外文文献.docx

SZ–250A型塑料注射成型机液压系统设计-注塑机液压系统含3张CAD图

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:145295183    类型:共享资源    大小:2.86MB    格式:ZIP    上传时间:2021-09-18 上传人:QQ14****9609 IP属地:陕西
150
积分
关 键 词:
SZ 250 塑料 注射 成型 液压 系统 设计 注塑 CAD
资源描述:
SZ–250A型塑料注射成型机液压系统设计-注塑机液压系统含3张CAD图,SZ,250,塑料,注射,成型,液压,系统,设计,注塑,CAD
内容简介:
IOP Conference Series: Materials Science and EngineeringPAPER OPEN ACCESSDesign and Vibration Analysis of Injection Moulding Machine Base StructureTo cite this article: CH Kesava Manikanta Kumar et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1128 012041View the article online for updates and enhancements.This content was downloaded from IP address 42 on 11/05/2021 at 13:29IConACES 2020IOP Conf. Series: Materials Science and EngineeringIOP Publishingdoi:10.1088/1757-899X/1128/1/0120411128 (2021) 012041Design and Vibration Analysis of Injection Moulding Machine Base StructureCH Kesava Manikanta Kumar1, K Annamalai*2, S Vinoth kumar3, Ponraj A41 PG Student, School of Mechanical Engineering, VIT University, Chennai- 600127, India.2 Professor, School of Mechanical Engineering, VIT University, Chennai-600127, India.3 Mechanical Engineer, Chennai 600127, India.4 Mechanical Engineer, Chennai-600127, India.Email:1 kesava4802*2 kannamalaivit.ac.in3 bosrevs4 ponraj.alagesanAbstract. In this study the dynamic behaviour and vibration parameters of Injection Moulding Machine Base Structure was performed by analysing the structure numerically as well as experimentally. Modal analysis and FRF analysis performed numerically to find the mode pattern, natural frequencies and critical points. Vibration parameters are measured by performing experimentation using FFT analyser and the data was taken by using BK (Bruel & kjaer) Connect software. The Fast Fourier Transform (FFT) analyzer is used to transform the continuous time domain data to continuous frequency domain data. The experimental results show that structure is vibrating high at clamping unit location along x-direction. Vibration level can be controlled at that particular location by increasing the stiffness of the structure. Keywords: Modal and FRF Analysis, FFT analyser, BK Connect.1. IntroductionInjection moulding is the cyclic process of producing plastic parts. Injection moulding machine consists of various units for performing several functions and all these units are mounted over the base frame. Base mainly consists of three frames. They are top frame, bottom frame and connecting vertical frame. All the frames are C-channel sections. Connecting vertical frame transfers weight and produced vibration to the bottom frame which is connected to the anti-vibration mount. During experimentation, Fast Fourier Transform (FFT) Analyzer is used for recording the data of vibration at differentconditions.Mathes et al 1 this paper describes about vibration parameters of two-pole induction motor. The natural and forced vibration of motor are evaluated by numerical calculations using finite element approach and validated using experimental modal analysis. Forced vibrations are calculated when the motor is operated by convertor. By using FFT analyser frequency spectrum was analysed. Torres- Martinez R et al 2, This study includes static and dynamic analysis of high-speed machining Al-Cu alloy lathe bed. Vibration characteristics like deflection, natural frequencies and vibration amplitudes were calculated by performing simulations on FEM model. A cast iron bed was considered as a parametric model used in conventional speed machining. Deflection and natural frequencies of theContent from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Published under licence by IOP Publishing Ltd1IConACES 2020IOP Conf. Series: Materials Science and EngineeringIOP Publishingdoi:10.1088/1757-899X/1128/1/0120411128 (2021) 012041machine structure was determined as per ISO starndards. This study concludes that Al-Cu alloy structure was more feasible than cast iron lathe bed. Jiao M et al 3, Evaluated dynamic and static characteristics of a large machine bed by using finite element analysis. Structural topology optimization was performed for the structure. Results showed that 8.58% of mass was reduced 7.41% of stiffness was improved. Static and dynamic properties are improved for the phase of design. Yang H et al 4, The author analysed CK61125 CNC lathe bed using FEA approach. Performed static and dynamic analysis on the lath bed and found maximum stress, strain and deformation as 100.98Mpa, 0.615 and 0.1455mm respectively. The natural frequencies of the lathe bed were obtained and results shows that 271.63 Hz, 290.41Hz and 305.88 Hz were first three resonant frequencies. Results shows that vibration characteristics of lathe bed gives strong theoretical parameters for the machine tool. Hong CC et al 5, the turning-milling CNC machines primary, secondary shafts and machine bed were analysed. They selected the maximum displacement and natural frequencies values as the basic data to design the CNC machine in safety condition for avoiding resonance. The natural frequencies, linear dynamic stresses and displacements of CNC machine are obtained by using the SOLIDWORKS simulation module.2. Methodology:In this study vibration analysis is performed both numerically and experimentally. Modal analysis is done and the behavior of the mode shapes are identified. Frequency Response Function analysis is performed by exciting the machine base with 1G acceleration and a frequency range of 0-100Hz. Experimentation is performed and the data is acquired using FFT analyser. By observing the results,the idea for reduction of vibration is suggested.Figure 1. Methodology3. Geometry:Figure 2. Injection Moulding Machine Base Structure114. Meshing:The meshing of the geometry is done in Hyper mesh. Here the type of mesh used is Shell mesh with an element size of fifteen. After meshing, we need to ensure that the mesh of each component should not intersect and penetrate with another components. We need to check the quality index of the mesh generated. Here the weld connections are used for connecting the different components of the geometry.Figure 3. Enlarged View of MeshNumber of Elements: 86797 Material Properties:All the properties of the material are assigned to each and every component along with their thickness values. Material: FE410 Density: 7860 kg/m3 Poissons Ratio: 0.285 Youngs modulus: 210 GPa Weight of Injection unit: 1Tonne Weight of Clamping unit: 3Tonne5. Boundary Conditions: Eight mounting points are restricted in all DOF. Frequency range: 0-200 Hz. Excited Acceleration: 1G (For FRF). The injection and clamping unit masses are laid through their CG points on the base.Figure 4. Wire Frame Modal Showing Constraints6. Results:6.1 Modal Analysis Results:Modal analysis is done and the natural frequencies are obtained and from this modal analysis the behaviour is identified from its mode shapes.Figure 5. Mode No.1From Figure.5, the type of mode is lateral mode along X-axis at frequency 12.49 Hz.Figure 6. Mode No.2From Figure.6, the type of mode is mixed mode along X & Y-axis at frequency 24.38 Hz.Figure 7. Mode No.3From Figure.7, the type of mode is bending mode along Z-axis at frequency 43.99 Hz.Figure 8. Mode No.4From Figure.8, the type of mode is vertical mode along Y-axis at frequency 54.76 Hz.Table. 1 Types of ModesOperating Frequency 41.66Hz6.2 Frequency Response Analysis (FRF):The Frequency response analysis is done and the critical points are identified shown in Figure 9. In X-Direction the peak values are observed at point 3 and 10 with frequency 44Hz. (Figure.10) In Y-Direction the peak values are observed at point 3 and 19 with frequency 44Hz. (Figure.11)In Z-Direction the peak values are observed at point 15 with frequency 24Hz and 4, 19 with frequency 12Hz (Figure.12)Figure 9. Critical Points of FRF AnalysisFigure. 9, shows the critical points of the model in FRF analysis The responses of the structure are captured at these critical points by exciting the structure with 1G acceleration.Figure. 10. Acceleration Vs Frequency (X-Direction)Fig. 11. Acceleration Vs Frequency (Y-Direction)Figure. 12 Acceleration Vs Frequency (Z-Direction)7. Experimentation Set Up:The Experimentation is done and the values are recorded at the critical points attained from FRF analysis. Here the FFT analyser and BK connect software are used for recording and analysing the experimental data.Figure 13. Experimental SetupFigure 14. Injection Moulding Machine with Experimental SetupFigure 15. Data Acquisition SystemFigure 16. Measuring Point7.1 Experimental Results:Figure 17. Acceleration Graph in X-Direction8. Conclusion:Figure 18. Acceleration Graph in Y-DirectionFigure19. Acceleration Graph in Z-DirectionTable 2. Experimental Results of All PointsFrom the experimental results, the acceleration values in X-Direction are observed high at point 19 i.e.,5.42 m/s2. In Y-Direction, the highest acceleration value is observed at point 15 i.e., 0.98 m/s2. In Z- Direction, the highest acceleration value is observed at point 15 i.e., 0.73 m/s2. The acceleration values in both Y and Z-Directions are less than 1 m/s2, but when compared to these directions the acceleration value in X-Direction is very high. So, the maximum vibration is producing at the point 19. The vibrationamplitude at that particular location in the structure can be reduced by introducing ribs which serves as support and increases stiffness of the structure.References1 Mathes S, Werner U, Bauer C, Numerical and experimental vibration analysis of a two-pole induction motor mounted on an elastic machine test bed.2 Torres-Martinez R, Urriolagoitia-Caldern G, Urriolagoitia-Sosa G and Espinoza-Bustos R, Stress and vibration analysis of a lathe bed made of aluminum-copper alloy for high speed machining. In Applied Mechanics and Materials 2009 (Vol. 15, pp. 81-88). Trans Tech Publications Ltd.3 Jiao M, Guo XH, Wan DD l Finite element analysis and lightweight research on the bed of a large machine tool based on HyperWorks. In Applied Mechanics and Materials 2012 (Vol. 121, pp. 3294-3298). Trans Tech Publications Ltd.4 Yang H, Zhao R, Li W, Yang C, Zhen L, Static and dynamic characteristics modeling for CK61125 CNC lathe bed basing on FEM. Procedia engineering. (2017 Jan 1;174:489-96.)5 Hong CC, Chang CL, Lin CY Dynamic Structural Analysis of Great Five-axis Turning-Milling Complex CNC Machine. Global Journal of Research in Engineering. 2017 Jul 31.6 Zhang YW, Zhang WM Analysis of Dynamics Characters of Bed Structure of CNC Machine Tool on FEM Method. In Applied Mechanics and Materials 2012 (Vol. 141, pp. 208-211). Trans Tech Publications Ltd7 Swami BM, Kumar KS, Ramakrishna CH. Design and Structural Analysis Of CNC Vertical Milling Machine Bed. International Journal of Advanced Engineering Technology. (2012;3(4):97-100).8 Li X, Zhao Z. Dynamic analysis on and optimized design of the BED structure of CNC machine. In2011 Chinese Control and Decision Conference (CCDC) 2011 May 23 (pp. 3998-4002). IEEE.Selvakumar A, Ganesan K, Mohanram PV Dynamic analysis on fabricated mineral cast lathe bed. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. (2013 Feb;227(2):261-6.IOP会议系列:材料科学与工程开放获取注塑机底座结构设计与振动分析引用本文:CH Kesava Manikanta Kumar et al 2021 IOP Conf. Ser。:母亲。科学。012041年于1128年拍摄。查看在线文章以获得更新和增强。此内容在11/05/2021 13:29从IP地址42下载IConACES 2020IOP Conf. Series: Materials Science and EngineeringIOP Publishingdoi:10.1088/1757-899X/1128/1/0120411128 (2021) 012041注塑机底座结构设计与振动分析CH Kesava Manikanta Kumar1K Annamalai *2, S Vinoth kumar3Ponraj,:一个41 VIT大学机械工程学院研究生,印度金奈- 600127。2 VIT大学机械工程学院教授,印度金奈600127。3 机械工程师,印度金奈600127。4 机械工程师,印度金奈600127。电子邮件:1 kesava4802*2 kannamalaivit.ac.in3 bosrevs4 ponraj.alagesan摘要通过对注塑机底座结构的数值分析和实验分析,研究了注塑机底座结构的动态特性和振动参数。用数值方法进行模态分析和频响分析,以找出模态模式、固有频率和临界点。利用FFT分析仪进行实验测量振动参数,数据由BK (Bruel & kjaer) Connect软件获取。采用快速傅里叶变换(FFT)分析仪将连续时域数据转换为连续频域数据。实验结果表明,夹紧装置位置沿x方向振动较大。通过增加结构的刚度,可以在特定位置控制振动水平。关键词:模态和频响分析FFT分析仪BK Connect9. 介绍注射成型是生产塑料零件的循环过程。注塑机由执行若干功能的各种单元组成,所有这些单元都安装在基础框架上。底座主要由三个框架组成。它们是顶框、底框和连接垂直框。所有的框架都是c通道截面。连接垂直框架将重量和产生的振动转移到与防振座连接的底部框架上。在实验过程中,采用快速傅里叶变换(FFT)分析仪记录不同条件下的振动数据。本文描述了双极感应电动机的振动参数。采用有限元方法对电机的固有振动和强迫振动进行了数值计算,并用实验模态分析进行了验证。计算了电机在换流器作用下的强迫振动。利用FFT分析仪对频谱进行了分析。托雷斯-马丁内斯R等人2,本研究包括高速加工铝铜合金床床的静态和动态分析。对有限元模型进行了仿真,计算了振动特性如挠度、固有频率和振动幅值。将铸铁床身作为传统高速加工的参数模型。挠度和固有频率本作品的内容可以在知识共享署名3.0许可的条款下使用。本著作的任何进一步分发都必须注明作者、著作名称、期刊引用和DOI。由IOP出版有限公司授权出版1IConACES 2020IOP Conf. Series: Materials Science and EngineeringIOP Publishingdoi:10.1088/1757-899X/1128/1/0120411128 (2021) 012041机器结构根据ISO标准确定。研究结果表明,铝铜合金结构比铸铁床身结构更可行。采用有限元法对某大型机床的动静态特性进行了评价。对结构进行了拓扑优化。结果表明:8.58%的质量降低了,7.41%的刚度改善了。在设计阶段,静态和动态性能得到了改善。作者对CK61125数控床身进行了有限元分析。对板条床进行静态和动态分析,最大应力为100.98Mpa,最大应变为0.615,最大变形为0.1455mm。结果表明,前3个共振频率分别为271.63 Hz、290.41Hz和305.88 Hz;结果表明,床身振动特性为机床提供了较强的理论参数。对车铣数控机床的一、二轴和床身进行了分析。他们选择了最大位移和固有频率值作为基础数据,在安全的条件下设计数控机床,避免共振。利用SOLIDWORKS仿真模块获得数控机床的固有频率、线性动应力和位移。10. 方法:在本研究中,对振动进行了数值和实验分析。进行模态分析,识别模态振型的行为。以1G加速度激励机座,频率范围为0-100Hz,进行频响函数分析。采用FFT分析仪进行了实验,并获得了实验数据。通过对试验结果的观察,提出了减振的思路。图1所示。方法11. 几何:图2。注塑机底座结构912. 网格:几何的网格划分是在Hyper网格中完成的。这里使用的网格类型是Shell网格,元素大小为15。网格划分后,我们需要确保每个组件的网格不与其他组件相交和穿透。我们需要检查生成的网格的质量指数。这里的焊接连接用于连接几何形状的不同组件。图3。网格放大视图元素数量:86797材料的所有属性都分配给了每个组件,以及它们的厚度值。 材料:FE410 密度:7860公斤/米3 泊松比:0.285 杨氏模量:210 GPa 喷油装置重量:1吨 夹紧装置重量:3吨13. 边界条件: 8个安装点在所有DOF限制。 频率范围:0 200hz。 激发加速度:1G (FRF)。 注射和夹紧单元的质量是通过他们的CG点在基础上铺设。图4。线框模态显示约束14. 结果:6.3 模态分析结果:进行模态分析,得到固有频率,并从模态分析中识别其模态振型。图5
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:SZ–250A型塑料注射成型机液压系统设计-注塑机液压系统含3张CAD图
链接地址:https://www.renrendoc.com/paper/145295183.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!