧、飞轮、轴和紧固件,则是用来完成各种辅助功能。从这篇文章的目的来说机器可以进一步被定义为:机器是由两个或两个以上耐用的、相对约束的部件组成的装置,这些部件可以传递和转换力和运动以便于做功。机械零件应该经久耐用这一要求意味着它们应能承受外加负载而不致损坏和失灵。尽管大多数机械零件是具有适当尺寸的固态金属零件,但也采用非金属材料、弹簧、液压元件以及像皮带这样的拉力零件。机器最显著的特性在于其零件都是相互连接或导向,从而它们彼此的相对运动都是受约束的。例如,相对于汽缸体来说,往复式发电机的活塞受汽缸的约束从而做直线运动;曲轴上的各点受主承轴的约束作圆周运动;要作其它形式的相对运动是不可能的。在某些机器中,有些零件只部分受约束。如果零件用弹簧或摩擦件相互连接,零件彼此之间的相对行程可以是固定不变的,但零件的运动可能会受到弹簧的刚度、摩擦力和零件的质量的影响。如果机器的所有零件都是刚度比较大的元件,在负载作用下挠度可以忽略不计,那就可以看成完全约束并且零件的相对运动可以不必考虑引起相对运动的力。例如,对一台往复式发动机的曲轴的某一规定的转速来说,连杆和活塞上各点相应的速度是能够计算出来的。对于规定的输入运动来说,机器各零件的位移、速度和加速度的确定是机械运动学讨论的主题。进行这样的计算时不必考虑各种有关的力,因为运动都是受约的。根据这一定义,力和运动都在机器中被传递和转换。机器各零件相互连接和导向以便从一定的输入运动产生所需的输出运动的方式称作机器的结构。往复式发电机的活塞、连杆和曲轴组成一个机构以便把活塞的直线运动变成曲轴的旋转运动。虽然机器在工作中既包括力又包括运动,但是机器的主要作用是为了省力或转换运动。而变速箱常作为减速器,杠杆本质上是增力装置。然而,在机器中运动和力是分不开的,并且总是反比。杠杆输出的力大于输入的力,但是输出地运动小于输入的运动。同样,齿轮减速器的输出转速小于输入转速,但是输出扭矩大于输入扭矩。在第一种情况下,力的增加伴随着运动损失,而在第二种情况下,运动的损失伴随着扭矩的增大。尽管某些机器的主要作用能够辨认出来,还是难以把所有的机器都归类为力的改变装置或者运动的转换装置;某些机器应同时归入这两类装置。然而,所有机器都必须能够起到改变运动的作用,因为如果一个机械装置的零件不会运动,则该机械装置只是一个结构,而不是机器。在研究零件的运动时,机械设计者习惯于讨论机器的机构。虽然所有的机器都有机构,因此都能起到改变运动的作用,而某些机器在设计时并没有改变力的要求;所产生的各个力是由运动部件的摩擦作用和惯性作用所引起的,并不表现为有用的输出作用力。这一类通常包括量测仪表和时钟。在定义中提到的“功”要按照它的科学含义来解释。在机械学中,功是力沿着力的作用方向做出的结果,它等于平均力和运动距离的乘积。如果一个人扛着一个重物沿水平路线运动,根据这个定义他没有做功,因为力和运动相互垂直,即力是垂直的,而运动是水平的。如果他扛着重物登上一段楼梯或者梯子,他就做了功,因为他是沿着他作用力的同一方向运动的。从数学上来讲,如果用F表示力(单位为磅或者公斤),S表示距离(单位为英尺或者米),则功等于作用力F乘以力所运动的距离S;即功=F*S。如果一个力使一个物体绕一固定轴或枢轴旋转,则所做的功等于扭矩(T)乘以旋转的角度(以弧度表示的角度)。在用力和运动来给机器的机械功的作用下定义时,上述有关功的概念是一些基本概念,这些概念表明机器中力和运动的不可分性。由于摩擦的关系,从机器中输出的功永远小于输入的功,而效率,即输出的功和输入的功,两者的比值永远小于100%。输出的力和输入的力之比称作机械利益(MA),它表示改变力的功能,而输入的运动和输出的运动之比称作速度比(VR),它表示改变运动的功能。如果效率很高,这两个比值几乎相等;如果输出的力是输入的力的十倍,则输入的运动必须是输入运动的十倍;即力之所得等于运动之所失。摩擦只影响机械利益而不影响速比。为了从输出功和输入功的比值计算效率,就必须知道输出的力和输入的力通过规定的距离所作的功。由于这需要确定通过这一距离的平均力,所以它是很不方便的。比较方便的方法是从负载的瞬时值和负载的运动速率来测定机械的效率。为此,功率公式是非常有用的。功率是做功的速率的单位在说英语的国家力是马力(hp)马力等于每分钟33,000英尺磅,因此每分钟240英尺磅等于240/33,000=0.00727 hp。在讨论诸如杠杆和轮与轴这一类简单的机械时,最方便是把输入的力叫做“作用力”,而把输出的力叫做“负载”。因此机械利益是负载和作用力之比,速比是作用力的运动(位移或速度)除以负载的相应运动。MACHINE The word machine has been given a wide variety of definitions, but for the purpose of this article it is a device, having a unique purpose, that augments or replaces human effort for the accomplishments of physical tasks. Tools may be regarded as the simplest class of machines. The operation of a machine may involve the transformation of chemical, thermal, electrical, or nuclear energy into mechanical energy, or vice versa, or its function may simply be to modify and transmit forces and motions. All machines have an input, an output, and a transforming or modifying and transmitting device. Machines that receive their input energy form a natural source, such as air currents, moving water, coal, petroleum, or uranium, and transform it into mechanical energy are known as prime movers. Windmills, waterwheels, turbines, steam engines, and internal-combustion engines are prime movers. In these machines the inputs vary; the outputs are usually rotating shafts capable of being used as inputs to other machines, such as electric generators, hydraulic pumps, or air compressor. All three of the latter devices may be classified as generators; their outputs of electrical, hydraulic, and pneumatic energy can be used as input to electric, hydraulic, or air motors. These motors can be used to drive machines with a variety of outputs, such as materials processing, packaging, or conveying machinery. All machines that are neither prime movers, generators, nor motors may be classified as operators. This category also includes manually operated instruments of all kinds, such as calculating machines and typewriters. If the operator is a pump driven by an electric motor, the flow of energy from the prime mover at the power plant through the generator and motor to the operator is as shown in Figure 1. The operator can also be driven directly by a small, direct-connected prime mover, such as a gasoline engine, as shown by the dotted line Figure 1; for most power-driven operators, however, the flow of energy form the prime mover follows the solid lines. In some cases, machines in all categories are combined in one unit. In a diesel-electric locomotive, for example, the diesel engine is the prime mover, which drives the electric generator, which, in turn, supplies electric current to the motors that drive the wheels. The following are some examples supplied by an automobile. In an automobile, the basic problem is harnessing the explosive effect of gasoline to provide power to rotate the rear wheels. The explosion of the gasoline in the cylinders pushes the pistons down, and the transmission and modification of the crankshaft is effected by the connecting rods that join each piston to the cranks (Figure 21) that are part of the crankshaft. The piston, cylinder, crank, and connecting rod combination is known as a slider-crank mechanism; it is a commonly used method of converting translation to rotation (as in an engine) or rotation to translation (as in a pump). To admit the gasoline-air mixture to the cylinders and exhaust the burned gases, valves are used; these are opened and closed by wedging action of cams (projections) on a rotating camshaft that is driven from the crankshaft by gears or a chain.In a four-stroke-cycle engine with eight cylinders, the crankshaft receives an impulse at some point along its length every quarter revolution. To smooth out the effect of these intermittent impulses on the speed of the crank-shaft, a flywheel is used. This is a heavy wheel, attached to the crankshaft, that by its inertia opposes and moderates any speed fluctuations. Since the torque (turning force) that it delivers depends on its speed, an internal-combustion engine cannot be started under load. To enable an automobile engine to be started in an unloaded state and then connected to the wheels without stalling, a clutch and a transmission are necessary. The former makes and breaks the connection between the crankshaft and the transmission, while the latter changes, in finite steps, the ratio between the input and output speeds and torques of the transmission. In low gear, the output speed is low and the output torque higher than the engine torque, so that the car can be started moving; the car is moving at a substantial speed and the torques and speeds are equal.The axles to which the wheels are attached ate contained in the rear axle housing, which is clamped to je rear springs, and are driven from the transmission by the drive shaft, as the car moves and the springs flex in response to bumps in the road, the housing moves relative to the transmission; to permit this movement without interfering with the transmission of torque, a universal join is attached o each end of the drive shaft.The drive shaft is perpendicular to the rear axles. The right-angled connection is usually made with bevel gears having a ratio such that the axles rotate at from one-third to one-fourth the speed of the drive shaft. The rear axle housing also holds the differential gears that permit both rear wheels to be driven from the same source and to rotate at different speeds when turning a corner.Like all moving mechanical devices, automobiles cannot escape from the effects of friction. In the engine, transmission, rear axle housing, and all bearings, friction is undesirable, since it increases the power required from the engine; lubrication reduces bit does not eliminate this friction. On the other hand, friction between the tires and the road and in the brake shoes makes traction and braking possible. The belts that drive the fan, generator, and other accessories are friction-dependent devices. Friction is also useful in the operation of the clutch. Some of the devices cited above, and others that are described below, are found in machines of all kinds of physical tasks. Because of this diversity of function and the lack of common characteristics, this article will not be concerned with specific operators. Neither will it deal with the overall performance of prime movers, nor with the operation of hydraulic, pneumatic, or electrical devices. It will consider only the operation and structure of the basic mechanical devices that are the constituent part of machines. The function of most of these devices is to transmit and modify force and motion. Other devices, such as spring, flywheels, shafts, and fasteners, perform supplementary functions. For the purpose of this article a machine may be further defined as a device consisting of two or more resistant, relatively constrained parts that may serve to transmit and modify force and motion in order to do work. The requirement that the part of a machine be resistant implies that they be capable of carrying imposed loads without failure or loss of function. Although most machine part are solid materials bodies of suitable proportions, nonmetallic materials, springs, fluid pressure organs, and tension organs such as belts are also employed. The most distinctive characteristic of a machine is that the parts are interconnected and guided in such as way that their motions relative to one another are constrained. Relative to the block, for example, the piston of a reciprocating engine is constrained by the cylinder to move on a straight path; points on the crankshaft are constrained by the main bearings to move on circular paths; no other forms of relative motion are possible. On some machines the parts are only partially constrained. If the parts are interconnected by springs or friction members, the paths of the parts relative to one an other may be the stiffness of the parts may be affected by the stiffness of the springs, friction, and the masses of the parts. If all the parts of a machine are comparatively rigid member whose deflections under load are negligible, then the containment may be considered complete and the relative motions of the parts can be studied without considering the forces that produce them. For a specified rotational speed of the crankshaft of a reciprocating engine, for example, the corresponding speeds of points on the connecting rod and the piston can be calculated. The determination of the displacements, velocities, and accelerations of the parts of a machine for a prescribed input motion is the subject matter of kinematics of machines. Such calculations can be made without considering the forces involved, because the motions are constrained. According to the definition, both forces and motions are transmitted and modified in a machine. The way in which the parts of a machine are interconnected and guided to produce a required output motion from a given input motion is known as the mechanism of the machine. The piston, connecting rod, and crankshaft in a reciprocating engine constitute a mechanism for changing the rectilinear motion of the piston into the rotary motion of the crankshaft. Although both forces and motions are involved in the operation of machines, the primary function of a machine may be either the amplification of force or the modification of motion. A lever is essentially a force increase, while a gearbox is most often used as a speed reducer. The motions and forces in a machine are inseparable, however, and are always in an inverse ratio. The output force on a lever is greater than the input force, but the output motion is less than the input motion. Similarly, the output speed of a gear reducer is less than the input torque. In the first case a gain in force is accompanied by a loss in motion, while in the second case a loss in motion is accompanied by a gain in torque. Although the primary function of some machines can be indentified, it would be difficult to classify all machines as either force or motion modifiers; some machines belong in both categories. All machines, however, must perform a motion-modifying function, since if the parts of a mechanical device do not move, it is a structure, not a machine. It is customary for machinery designers, when studying the motions of the parts, to speak of the mechanism of a machine. While all machines have a mechanism, and consequently perform a motion-modifying function, some machines do not have a planned force-modifying purpose; the forces that exist are caused by friction and inertia of the moving masses and do not appear as a useful output effort. This group would include measuring instruments and clocks. The “word” referred to in the definition will be interpreted in its scientific sense. In the science of mechanics, word is something that forces do when they move in the direction in which they are acting, and it is equal to the product of the average force and the distance moved. If a man carries a weight along a horizontal path, he does no work according to this definition, since the force and the motion are at right angles to one another; that is, the force is vertical and the motion horizontal. If he carries the weight up a flight of stairs or a ladder, he does work, since he is moving in the same direction in which he is applying a force. Mathematically, if F equals force (in pounds or kilograms), and S equals distance (in feet or meters), work is then equal to the applied force F multiplied by the distance this force moves S; or WORK=F*S. When a force causes a body to rotate about a fixed axis, or pivot, the work done is obtained by multiplying the torque (T)by the angle of rotation. These concepts of work are fundamental in defining the mechanical work function of machines in terms of force and motions, and they bring out the inseparability of force and motions in machines. Because of friction, the work output fr
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。