数控液压的结构分析和实验研究-摆式剪板机外文文献翻译、中英文翻译、外文翻译.docx

数控液压的结构分析和实验研究-摆式剪板机外文文献翻译、中英文翻译、外文翻译

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:145718672    类型:共享资源    大小:160.56KB    格式:ZIP    上传时间:2021-09-27 上传人:QQ14****9609 IP属地:陕西
12
积分
关 键 词:
数控 液压 结构 分析 实验 研究 摆式 板机 外文 文献 翻译 中英文
资源描述:
数控液压的结构分析和实验研究-摆式剪板机外文文献翻译、中英文翻译、外文翻译,数控,液压,结构,分析,实验,研究,摆式,板机,外文,文献,翻译,中英文
内容简介:
附录一数控液压的结构分析和实验研究摆式剪板机文摘:数控液压摆式剪板机是重要的板加工设备之一,其安全性能和剪切精度取决于载体的结构框架和工具。当前的剪板机主要力学性能分析只使用有限的元素的工具和简单的应用均布荷载,它不能反映真正的剪板机的工作状态。通过集成的原始结构框架和工具载体,两个工作状态的剪板机的静态性能进行了分析与有限元方法本文均布荷载或移动载荷分别应用根据其工作雕像。后应力-应变分析结果进行了验证测试根据结构提出了改进提供依据为提高剪板机的属性。介绍:摆式剪板机是一种金属加工设备,通过相对运动骨折钢板成所需大小和合理的动叶片和静态叶片之间的间隙。随着中国工业的快速发展,个性化的剪板机的需求快速增长。框架和刀架的主要组件是剪板机,其强度和刚度直接确定的安全性能和剪切精度。根据经验公式和参数,目前大多数国内剪板机由持久的传统的设计理论和规则。然而,应力集中和整体力分布的机器不能准确地获得根据传统的设计方法,从而导致高端性能需求未能偿还的1。为了解决这个问题,国内外剪板机机械性能进行了研究。框架的刚度和强度顾王继泉根据线性分析和 ANSYS 模态分析2。通过分析处理模型在 ANSYS 建立,新华社杨改善了机器的结构和力学性能3。通过编程每一步的信息移动载荷在 ANSYS,框架的变形、等效应力和等效应变研究了迎迎刘4。但大多数文献只理论分析了均布荷载, 而没有分析中的业绩剪切条件或提出可行的改进建议。通过 QC12Y-42500 剪板机作为一个例子,静态分析框架和工具的载体分别进行均布荷载和移动载荷。根据后来的应力-应变测试验证了分析结果,结构性的提出了改进提高剪板机的属性。剪板机的轴承负荷计算1.1 剪力斜刃剪切的剪切力可以通过 Noshari 公式计算:b 在哪里剪板的极限强度(MPa);x 是剪板的伸长;h 的厚度吗剪板(mm);是剪切角();是刀片间隙(mm);C 是活页夹脚轴之间的距离和静态叶片(mm);X 是活页夹脚的相对距离, 在 X=C /h;Y 剪切侧的相对间隙,在 Y=/ h;Z 是弯曲系数与剪切长度 L,剪切角、剪板 h 和金属伸长x 表 1。价值所需的系数。总剪力 P 可以获得 89074 n 根据系数值如表 1 所示。1.2 油缸推力轴承的反应力和剪切水平推力因为在框架上和刀架是行动和反应,刀架的结构可以简化为力学模型3,如图 1 所示。根据图 1 所示的所有部队的位置和剪切水平推力 T = 0.3 p = 26722.2 n 从经验中获得公式,转矩平衡方程和力平衡可以编写如下:油缸推力 F = 115098.2 n,等于 support-cylinder 力量。轴承反应部队 R = 25204.5 n,等于支持刀架的径向力。1.3 活页夹力活页夹力可以根据经验公式确定如下:k 是一个系数,为液压式给料机,k = 0.8 - 1.1,机械压力式给料机,k = 0.5 - 0.6,h 是剪板的厚度(毫米),b 是剪板的宽度(毫米)。Py 可以通过上面的公式:Py= 100000 n。摆式剪板机的有限元分析2.1 有限元模型的建立和预处理载体的框架和工具框架和刀架模型分别由相关软件,然后导到有限元软件6。参数框架和工具的载体选择根据他们的材料:Q235 碳素钢、弹性模量是 2.1105 mpa,泊松比是 0.3。框架的底部是 full-constrained 基于实际情况。两个参考点,他们的自由度只限制在局部坐标系旋转 X 轴,建立在左和右盘的中心刀架并分别加上了两个洞。为了消除刚性位移的工具载体,翻译约束的 y,z 方向应用于圆筒之间的接触点和刀架在全球坐标系统7。架床体与四面体元素融入,而梁和刀架与六面体的网状元素。2.2 框架分析2.2.1 应用均匀加载框架的剪力和水平推力图 2。框架强调轮廓;图 3。框架位移等值线基于分析结果最大应力发生在咽喉的框架角为 110.2 mpa 如图 2 所示,时的最大位移发生在前面的中间垂直板是 0.5261 毫米,如图 3 所示。2.2.2 移动载荷应用框架的剪力和水平推力 15 分静态刀座一起安排,加上底部和前面的静态工具围裙。剪切剪切力和推力分别应用,分为 16 加载步骤。部队被之间的继承设置在负载管理器使部队采取效果的单一步骤8。根据分析结果,最大应力和位移的框架下表列出每一个载荷步 2。表 2。最大应力和位移表每一个载荷步图 4。每个载荷步压力的变化图,信息可以从压力和位移轮廓如下:1) 当剪力和水平推力还没有被应用在步骤 1,最低压力发生喉咙角是 71.71 mpa,而顶部的最小位移发生在垂直板框架的前面 0.1634 毫米。2) 图 4 所示,整个压力慢慢升级的变化趋势在剪切位置正确的转移。的最大应力也发生在咽喉角达到 112.2 mpa 在第 16 步,相对增加了 1.8%制服负载条件。同时,更大的压力域在竖直板的变化对前面。最大位移仍然维持在 0.5264 毫米的竖直板前面。但变形域框架的水平变化随着负载的增加步。3) 加载第 9 步,应力和位移的变化符合统一的负载。2.3 工具载体分析剪力压力和水平推力压力分别应用于顶部和叶片的背面安装的位置。图 5 所示,最大应力为 57.52 mpa,这发生在剪切油缸和之间的接触位置翼板。此外,底部区域的翼板与前板焊接是一个相对更大压力区域。如图 6 所示,0.377 毫米,最大位移发生在较低的中间位置前板。的上端中间位置和两个肋骨也更大的位移。3。实验验证有限元分析的剪板机应力-应变测试框架的剪板机是 DH3816 完成静态应变仪和 45矩形玫瑰。15 个测试点是安排在四个角落上的气缸安装孔框架,喉咙角,轴承洞,工作台前面垂直板和较低的地区,更大的压力和位移发生。四个规格剪切板进行测试根据四个不同的剪切板的厚度和长度。测试应变计算压力的基础上,遵循公式:对应的 15 个测试点分别计算,并与有限元分析结果基于四个不同的剪切板。分析结果和计算数据之间的对比表的五个测试点在喉咙角列出如下。联机测试网站的照片表 3。测试和计算数据之间的比较表信息可以来自比较,分析和测试的结果有价值差距的 20%左右考虑到试验场地的环境影响。如剪力计算基于传统经验公式的值比实际值大,导致更大的剪切应力有限元分析。的整体数据在允许范围内,除了单独的测试点。放弃的结论可以得出有限的单元法9是可靠的和最大应力的计算结果喉咙角也是符合实际的工作模式。4.实现剪板机的结构改进根据分析和测试结果,为液压摆式剪板机结构改进建议 QC12Y-42500 给出如下。除了框架的喉咙角和剪切缸接触刀架的位置,的力学性能结构材料 Q235 能满足最大力量条件要求, 这意味着剪板机有一定的范围减肥,例如帧墙板和刀架翼板可以适当减少。针对减少喉咙的 压力角和剪切缸接触位置工具载体,加强板焊接部分加强两大压力的职位是图 8 和图 9 所示。实际剪切过程中,均布荷载和移动载荷应用分析利用负载一步有限元分析。通过比较这两个 状态,指出移动载荷的安排更充分地反映剪切的影响。对其性能的过程。5 实验数据测试的喉咙角点提取和对比分析结果后来证实是可靠的。这个摆式剪板机可以正常使用在现有的框架 和刀架的结构。为了提高剪板机的属性和减肥的剪板机,架墙板的厚度和刀架 wing-boards 可适当减少,和加强板焊接部分加强喉咙角和剪切气缸接触刀架的位置。总之,本文的研究可 以提供一个参考尺寸设计、有限元分析以及结构剪板机的改进,为提高剪切质量和工程参考 值指导实际生产。应答本文由安徽省重点实验室建设基金会资助助理(2011 aksy1119),创新服务高端装备制造技术平台建设基础(11 z0201025)和基础马鞍山科技。设计和测试工作提出了一些的结果合作研究工作,作者愿意承认的有价值的讨论和建议组的成员。参考文献1 毛泽东志强,王菲,刀夹在 swing 剪切机的有限元分析J,(在设备中国)、2012、01:31-33。2 顾王继泉张姚维强,分析刀具框架基于 ANSYSJ,科学技术和工程(中国), 2010,(10):476 - 478。3 杨新华社板剪切机的结构有限元分析和模态分析D,华中科技大学和技术、武汉(在中国),2009 年,05。4 刘迎迎,王强,杨浸塑,徐的扛鼎之作,有限元分析运营商基于液压剪切机的工具 ANSYSJ,组合机床与自动化制造技术(在中国),2009 年,6:35-39。5 黄就是享誉、轧制机械M,北京,冶金工业出版社(在中国),1979 年。6 Zienkiewicz O.C.有限元方法。第 3 版。伦敦:McGrew-Hill,1977 年版。7 计算剪切机 Q12y-123200 年由静态和动态有限元法优化设计。西安:西安交通大学(在中国),1998 年。8 Yurong 周。有限元分析有限元分析的详细例子。北京:机械工业出版社。9克劳夫 R w 平面应力分析的有限元 methon。Proc,2 日 Conf。电子计算,评估匹兹堡,1960 年.9。附录二Available online at AASRI Procedia 3 ( 2012 ) 414 4202012 AASRI Conference on Modeling, Identification and ControlStructural Analysis and Experimental Research of an CNC Hydraulic Swing-type Plate ShearsYong Wang1, Baoping Cui1,2, Kun Li1,2, Teng Zhang1, Zufang Zhang1,2* 1School of Mechanical and Automotive Engineering, Hefei University of Technology, NO.193, Tunxi Road, Hefei, 230009, China2High-tech Research Institute of Hefei University Of Technology (Maanshan), NO.578, Taibai Road, Maanshan, 243000, ChinaAbstractCNC hydraulic swing-type plate shears is one of the important plate processing equipments, whose safety performance and shearing accuracy are determined by the structure of its frame and tool carrier. The current mechanical property analyses of plate shears mostly only use finite element tools and simply apply uniform load, which can not reflect true work status of the plate shears. By integrating original structures of the frame and tool carrier, two working status static performances of the plate shears are analyzed with finite element method in this paper, where the uniform load or moving load are separately applied according to its work statue. The analysis results are verified by the later stress-strain tests according to which structural improvements are proposed to provide basis for improving properties of the plate shears. . 2012 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license. Selection and/or peer review under responsibility of American Applied Science Research Institute.Keywords: Plate shears, uniform load, moving load, stress-strain test, structural improvementIntroductionSwing-type plate shears is a metal processing equipment, which fractures plates into required sizes through relative motion and reasonable clearance between the movable blade and static blade. With the rapid development of Chinas industry,individualized needs of plate shears grow rapidly. The frame and the tool carrier are the major components of the plate shears, whose strength and stiffness directly determine the safety performance and shearing accuracy.Based on empirical formulas and parameters, majority of current domestic plate shears are designed by abiding the traditional theory and rules. However, stress concentration and overall force distribution of the machines can not be accurately obtained according to the traditional design methods, which leads to high-end performance requirements unsatisfiable1. To solve this problem, plate shears mechanical properties are studied at home and abroad. Stiffness and strength of the frame were obtained by Xiangjun Gu according to the linear analysis and modal analysis with ANSYS2. Through analytical processing the model established in ANSYS, Xinhua Yang improved structure and mechanical properties of the machine3. By programming information of each step of the moving load in ANSYS, deformation, equivalent stress and equivalent strain of the frame were studied by Yingying Liu4. But most of the literatures only theoretical analyzed with uniform load, which didnt analyze theirCorresponding author. Tel.: 13965037586.E- mail address: .2212-6716 . 2012 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.Selection and/or peer review under responsibility of American Applied Science Research Institute doi: 10.1016/j.aasri.2012.11.065 Yong Wang et al. / AASRI Procedia 3 ( 2012 ) 414 420actual shearing conditions or propose feasible suggestions for improvement.By taking QC12Y-42500 plate shears as an example, static analyses of the frame and tool carrier are carried out separately with uniform load and moving load. According to the later stress-strain tests which verify the analysis results, structural improvements are proposed to improve properties of the plate shears.1. Bearing Load Calculation of the Plate Shears1.1 Shearing ForceShearing force of beveled blade shear can be calculated through the Noshari formula5 b is the ultimate strength of sheared plate (MPa) ; x is the elongation of sheared plate; h is the thickness of sheared plate (mm) ; is the shear angle () ; is the blades clearance (mm) ; C is the distance between binder foot axis and static blade (mm); X is the relative distance of binder foot, where X C h ; Y is the relative clearance of shear lateral, where Y h ; Z is the bend coefficient which is related to the sheared length L, shear angle , shear plate thickness h and metal elongation x . Table 1. Value of the required coefficients h (mm) (mm) C(mm) X Y Zcoefficient b (MPa) x value 4500.25 4 1.5 1.2 60 15 0.3 0.95 Total shearing force P can be obtained to be 89074N according to the coefficient values as shown in Table 1. 1.2 cylinder thrust, bearing reaction force and shear horizontal thrust Since forces on the frame and tool carrier are action and reaction, structure of the tool carrier can be simplified to the mechanical model3 as shown in Fig. 1.Fig. 1. Diagram of the tool carrier forceAccording to the location of all forces shown in Fig. 1 and shear horizontal thrust T=0.3P=26722.2N obtained from empirical formula, equations of the torque balance and force balance can be written as follows where cylinder thrust F=115098.2N, which is equal to the support-cylinder force. Bearing reaction force R=25204.5N, which is equal to the radial force of support tool carrier.Yong Wang et al. / AASRI Procedia 3 ( 2012 ) 414 4201.3 Binder ForceBinder force can be determined according to the empirical formula as follows Pyk h b where k is a coefficient, for hydraulic pressure feeder, k =0.8 1.1, for mechanical pressure feeder, k =0.5 0.6, h is the thickness of sheared plate (mm), b is the width of sheared plate (mm). P can be obtained by the formula above: yPy=100000N.2. Finite Element Analysis of the Swing-type Plate Shears2.1 Finite Element Model Establishment and Pre-processing of the Frame and ToolCarrier The frame and tool carrier models are separately built by relevant software and then imported into finite element software6.Parameters of the frame and tool carrier are selected according to their materials: plain carbon steel Q235, where elastic modulus is 2.1 10 MPa and Poissons ratio is 0.3. The frames underside is full-constrained based on the actual situation. Two reference points, whose degrees of freedom are constrained only to rotate around the X axis in local coordinate system, are established at the centers of left and right plate of tool carrier and coupled with two holes separately. In order to remove rigid displacement of the tool carrier, translation constraint of y, z directions are applied to the contact point between the cylinders and tool carrier in the global coordinate system7. The frame bed-body is meshed with tetrahedral element, while the beams and tool carrier are meshed with hexahedralelement.2.2 Frame Analysis2.2.1 Applying uniform load of shearing force and horizontal thrust on frame Fig.2. Frame stress contour; Fig. 3. Frame displacement contour Based on the analysis result, maximum stress of the frame which occurs at the throat fillet is 110.2Mpa as shown in Fig. 2, while the maximum displacement which occurs at the middle of the front vertical plate is 0.5261mm as shown in Fig. Applying moving load of shearing force and horizontal thrust on frame 15 points are arranged along the static tool apron and coupled with the underside and front of the static tool apron. Shearing force and shear thrust are respectively applied and divided into 16 load steps. The inheritance between forces are abolished by setting in the load manager to make the forces taking effects in their single steps8. According to analysis results, the maximum stresses and displacements of the frame under every load step are listed in Table Table 2. Maximum stress and displacement table of every load stepDisplacement 0.1634 0.5264 0.5264 0.5264 0.5264 0.5264 0.5264 0.5264Informations can be drawn from the stress and displacement contours as follows:1) When the shearing force and horizontal thrust havent been applied in step-1, the minimum stress occurring at the throat fillet is 71.71MPa, while the minimum displacement occurring at the top place in the front vertical plate of the frame is 0.1634mm.2) Its shown in Fig. 4 that the whole stress change in a slowly upgrade tendency during the shearing position shifting right. The maximum stress which also occurs at the throat fillet achieves 112.2MPa at step-16, relative increased by 1.8% to uniform load condition. Meanwhile the larger stress domain in front vertical plate shifts right. The maximum displacement remains unchanged at 0.5264mm in the middle of front vertical plate. But the deformation domain of the frame horizontal stand shifts right as the load step increasing.3) In the load step-9, the stress and displacement changes are consistent with uniform load.2.3 Tool Carrier AnalysisShearing force pressure and horizontal thrust pressure are respectively applied on the top and back surface of the blade mounted position.It is shown in fig. 5 that the maximum stress is 57.52MPa, which occurs at the contact position between shear cylinder and wing boards. In addition, bottom of the region where the wing boards being welded with the front plate is a relatively larger stress area.As it shown in fig. 6 that the maximum displacement is 0.377mm, which occurs at the lower end of the intermediate position of the front plate. The upper end of the intermediate position and the two ribs are also the bigger displacement area.3. Experimental Verification of Plate Shears for Finite Element Analysis The stress-strain test on the frame of plate shears is accomplished with DH3816 static strain gauge and 45rectangular rosette. Fifteen testing points are arranged at the four corners of the cylinder mounting holes on the frame, throat fillet, bearing hole, front vertical plate and lower area of workbench, where larger stresses and displacements occur. Four specifications of shear plates are tested according to four different thicknesses andlengths of sheared plates. The test strain are calculated into stress based on the formulas as followCorresponding loads of the fifteen testing points are respectively calculated and compared with finite element analysis results based on four different sheared plates. The comparison table between analysis results and calculation data of the five testing points around throat fillet is listed as follows. Table 3. Comparison table between testing and calculating data Specifications Test point 1.52000 3.52100 5.873 5.8510 Informations can be drawn from the comparison that the results of analysis and test have value gaps around 20% because of taking the environmental influences from test site into account. Such as the shearing force is calculated based on traditional empirical formula, whose value is bigger than actual value and leads to greater shear stress in later finite element analysis. The overall data are within the allowed range except individual testing points. The conclusion can be drawn that the forgoing finite element method9 is reliable and the calculation results of maximum stress of throat fillet are also accords with the actualworking mode.4. Implementation of Structural Improvement for Plate Shears Yong Wang et al. / AASRI Procedia 3 ( 2012 ) 414 420According to the analysis and testing results, structural improvement suggestions for the Hydraulic Swing- type plate shearsQC12Y-42500 are given as follows.In addition to the throat fillet of frame and shear cylinder contact position of tool carrier, the mechanical properties of the structural material Q235 can meet the maximum force condition requirements, which means the plate shears has a certain range for weight reduction, for example the frame wallboard and tool carrier wing boards can be appropriate reduced.Aiming at reducing the stresses of the throat fillet and shear cylinder contact position of tool carrier, reinforcing plates can be welded to partly strengthen the two larger stress positions as shown in Fig. 8 and Fig. 9.5. SummaryBased on the existing structure of frame and tool carrier of the hydraulicswing-type plate shears QC12Y-42500 and the actual shearing process, un iform load and moving load are applied and analyzed by using load step in the finite element analyses. Through comparing the two status, it is indicated that the moving load arrangement more fully reflect the impact from shearing process on its performance. Experimental data of five testing points of throat fillet are extracted and contrasted with the analysis results which are later verified to be reliable.This swing-type plate shears can be normally used under the existing structure of frame and tool carrier. In order to improve the plate shears properties and reduce weight of the plate shears, the thickness of frame wallboard and the tool carrier wing-boards can be appropriately decreased, and reinforcing plates can be welded to partly strengthen the throat fillet and shear cylinder contact position of tool carrier. In conclusion, the research in this paper can provide a reference for size design, finite element analysis as well as structural improvements of plate shears, and has engineering reference value for im
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:数控液压的结构分析和实验研究-摆式剪板机外文文献翻译、中英文翻译、外文翻译
链接地址:https://www.renrendoc.com/paper/145718672.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!