减少加工误差的三轴机床机械测量和误差补偿系统外文文献翻译、中英文翻译、外文翻译.docx

减少加工误差的三轴机床机械测量和误差补偿系统外文文献翻译、中英文翻译、外文翻译

收藏

压缩包内文档预览:(预览前20页/共30页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:145718740    类型:共享资源    大小:1.10MB    格式:ZIP    上传时间:2021-09-27 上传人:QQ14****9609 IP属地:陕西
12
积分
关 键 词:
减少 加工 误差 机床 机械 测量 补偿 系统 外文 文献 翻译 中英文
资源描述:
减少加工误差的三轴机床机械测量和误差补偿系统外文文献翻译、中英文翻译、外文翻译,减少,加工,误差,机床,机械,测量,补偿,系统,外文,文献,翻译,中英文
内容简介:
附录一:减少加工误差的三轴机床机械测量和误差补偿系统机械工程研究生院,延世大学,首尔,韩国机械工程系,延世大学,首尔,韩国文摘:提出一个方法来减少加工误差的三轴机床通过实现一个机器测量触摸探针。触摸探针探测错误和机床的定位错误,不可避免地包含在测量数据,弥补获得真实的加工错误的重复加工过程。 定位错误的工具/探针尖被逼近误差建模组件作为多项式函数和考虑抵制错误的影响。 来估计未知模型参数、多维数组工件组成的八个数据集提出了 CMM 和校准。仿真结果和验证实验表明,测量和预测定位错误同意不到 10 米之内所有轴。 一个简单的块的实际切削试验和二维曲线表明,加工错误减少到后10 米 内 的 错 误 补 偿 。 2004 爱 思 唯 尔 出 版 的 帐 面 价 值 。关键词:机械测量(介质);碰探头,立方体数组工件;误差补偿1、介绍在传统制造工艺,检验部分完成了独立的测量仪器,如坐标测量机(CMM), 通常位于一个单独的房间除了机床。这就增加了整体生产成本和时间获得最终产品, 和瓶颈现象可能是由于产品停滞由于加工之间的时间差和审查过程的柔性制造系统。此外,很难转移、夹具和测量复杂的大型零件1。为了克服这些问题,一个在机器测量(石)系统见图 1,是使用一个商业实现触摸探针(从英国 MP10 Inc .)。触摸探针是相对便宜和易于使用的配件,可以实现显著减少生产时间和成本,广泛用于过程改进自动化和加速处理一部分,甚至消除一部分错误的过程。光模块的系统由探针(OMP)和光学机接口(OMI)。OMP,位于探测头和柄之间,收到机器控制信号和传输探头信号。探测器和 OMI 之间的通信是通过光传输系统,而使用 rs - 232 串行通信传输测量程序(宏程序)CNC 控制器和接收的测量数据进一步分析使用个人电脑。图 2 显示了本研究的整体工作流程提高机械加工精度的测量和误差补偿系统。数控使用部分模型生成的数据被用来喂养 CNC 控制器用于加工第一步。加工过程结束后,触摸探针换成了刀具开始测量加工表面的法线方向。自从接触探头沿着错误的措施部分机床轴,测量的数据不可避免地包括探测错误源于触摸探针的结构特点,和定位错误源于不准确的轴运动的机床。这些错误应该取消从测量数据来获得真实的加工误差。如果真正的加工误差大于给定的公差,新刀具轨迹生成使用下一步加工的误差补偿算法。加工和机械测量过程不断重复,直到所需的部分公差,导致闭环加工系统2。提出一个方法来快速评估机床的定位错误使用一个新的数组工件误差模型和多维数据集。误差模型是由近似误差组件出现在体积误差模型和多项式函数。前后误差模型分解为模型根据机床的轴的运动方向,因为反对错误影响机器测量数据。系数来确定未知的模型,一个多维数组工件组成的八个数据集提出了 CMM 和校准。在立方体顶点定位错误的仿真结果显示,估计错误也同意所有轴的测量误差在向前和向后的方向。计是用于验证一步建议误差模型。最后,一个简单的块和二维曲线的加工测试执行,在一个基于线分割算法的误差补偿方法应用于减少加工错误。它可以得出的结论是,加工错误减少到误差补偿后 10 米内。通 讯 作 者 电 子 邮 件 地 址 :feel2( 大 通 ), bkminyonsei.ac。基米-雷克南(Min)的手段,sjleeyonsei.ac。基米-雷克南(S.J. Lee) 。 0924 - 0136 / $ - 见 前 页 2004 爱 思 唯 尔 出 版 有 限 责 任 公 司doi:10.1016 / j.jmatprotec.2004.04.4022、表征探测错误和定位错误2.1 探测错误在触摸探针,机械结构支持手写笔作为电触发开关,当笔流离失所。这个结果与分裂的探针天线波束的控制结构反映出三角形接触探头内的机械结构 3。因为这些探测错误影响到测量数据根据不同的调查方法方向,他们必须得到补偿,然后再执行实际的测量。图3 显示了通过测量获得的探测错误一个精确的环规直径为29.998 毫米。球针长度 50 mm 和探针半径为 1 毫米。探测误差的大小取决于针长度和方向的调查。误差补偿后,探测错误减少到 5 米之内,同一订单的机床的可重复性。2.2 机床误差的数学公式机床误差传播到机器测量数据,自从接触探头沿着错误的措施部分机床轴。所以, 这些错误应该在机器的识别和消除测量数据获取项目下一步加工过程的真实加工错误。确定工作空间内的任何位置的定位错误,一般齐次变换矩阵(HTM),这代表刚体坐标系统的坐标变换帧的参考坐标系统4。增加移动元素及其误差矩阵的 htm 先后从参考坐标系到实际工具坐标系位置得到的理想位置和机床的所有错误组件。图 4 显示了坐标系的三轴机床用于 thisresearch,和由此产生的定位误差来源于以下方程:这里,ii(i = x,y,z)表示线性错误面前是沿着轴,ij(i,j = x,y,z 和我= j)第 i 个轴方向的直线度误差沿着 jth 轴时,ij 角错误在第 i 个轴滑动沿着 jth 轴移 动,Sij 之间的垂直度误差对应的轴。和人工智能,bi,ci 原点偏移量从(我1)届第 i 个坐标系坐标系统,和 L 的理想工具沿着 z 轴长度(表 1)。 表 1预测工具的定位/探针针尖在工作区使用 Eq。(1),21 个错误组件的测量数据应该是必需的。激光干涉仪系统被广泛用于测量这些错误与精度高,但它需要长时间校准时间和成本5。评估定位错误更加快速和简单的方式,体积误差模型参数使用图 4。列遍历立式加工中心的坐标系统。确定模型参数,可以简单地使用一个触摸探针和工件。获得参数误差模型、线性和角度错误假设作为第一和二阶多项式函数6。直线度误差推导通过集成角错误和方形错误被视为常数无论轴位置。替换组件到体积误差模型,近似参数误差模型得到矩阵方程的形式:EFWD 31 误差向量,315 标量矩阵 B、p 151 系数向量的未知参数。误差向量的下标表示误差模型是适用于轴方向的移动,所有错误组件被设置为 0 的相应轴的原点。模型参数向量 p 可以很容易地使用最小二乘估计量决定的。自从接触探头沿机床轴的措施部分,反对错误的错误的组件移动轴影响测量数据除了在给定位置定位错误,因此他们必须被包括在误差模型。从使用激光干涉仪系统的初步实验结果,反对错误假定常数无论轴位置7。代替近似错误组件包括反弹到之前的体积误差模型和矩阵形式改写,向后方向的误差模型推导出如下:EFWD 31 误差向量,315 标量矩阵 B、p 151 系数向量的未知参数。误差向量的下标表示误差模型是适用于轴方向的移动,所有错误组件被设置为 0 的相应轴的原点。模型参数向量 p 可以很容易地使用最小二乘估计量决定的。p = (BTB)1BTEFWD (3)2060 自从接触探头沿机床轴的措施部分,反对错误的错误的组件移动轴影响测量数据除了在给定位置定位错误,因此他们必须被包括在误差模型。从使用激光干涉仪系统的初步实验结果,反对错误假定常数无论轴位置7。代替近似错误组件包括反弹到之前的体积误差模型和重写.大通崔 et al。/材料处理技术杂志155 - 156(2004)2056 - 2004 EBWD 在哪 31 误差向量方向向后,EFWD 31 的错误方向的向量。大通崔 et al。/材料处理技术杂志155 - 156(2004)2056 - 2004EBWD 在哪 31 误差向量方向向后,EFWD 31 的错误方向的向量(2),F18 标量矩阵 h 181 的系数向量确定的组件是错误的反应错误组件。注意,通过添加错误源于落后的错误得到反弹错误方向的错误。模型参数向量 h 可以估计同样像以前一样:h = (FTF)1FTEBWD EFWD (5)3 模型参数估计和仿真结果3.1 多维数组的工件确定模型参数向量方程式的 p,h。(5),八个立方体组成的立方体数组工件如图 5 所示(一个)提出,使测量定位错误都向前和向后的方向7。工件与坐标校准。图 5。多维数组工件和机器测量。材料处理技术杂志155 - 156(2004)2056 - 2004 20612061测量机,然后安装在机床上的桌子与触摸探针测量右侧的图 5 所示(b)。CMM 的区别在立方体顶点数据和介质数据用于生成的错误矢量 EFWD 和 EBWD 向前和向后误差模型,分别。误差向量和名义立方体顶点的位置在机器坐标系是用来确定模型参数向量。3.2 模拟估计模型参数,定位错误在立方体角落预测,并与实测的错误。无花果。6 和 7 比较了模拟定位误差与测量误差都向前和向后 x 坐标轴和 y 坐标轴的方向,分别。数据的二次和三次错误模型意味着错误组件与 fistand 近似二阶多项式函数,分别。图 6。模拟和测量轴的定位错误。图 7。模拟和测量定位错误的 y 轴。3.3 使用步骤计模型验证一步计10 毫米的名义块大小和间距20 毫米的左边图8 所示(一个)是用于验证误差模型。它是安装在机床表和测量都向前和向后的方向。2062材料处理技术杂志155 - 156(2004)2056 - 2064图 8 使用步骤计模型验证图 9 几何部分用于加工实验4 加工实验4.1 部分几何和误差补偿方案机器测量系统应用于加工测试一个简单的块组成的广场和钻石的特性和二维曲线如图 10 所示。图 10 一个简单的块比较加工错误大通崔 et al。/材料处理技术杂志155 - 156(2004)2056 - 2004 2063图 9 加工完成第一步后,刀具被替换为一个触摸探针,用于衡量的机械加工面等距的计量点。计量点的探测误差和定位误差从测量数据得到真正消除加工误差考虑探测器接近角。注意,调查的方法是不断沿着角两边的广场和钻石的特性,而测量方向不断变化以及二维曲线。如果真正的加工误差大于指定的公差,新刀具轨迹生成的第二次加工插值补偿点测量的点。补偿点是由添加真实加工反对派方向8中的错误。第二次加工后使用图 11 比较二维曲线的加工错误真正的加工错误。如果真正的加工误差小于公差,这个过程完成后,得到最终的产品。否则,部分再次测量和加工误差补偿精度得到迭代,直到所需的部分。4.2 加工结果图 10 显示了加工误差测量与加工第一步后触摸探针第二次加工和测量完成后, 一部分是在 CMM 测量在同一测量与机器测量数据点比较。5 结论提出一个在机器测量和误差补偿系统,减少使用触摸探针加工错误。真实加工错误决心通过消除接触探头的探测错误和机床的定位错误。定位错误考虑抵制错误的影响吗错误的组件。提出了多维数组工件前后确定的模型参数误差模型。仿真结果表明,该预测定位错误同意所有轴的测量错误该机器测量系统可以扩展传统机床的测量机精度检验和改进部分。参考文献:1 萨达姆政权金、D.H. Kim j .侯尔的机器上测量系统。Soc。摘要。Eng。18(6)(2001) 这 9 到 18。2 萨达姆政权书钉、孙 J.W.林亭汝荣格,闭环方法减少总加工误差:实验和分析,反式。NAMRI /中小企业 15(1997)311 - 316。3J.A.博世,坐标测量机和系统,马塞尔德克尔公司,纽约,1995 年。4交流可以用 Y.M. Ertekin,机床误差模型的推导和误差补偿过程三轴垂直的加工2064料处理技术杂志155 - 156(2004)2056 - 2064中心使用刚体运动学,Int,j马赫。工具 Manuf。40(2000)1199 - 1213。5交流可以用 Y.M. Ertekin,立式加工中心精度特性使用激光干涉仪,Proc。ASPE 18(1998)506 - 511。6j .备忘录 C.R. Liu 方法提高数控加工工具的准确性在机器检查,j . Manuf 系统。11(4)(1992)229 - 237。7 大通崔 S.J.李,快速定位错误的评估使用多维数组工件和机床触摸探针,在:学报定位技术会议上,韩国,2002 年,第 230 - 234 页。8 王瑞民 Lo,C.Y.萧,刀位轨迹的方法补偿重复加工过程,Int,j马赫。工具 Manuf。 38(3)(1998)205 - 213。附录二:Reduction of machining errors of a three-axis machine tool by on-machine measurement and error compensation systemJ.P. Choi a, , B.K. Minb, S.J. Lee ba Graduate School of Mechanical Engineering, Yonsei University, Seoul, Republic of Koreab Department of Mechanical Engineering, Yonsei University, Seoul, Republic of KoreaAbstractThis paper suggests a method to reduce the machining errors of a three-axis machine tool by implementing an on-machine measurementwith a touch probe. Probing errors of a touch probe and positioning errors of a machine tool, inevitably included in the measurementdata, are compensated for to obtain the true machining errors for the repeated machining process. Positioning errors of a tool/probe tipare modelled by approximating error components as polynomial functions and considering the effects of backlash errors. To estimate theunknown model parameters, a cube array artifact composed of eight cubes is proposed and calibrated on a CMM. Simulation results andverification experiments showed that the measured and predicted positioning errors agree well within less than 10m for all axes. Theactual cutting test of a simple block and two-dimensional curves showed that the machining errors are reduced to within 10m after errorcompensation. 2004 Published by Elsevier B.V.Keywords: On-machine measurement (OMM); Touch probe; Cube array artifact; Error compensation1. IntroductionIn conventional manufacturing process, part inspection is done with stand-alone measurement instruments such as coordinate measuring machines (CMM), which are generally located at a separate room apart from a machine tool. This increases the overall manufacturing cost and time to obtain the final product, and the bottleneck phenomenon may be caused by the product stagnation due to the time lag between the machining and inspection process in case of the flexible manufacturing system. Furthermore, it is hard to transfer, fixture, and measure the complex, large-sized parts1. To overcome these problems, an on-machine measurement (OMM) system as illustrated in Fig. 1 is implemented using a commercial touch probe (MP10 from Renishaw Inc.). A touch probe is a relatively inexpensive an easy-to-use accessory that can deliver significant reductions in production time and cost and widely used for process improvementautomating and speeding part processing, even eliminating part errors of the process. The system is composed of optical module probe (OMP) and optical Correspondingauthor.E-mailaddresses:feel2(J.P.Choi), bkminyonsei.ac.kr (B.K. Min), sjleeyonsei.ac.kr (S.J. Lee). machine interface (OMI). OMP, located between the probe head and the shank, receives machine control signals and transmits probe signals. Communication between the probe and the OMI is done via the optical transmission system, whereas RS-232 serial communication is used to transmit the measurement program (macro program) to the CNC controller and receive the measured data for further analysis using a personal computer. Fig. 2 shows the overall work flow of this research to enhance the machining accuracy by the on-machine measurement and error compensation system. NC data generated using the part model is fed to the CNC controller for use in the first-step machining. After the machining process is finished, the touch probe replaced with a cutting tool starts the measurement in the normal direction to the machined surface. Since a touch probe measures parts moving along the erroneous machine tool axes, the measured data inevitably include the probing errors originated from the structural characteristics of a touch probe, and the positioning errors originated from the inaccurate axis motion of a machine tool. These errors should be eliminated from the measured data to obtain the true machining error. If the true machining error is larger than the given tolerance, the new tool path is generated using the error compensation algorithm for the next-step machining. Machining and on-machine measurement processes are repeated until the required part tolerance 924-0136/$ see front matter 2004 Published by Els evier B.V.J.P. Choi et al. / Journal of Materials Processing Technology 155156 (2004) 20562064 2057Fig. 1. On-machine measurement system. is obtained, resulting in the closed-loop machining system2.This paper suggests a methodology to quickly assess the positioning errors of a machine tool using a new error model and a cube array artifact. The error model is constructed by approximating error components appeared in the volumetric error model with polynomial functions. The error model is decomposed into forward and backward model according to the axis movement direction of a machine tool, because the backlash errors affect the on-machine measurement data. To determine the unknown model coefficients, a cube array artifact composed of eight cubes is proposed and calibratedon a CMM. Simulation results of the positioning errors at cube vertices showed that the estimated errors agree well with the measured errors for all axes in both forward and backward directions. A step gauge is used to verify the suggested error model. Finally, the machining tests of a simple block and two-dimensional curves are performed, where an error compensation method based on the line segmentation algorithm is applied to reduce the machining errors. It can be concluded that the machining errors are reduced to within 10m after error compensation.2. Characterization of probing errors and positioning errors2.1. Probing errorsIn touch probes, the mechanical structure supporting the stylus serves as the electrical switch that is triggered when the stylus is displaced. This results in probe lo bing with a three-lobed structure reflecting the triangular mechanical structure within the touch probe 3. Since these probing errors affect differently the measurement data according to the probe approach direction, they must be compensated beforeperforming the actual measurement. Fig. 3 shows the probing errors obtained by measuring a precise ring gauge with a diameter of 29.998 mm. The stylus length is 50mmand the probe ball radius is 1 mm. The magnitude of the probing errors is dependent on the stylus length and the orientation of the probe. After error compensation, the probing errors are reduced to within 5 m, which is the same order of the Repeata bility of a machine tool.2.2. Mathematical formulation of machine tool errorsMachine tool errors are propagated into the on-machine measurement data, since a touch probe measures parts moving along the erroneous machine tool axes. So, these errorsFig. 2. Workflow of on-machine measurement and error compensationsystem.J.P. Choi et al. / Journal of Materials Processing Technology 155156 (2004) 20562064Fig. 3. Compensation of probing errorsshould be identified and eliminated from the on-machine measurement data to obtain the true machining errors for the next-step machining process. To determine the positioning errors at any position within the work space, the general homogeneous transformation matrices (HTM) are used, whichrepresent the coordinate transformation from the coordinate system of the rigid body frame to that of the reference coordinate system 4. Multiplying the H T Ms for the moving elements and their error matrices successively from the reference coordinate system to the tool coordinate system actual positions are obtained in terms of ideal positions and all error components of a machine tool. Fig. 4 shows the coordinate system of a three-axis machine tool used in this research, and the resultant positioning errors are derived inthe following equation:Here, ii (i =x, y, z) denotes the linear errors along the it ha xis, i j (i, j =x, y, z and i= j) the straightness errors in the it h axis direction when moving along the j t h axis, i j the angular errors around the it h axis when the slide moves along the j t h axis, S i j the squareness errors between thecorresponding axes. And a i, bi, c i are the origin offsets from the (i 1) t h coordinate system to the it h coordinate system, and L the ideal tool length along the z-axis (Table 1).To predict the positioning of a tool/probe tip within the work space using Eq. (1), the measurement data of 21 error components should be required. Laser inter ferometer system is widely used to measure those errors with high accuracy, but it requires long calibration time and cost 5. To assess the positioning errors in a more quick and easy way.Table 1Fig. 4. Coordinate system of a column-traverse vertical machining center.Origin offset values between neighboring coordinate systems (unit: mm)J.P. Choi et al. / Journal of Materials Processing Technology 155156 (2004) 20562064 2059errors are considered as constant irrespective of axis positions. Substituting the approximated error components into the volumetric error model, the parameterised error model is obtained in the form of matrix equation:EFWD = B pwhere EFWD is the 3 1 error vector, B the 3 15 scalar matrix, p the 15 1 coefficient vector of unknown parameters. The subscript of the error vector denotes that the error model is applicable when axes move in the forward direction, where all error components are set to zero at the corresponding axes origin. The model parameter vector p can be easily determined using the least square estimator.p = (BTB)1BTEFWDSince a touch probe measures parts along the machine tool axes, the backlash errors of error components of a moving axis affect the measured data in addition to the positioning errors at given position, and therefore they must be included in the error model. From the preliminary experiment results using a laser system, backlash errors are assumed constant irrespective of axis positions 7. Substituting approximated error components including the backlash terms into the previous volumetric error model and rewriting in a matrix form, the error model in the backward direction is derived as follows:EBWD = EFWD + FhJ.P. Choi et al. / Journal of Materials Processing Technology 155156 (2004) 20562064where EBWD is the 3 1 error vector in the backward direction, EFWD the 3 1 error vector in the forward direction (same as EFWD of Eq. (2), F the 3 18 scalar matrix,the 18 1 coefficient vector to be determined whose components are the backlash errors of error components. Note that the backward errors are obtained by adding errors originated from the backlash errors to errors in the forward direction. The model parameter vector h can be estimatedsimilarly as before:h = (FTF)1FTEBWD EFWD (5)3. Estimation of model parameters and simulation results3.1. Cube array artifactTo determine the model parameter vectors p and h ofEqs. (3) and (5), a cube array artifact consisting of eight cubes as shown in Fig. 5(a) is proposed, which enables to measure the positioning errors in both forward and backward direction 7. The artifact is calibrated with a coordinateJ.P. Choi et al. / Journal of Materials Processing Technology 155156 (2004) 20562064 2061measuring machine, and then is installed on the machine tool table for measurement with a touch probe as shown on the right side of Fig. 5(b). The differences between CMM data and OMM data at cube vertices are used to generate the error vectors EFWD and EBWD of both forward and backward error models, respectively. The error vectors and nominal positions of cube vertices in the machine coordinate systemare used to determine the model parameter vectors.3.2. SimulationWith the estimated model parameters, the positioning errors at cube corners are predicted and compared with the measured errors. Figs. 6 and 7 compare the simulated positioning errors with the measured errors for both forward and backward directions of x-axis andy-axis, respectively. In the figures, the quadratic and cubic error models mean that the error components are approximated with the firstand second-order polynomial functions, respectively.Fig. 6. Simulated and measured positioning errors of x-axis.Fig. 7. Simulated and measured positioning errors of y-axis.It can be seen that the cubic error model predicts the errors more accurately than the quadratic model and the differences between the predicted and measured errors are less than 5m for all measurement points. Also, the positioning errors have relatively large differences even at the same measurement points according to the axis movement direction, i.e., forward and backward, validating the suggested error model considering the axis movement direction. The true machining errors for the repeated machining process can be estimated by eliminating the positioning errors of a machine tool from the measured data with high accuracy.3.3. Model verification using a step gaugeA step gauge with nominal block size of 10mm and pitch of 20mm as shown in the left side of Fig. 8(a) is used to verify the error model. It is mounted on the machine tool table and measured in both forward and backward directionsFig. 8. Model verification using a step gauge.Fig. 9. Part geometry used in machining experiments.Measured positioning errors at block surfaces are compensated for by the predicted positioning errors using the suggested error model. The total positioning errors are reduced to within 5 m after compensation, and the backlash errors differences between the positioning errors with respect to the measurement direction are estimthe regression lines. It can be concluded that the suggested error model can predict the positioning errors with acceptable accuracy and compensate for the measured data to obtain the true machining errors for the next-step machining.Machining experiment4.1. Part geometry and error compensation schemeThe on-machine measurement system is applied to the machining test of a simple block composed of square and diamond features and two-dimensional curves as shown inFig. 10. Comparison of machining errors of a simple block.Fig. 9. After the first-step machining is finished, the cutting tool is replaced with a touch probe, which measures the machined surface at the equally spaced measurement points.The probing errors and positioning errors at the measurement points are eliminated from the measured data to obtain the true machining errors considering the probe approach angle. Note that the probe approach angle is constantalong each side of both square and diamond features, whereas the measurement direction changes continuously along two-dimensional curves. If the true machining errors are larger than the specified tolerance, the new tool path for the second-step machining is generated by interpolating thecompensation points at the measurement points. Compensation points are determined by adding the true machining errors in the opposition direction 8. After the second-step machining using the new toolpath is finished, the touch probe measures the machined surface again and determines theFig. 11. Comparison of machining errors of two-dimensional curves.true machining errors. If the true machining errors are less than the tolerance, the process is finished and the final product is obtained. Otherwise, the parts are measured again and the machining errors are compensated for until the required part accuracy is obtained.4.2. Machining results4.2. Machining resultsFig. 10 shows the machining errors measured with a touch probe after the first-step machining (denoted with hollow square, ) and then after the second-step machining (denoted with solid square, ). It can be seen that the machining errors are reduced to less than 10 m after the second-step machining with error compensation. After the second-step machining and measurement is finished, the part is measure dowith the on-machine measured data. The mean values n a CMM at the same measurement points to compare of the differences between OMM data and CMM data are4.4 and 3.1m for square and diamond, respectively, which are small enough to use a machine tool as an alternative t
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:减少加工误差的三轴机床机械测量和误差补偿系统外文文献翻译、中英文翻译、外文翻译
链接地址:https://www.renrendoc.com/paper/145718740.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!