基于CP1H PLC的数控车床伺服进给系统结构与双轴伺服电机逐点插补控制设计课程设计
收藏
资源目录
压缩包内文档预览:(预览前20页/共52页)
编号:145759904
类型:共享资源
大小:793.17KB
格式:ZIP
上传时间:2021-09-29
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
基于CP1H
PLC的数控车床伺服进给系统结构与双轴伺服电机逐点插补控制设计课程设计
基于
CP1H
PLC
数控车床
伺服
进给
系统
结构
电机
逐点插补
控制
设计
课程设计
- 资源描述:
-
喜欢就充值下载吧,,资源目录下展示的全都有,,下载后全都有,dwg格式的为CAD图纸,有疑问咨询QQ:414951605 或1304139763
- 内容简介:
-
课程设计(论文)课程名称 机电系统综合创新设计 学 院 机械工程学院 班级学号 学生姓名 指导教师 王海 许立福 2018 年 12 月 28 日 课程设计任务书及成绩学生姓名 班级学号课程名称机电系统综合创新设计题目基于CP1H PLC的数控车床伺服进给系统结构与双轴伺服电机逐点插补控制设计1、设计内容(1)运动设计:确定最佳传动比,计算选择滚珠丝杠螺母副、驱动电动机、导轨及丝杠的支承;(2)结构设计:完成进给系统装配图设计(0#图1张);(3)验算:完成系统刚度计算,验算定位误差等;(4)设计CP1H PLC与步进电机、驱动器的接线图;(5)实现第1象限直线逐点比较插补,设计PLC控制梯形图;(6)撰写设计计算说明书。2、主要技术参数:X轴:进给行程570mm;进给速度5700mm/min,快移速度14m/min,;最大进给力:4700N;定位精度:0.012mm/300mm, 定位精度:0.006mm,横向滑板上刀架重量:87 Kg。工作计划与进度安排:(共2周)(1)集中讲授设计内容、步骤及要求,下发设计题目及任务书,理解题目要求,查阅资料,确定结构设计方案(第16周的周一周二) (2)指导学生进行设计计算及确定设计方案、装配图结构设计(第16周的周三周五)(3)结构部分说明书撰写及答辩验收(第16周的周六第17周的周一上午)(4)控制方案确定及接线图设计、PLC梯形图设计(第17周的周一下午周四)(5)控制部分说明书撰写及答辩验收(第17周的周四周五)评语: 成绩:指导教师:2018年11月30日专业负责人: 陈白宁2018年 11月30日学院教学副院长:魏永和2018 年11 月 30日目 录第1章 绪 论11.1课题背景11.2设计的内容及意义11.2.1研究意义11.2.2主要研究内容及技术路线21.3 主要解决的问题 第2章 数控系统的选择3 2.1步进电机拖动的开环系统3 2.2异步电动机或直流电机拖动,光栅测量反馈的闭环数控系统3 2.3交/直流伺服电机拖动,编码器反馈的半闭环数控系统3 第3章 机械部分的设计43.1 滚珠丝杠的选择53.1.1滚珠丝杠副的特点53.1.2 横向进给系统的设计与计算63.1.3. 纵向滚珠丝杠螺母副的型号选择与校核步骤103.1.4横向滚珠丝杠螺母副的型号选择与校核步骤133.2 减速器箱体的设计143.2.1轴的计算:(纵向输入轴)143.2.2减速器箱体尺寸123.2.3减速齿轮123.3 轴承的选择193.3.1选型193.3.2 校核203.4 轴承盖的设计203.4.1 闷盖203.4.2 通盖213.5.校核22第4章 步进电机的选择264.1 纵向步进电机的选择264.1.1 确定系统的脉冲当量264.1.2步距角的选择264.1.3矩频特性:264.1.4据步进电机的矩频特性计算加减速时间校核的快速性294.2 横向步进电机的选择304.2.1步距角的确定304.2.2距频特性31 (三)110BF003型直流步进电机主要技术参数33 (四)110BF004型直流步进电机主要技术参数33结论35参考文献36附表37第1章 绪 论1.1课题背景1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。它与人类在农业、工业社会中创造的那些只是增强体力劳动的工具相比,起了质的飞跃,为人类进入信息社会奠定了基础。6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。我国目前机床总量380余万台,而其中数控机床总数只有11.34万台,即我国机床数控化率不到3。近10年来,我国数控机床年产量约为0.60.8万台,年产值约为18亿元。机床的年产量数控化率为6。我国机床役龄10年以上的占60以上;10年以下的机床中,自动/半自动机床不到20,FMC/FMS等自动化生产线更屈指可数(美国和日本自动和半自动机床占60以上)。可见我们的大多数制造行业和企业的生产、加工装备绝大数是传统的机床,而且半数以上是役龄在10年以上的旧机床。用这种装备加工出来的产品普遍存在质量差、品种少、档次低、成本高、供货期长,从而在国际、国内市场上缺乏竞争力,直接影响一个企业的产品、市场、效益,影响企业的生存和发展。所以必须大力提高机床的数控化率。在美国、日本和德国等发达国家,它们的机床设计作为新的经济增长行业,生意盎然,正处在黄金时代。由于机床以及技术的不断进步,机床设计是个永恒的课题。我国的机床设计业,也从老的行业进入到以数控技术为主的新的行业。在美国、日本、德国,用数控技术设计机床和生产线具有广阔的市场,已形成了机床和生产线数控设计的新的行业。在美国,机床设计业称为机床再生(Remanufacturing)业。从事再生业的著名公司有:Bertsche工程公司、ayton机床公司、Devlieg-Bullavd(得宝)服务集团、US设备公司等。美国得宝公司已在中国开办公司。在日本,机床设计业称为机床改装(Retrofitting)业。从事改装业的著名公司有:大隈工程集团、岗三机械公司、千代田工机公司、野崎工程公司、滨田工程公司、山本工程公司等。1.2研究的内容及意义1.2.1研究意义企业要在当前市场需求多变,竞争激烈的环境中生存和发展就需要迅速地更新和开发出新产品,以最低价格、最好的质量、最短的时间去满足市场需求的不断变化。而普通机床已不适应多品种、小批量生产要求,数控机床则综合了数控技术、微电子技术、自动检测技术等先进技术,最适宜加工小批量、高精度、形状复杂、生产周期要求短的零件。当变更加工对象时只需要换零件加工程序,无需对机床作任何调整,因此能很好地满足产品频繁变化的加工要求。普通车床经过多次大修后,其零部件相互连接尺寸变化较大,主要传动零件几经更换和调整,故障率仍然较高,采用传统的修理方案很难达到大修验收标准,而且费用较高。因此合理选择数控系统是设计得以成功的主要环节。数控机床在机械加工行业中的应用越来越广泛。数控机床的发展,一方面是全功能、高性能;另一方面是简单实用的经济型数控机床,具有自动加工的基本功能,操作维修方便。经济型数控系统通常用的是开环步进控制系统,功率步进电机为驱动元件,无检测反馈机构,已能满足CW6140车床设计后加工零件的精度要求。1.3 主要解决的问题(1) 恢复原功能,对机床、生产线存在的故障部分进行诊断并恢复。(2) NC化,在普通机床上加数显装置,或加数控系统,设计成NC机床、CNC机床。(3) 翻新,为提高精度、效率和自动化程度,对机械、电气部分进行翻新,对机械部分重新装配加工,恢复原精度;对其不满足生产要求的CNC系统以最新CNC进行更新。(4) 技术更新或技术创新,为提高性能或档次,或为了使用新工艺、新技术,在原有基础上进行较大规模的技术更新或技术创新,较大幅度地提高水平和档次的更新设计。第2章 数控系统的选择数控系统主要有三种类型,设计时,应根据具体情况进行选择。2.1步进电机拖动的开环系统系统的伺服驱动装置主要是步进电机、功率步进电机、电液脉冲马达等。由数控系统送出的进给指令脉冲,经驱动电路控制和功率放大后,使步进电机转动,通过齿轮副与滚珠丝杠副驱动执行部件。只要控制指令脉冲的数量、频率以及通电顺序,便可控制执行部件运动的位移量、速度和运动方向。这种系统不需要将所测得的实际位置和速度反馈到输入端,故称该之为开环系统,该系统的位移精度主要决定于步进电机的角位移精度,齿轮丝杠等传动元件的节距精度,所以系统的位移精度较低。该系统结构简单,调试维修方便,工作可靠,成本低,易改装成功。2.2异步电动机或直流电机拖动,光栅测量反馈的闭环数控系统该系统与开环系统的区别是:由光栅、感应同步器等位置检测装置测得的实际位置反馈信号,随时与给定值进行比较,将两者的差值放大和变换,驱动执行机构,以给定的速度向着消除偏差的方向运动,直到给定位置与反馈的实际位置的差值等于零为止。闭环进给系统在结构上比开环进给系统复杂,成本也高,对环境室温要求严。设计和调试都比开环系统难。但是可以获得比开环进给系统更高的精度,更快的速度,驱动功率更大的特性指标。可根据产品技术要求,决定是否采用这种系统。2.3交/直流伺服电机拖动,编码器反馈的半闭环数控系统半闭环系统检测元件安装在中间传动件上,间接测量执行部件的位置。它只能补偿系统环路内部部分元件的误差,因此,它的精度比闭环系统的精度低,但是它的结构与调试都较闭环系统简单。在将角位移检测元件与速度检测元件和伺服电机作成一个整体时则无需考虑位置检测装置的安装问题。当前生产数控系统的公司厂家比较多,国外著名公司的如德国SIEMENS公司、日本FANUC公司;国内公司如中国珠峰公司、北京航天机床数控系统集团公司、华中数控公司和沈阳高档数控国家工程研究中心。选择数控系统时主要是根据数控设计后机床要达到的各种精度、驱动电机的功率和用户的要求,所以依据设计的具体要求选用上海通用数控公司KT400-T经济型车床数控系统和KT300步进驱动装置.第3章 机械部分的设计为了充分发挥数控系统的技术性能,保证设计后的车床在系统控制下重复定位精度,微机进给无爬行,使用寿命长、外型美观,机械部分作了如下改动。(1) 床身为了使设计后的机床有较高的开动率和精度保持性,除尽可能地减少电器和机械故障的同时,应充分考虑机床零件、部件的耐磨性,尤其是机床导轨的耐磨性。增加耐磨性的方法有1,增加导轨的表面强度如:淬火;2,降低摩擦系数等。当前国内外数控机床的床身等大件多采用普通铸铁。而导轨则采用淬硬的合金钢材料,其耐磨性比普通铸铁导轨高5至10倍。据此,在设计中利用旧床身,采用淬火制成导轨,贴塑用螺钉和粘剂固定在铸铁床身上。粘接前的导轨工作表面采用磨削加工,表面粗糙度Ra0.8mm,以提高粘接强度。(2) 主轴变速箱选用数控系统,主运动方式和传统机床一样都要求有十分宽广的变速范围(116)来保证加工时选择合理的切速,从而获得较高的生产率和表面质量,所以要根据具体情况对主轴边速箱进行设计。(3) 拖板拖板是数控系统直接控制的对象,不论是点位控制还是连续控制,对被加工零件的最后坐标精度将受拖板运动精度、灵敏度和稳定性的影响。对于应用步进电机作拖动元件的开环系统尤其是这样。因为数控系统发出的指令仅使拖板运动而没有位置检测和信号反馈,故实际移动值和系统指令值如果有差别就会造成加工误差。因此,除了拖板及其配件精度要求较高外,还应采取以下措施来满足传动精度和灵敏度要求。在传动装置的布局上采用减速齿轮箱来提高传动扭矩和传动精度(分辨率为0.01mm)。传动比计算公式为: (3-1)式中:为步进电机的步距角(度);p为丝杠螺距,mm;为脉冲当量,即要求的分辨率,mm。在齿轮传动中,为提高正、反传动精度必须尽可能的消除配对齿轮之间的传动间隙,其方法有两种,柔性调整法和刚性调整法。柔性调整法是指调整之后的齿轮侧隙可以自动补偿的方法,在齿轮的齿厚和齿距有差异的情况下,仍可始终保持无侧隙啮合。但将影响其传动平稳性,而且这种调整法的结构比较复杂,传动刚度低。刚性调整法是指调整之后齿轮侧隙不能自动补偿的调整方法,它要求严格控制齿轮的齿厚及齿距误差,否则传动的灵活性将受到影响。但用这种方法调整的齿轮传动有较好的传动刚度,而且结构比较简单。在设备设计中应用的配对齿轮侧隙方法是刚性调整法。采用滚珠丝杠代替原滑动丝杠,提高传动灵敏性和降低功率、步进电机力矩损失。 (4) 拖板箱采用数控系统控制。拆除原拖板箱,利用此位置安装新拖板箱,新拖板箱除固定在滚珠丝杠的螺母上。挂轮箱、走刀箱拆除,在此两个位置分别装控制螺纹加工的主轴脉冲编码器和拖板轴向伺服元件功率步进电机及减速箱。使设计后的机床外型美观、合理。设计后机床的启动、停机均由数控系统完成,故拆除原机床操纵杆,变向杠、立轴等杠杆零件。3.1 滚珠丝杠的选择3.1.1滚珠丝杠副的特点滚珠丝杠副具有与滚动轴承相似的特征。与滑动丝杠副或液压缸传动相比,有以下主要特点:(1) 传动效率高 滚珠丝杠的传动效率可达85%98%,为滑动丝杠副的24倍,由于滚珠丝杠副的传动效率高,对机械小型化,减少启动后的颤动和滞后时间以及节约能源等方面,都具有重要意义。(2) 运动平稳 滚珠丝杠副在工作过程中摩擦阻力小,灵敏度高,而且摩擦系数几乎与运动速度无关,启动摩擦力矩与运动时的摩擦力矩的差别很小。所以滚珠丝杠副运动平稳,启动时无颤动,低速时无爬行。(3) 传动可逆性 与滑动丝杠副相比,滚动丝杠副突出的特点是具有运动的可逆性。正逆传动的效率几乎可高达98%。滚珠丝杠副具有运动的可逆性,但是没有象滑动丝杠副那样运动具有自锁性。因此,在某些机构中,特别是垂直升降机构中使用滚珠丝杠副时,必须设置防止逆转的装置。(4) 可以预紧 通过对螺母施加预紧力能消除滚珠丝杠副的间隙,提高轴向接触刚度,但摩擦力矩却增加不大。(5) 定位精度和重复定位精度高 由于滚珠丝杠副具有传动效率高,运动平稳,可以预紧等特点,所以滚珠丝杠副在工作过程中温升较小,无爬行。并可消除轴向间隙和对丝杠进行预紧拉伸以补偿热膨胀,能获得较高的定位精度和重复定位精度。(6) 同步性好 用几套相同的滚珠丝杠副同时驱动相同的部件和装置时,由于反应灵敏,无阻滞,无滑移,其启动的同时性,运行中的速度和位移等,都具有准确的一致性,这就是所谓同步性好。(7) 使用寿命长 滚珠丝杠和螺母的材料均为合金钢,螺纹滚道经过热处理,并淬硬至HRC58-62,经磨削达到所需的精度和表面粗糙度。实践证明,滚珠丝杠副的使用寿命比普通滑动丝杠副高56倍。(8) 使用可靠,润滑简单,维修方便 与液压传动相比,滚珠丝杠副在正常使用条件下故障率低,维修保养也极为方便;通常只需进行一般的润滑与防尘。在特殊使用场合,如核反应堆中的滚珠丝杠副,可在无润滑状态下正常工作。3.1.2 横向进给系统的设计与计算(1) 横向进给系统的设计经济数控车床设计的横向进给系统一般是步进电机经减速后驱动滚珠丝杠,使刀架横向运动.步进电机安装在大拖板上,用法兰盘将步进电机和机床大拖板连接起来,以保证其同轴度,提高传动精度。(2) 横向进给系统的设计计算,已知条件工作台重量:W=87kgf=870N时间常量:T=25ms行 程:s=190mm步 驱 角:2=0.75度/step脉冲当量:8p=0.005mm/step快速进给速度:Vmax=2m/min 切削力的计算横向进给量约为纵向的,取则横向切削约为纵向切削力Fz=F纵z=1211.64=755.82(N)在切断工件时 Fy=0.6 F纵z=0.6755.82=453.492(N)(3) 滚珠丝杠的计算强度的计算对于燕尾型导轨 P=Kfy+f(Fz+W)其中,K=1.4,f=0.2P=1.4453.492+0.2(755.82+300)=846.05(N)寿命值Li=13.5 最大动负载Q=fwfr1p 其中 fw(运载系数)=1.2fh(硬定系数)=1Q=1.21846.05=2417.4(N)根据最大动负载荷的值,可选择滚珠丝杠的型号,其公称直径为35,型号为W3508-3.51/B左190290,额定动负载荷为2520W,所以强度够用。效率计算=r(螺纹升角)=3O38 4(磨擦角)=10=0.956刚度验算 滚珠丝杠受工作负载,P引起的导程变化量 L1=F=()2其中为滚珠丝杠的外径=()23.14 =9.0746 L1 = =3.6210-6() 因为滚珠丝杠受扭矩引起的导程变化化量L2很小,可忽略不计,即L=L1,即导程变化总误差为=L=3.6210. -6=4.52(min/m)查表知B级精度丝杠允许的螺矩误差(在300之内)为12um/n ,所以刚度足够。稳定性验算由于选用滚珠丝杠的直径与原丝杠直径相等,而支承方式由原来的一端固定,一端悬空变为一端一端固定,一端径向支承,所以稳定性增强,故不再验算。、齿轮及转矩的相关计算减速器为一般机器,没有什么特殊要求,从降低成本,减小结构、尺寸和易于取材等原则出发,决定小齿轮选用45钢、调质,齿面硬度为217255HBS;大齿轮选用45钢正火、齿面硬度为169217HBS传动比 i =其中8表示步驱角;8P表示脉冲当量i=所以,取Z1=30,Z2=99M=2mm,啮合角为20小齿轮齿宽为25mm;大齿轮齿宽为20mm。d1=mZ1=230=60d2=mZ2=299=198da1=m(Z1+2)=2(30+2)=64da2=m(Z2+2)=2(99+2)=202a=齿轮传动精度计算齿轮圆周速度VV=根据圆周速度和对噪音的要求确定齿轮精度等级及侧隙分别为:小齿轮:8GJ大齿轮:8FL、传动惯量计算工作台质量折算到电机轴上的传动惯量J1=0.04378(Kg.cm2)丝杠转动惯量:JS=7.810-4D4L1=7.810-43.5413.3=1.556(.2)齿轮的传动的惯量JZ1=7.810-4D4M=7.810-4642=2.02(.2)JZ2=7.810-4D4M=7.810-4(198)22=239.76(.2)由于电机传动惯量很小,可以忽略不计,因此总的转动惯量J= (JS+JZ2)+JZ1+J1= (1.556+239.76)+2.022+0.04378 =24.22(.2)所需转动力矩的计算nmax=Mamax=4.16(N.m)nt =43.79(r/min)Mat=0.4419(N.m)Mf= 其中,f=0.2 =0.8时Mf=0.029(N.m)M0=0.13860.0139(N.m)Mt=2.19(kgf.cm)0.219(N.m)所以,快速空载启动时所需转矩M=Mamax+Mf=Mo=4.16+0.029+0.0139=4.2079(N.m)切削的所需力矩M切=Mat+Mf+Mo+Mt=0.4419+0.029+0.0139+0.219=0.6938(N.m)快速启动时所需力矩M快进= Mf+Mo=0.029+0.0139=0.0429(N.m)即最大转矩发生在快速启动时 即 Mamax=4.2079(N.m)3.1.3. 纵向滚珠丝杠螺母副的型号选择与校核步骤(1)最大工作载荷计算 滚珠丝杠上的工作载荷Fm (N) 是指滚珠丝杠副的在驱动工作台时滚珠丝杠所承受的轴向力,也叫做进给牵引力。它包括滚珠丝杠的走刀抗力及与移动体重力和作用在导轨上的其他切削分力相关的摩擦力。由于原普通CA6140车床的纵向导轨是三角形导轨,则用公式3-2计算工作载荷的大小。 (3-2)1)车削抗力分析 车削外圆时的切削抗力有Fx、Fy、Fz,主切削力Fz与切削速度方向一致,垂直向下,是计算车床主轴电机切削功率的主要依据。且深抗力Fy与纵向进给方向垂直,影响加工精度或已加工表面质量。进给抗力Fx与进给方向平行且相反指向,设计或校核进给系统是要用它。 纵切外圆时,车床的主切削力Fz可以用下式计算: (3-3) =5360(N)由知: Fz:Fx:Fy=1:0.25:0.4 (3-4)得 Fx=1340(N) Fy=2144(N)因为车刀装夹在拖板上的刀架内,车刀受到的车削抗力将传递到进给拖板和导轨上,车削作业时作用在进给拖板上的载荷Fl、Fv和Fc与车刀所受到的车削抗力有对应关系,因此,作用在进给拖板上的载荷可以按下式求出:拖板上的进给方向载荷 Fl=Fx=1340(N)拖板上的垂直方向载荷 Fv=Fz=5360(N)拖板上的横向载荷 Fc=Fy=2144(N)因此,最大工作载荷 =1.121340+0.04(5360+909.8) =1790.68(N)对于三角形导轨 K=1.12 ,f =0.030.05,选f =0.04(因为是贴塑导轨),G是纵向、横向溜板箱和刀架的重量,选纵向、横向溜板箱的重量为75kg,刀架重量为12kg.(2)最大动载荷C的计算滚珠丝杠应根据额定动载荷Ca选用,可用式3-5计算:C=, (3-5) L为工作寿命,单位为10r,L=60nt/10;n为丝杠转速(r/min),n=;v为最大切削力条件下的进给速度(m/min),可取最高进给速度的1/21/3;L0为丝杠的基本导程,查资料得L。=12mm;fm为运转状态系数,因为此时是有冲击振动,所以取fm=1.5。V纵向=1.59mm/r 1400r/min=2226mm/minn纵向=v纵向1/2 /L。=22261/2 /12=92.75r/min L=60nt/10=6092.7512000 /10=83.5则 C= =1.51790.68=11740(N) 初选滚珠丝杆副的尺寸规格,相应的额定动载荷Ca不得小于最大动载荷C:因此有CaC=11740N.另外假如滚珠丝杠副有可能在静态或低速运转下工作并受载,那么还需考虑其另一种失效形式-滚珠接触面上的塑性变形。即要考虑滚珠丝杠的额定静载荷Coa是否充分地超过了滚珠丝杠的工作载荷Fm,一般使Coa/Fm=23.初选滚珠丝杠为:外循环,因为内循环较外循环丝杠贵,并且较难安装。考虑到简易经济改装,所以采用外循环。 因此初选滚珠丝杠的型号为CD638-3.5-E型,主要参数为Dw=4.763mm,L。=8mm,dm=63mm,=219,圈数列数3.51 (3) 纵向滚珠丝杠的校核1)传动效率计算 滚珠丝杠螺母副的传动效率为 = tg/tg(+)= tg 219/tg(219+10)=92% (3-6)2)刚度验算 滚珠丝杠副的轴向变形将引起导程发生变化,从而影响其定位精度和运动平稳性,滚珠丝杠副的轴向变形包括丝杠的拉压变形,丝杠与螺母之间滚道的接触变形,丝杠的扭转变形引起的纵向变形以及螺母座的变形和滚珠丝杠轴承的轴向接触变形。1_丝杠的拉压变形量11=FmL / EA (3-7)=1790.682280 / 20.610(31.5) = 0.0064mm2 滚珠与螺纹滚道间的接触变形量2 采用有预紧的方式,因此用公式 2= 0.0013 (3-8) = =0.0028mm在这里 =1/3Fm=1/31790.68=597NZ= dm/Dw=3.1463/4.763=41.53 Z=41.533.51=145.36丝杠的总变形量=1+2=0.0064+0.0028=0.0092mm4所以丝杠很稳定。3.1.4横向滚珠丝杠螺母副的型号选择与校核步骤(1)型号选择1) 最大工作载荷计算 由于导向为贴塑导轨,则:k=1.4 f =0.05 ,Fl为工作台进给方向载荷,Fl=2144N , Fv=5360N , Fc=1340N ,G=60kg , t=12000h,最大工作载荷:F m=kFl+ f (Fv+2Fc+G) =1.42144+0.05(5360+21340+9.875) =3452.6N2)最大动负载的计算v横=1400r/min 0.79mm/r = 1106 mm/minn横丝= v横1/2 / L。纵=11061/2 / 5 =110.6r/minL=60nt/10=1106110.612000 /10=99.54C =fmFm=99.541.53352.6=23283.8N初选滚珠丝杠型号为:CD506-3.5-E其基本参数为 Dw =3.969mm ,=211,L。=6mm,dm=50mm,圈数列数3.51(2)横向滚珠丝杠的校核1)传动效率计算=tg /tg (+)=tg211/tg(211+10)=93%2)刚度验算1丝杠的拉压变形量1=FmL/EA = 3352.6320/20.61025 = 0.0026mm2滚珠与螺纹滚道间的接触变形量2=0.0013 =0.0013 = 0.0099mm 在这里 Fyj=1118NZ=dm/Dw=3.1450/3.969=39.56Z=39.563.51=138.48丝杠的总变形量=1+2=0.0026+0.0099=0.0125mm100mm时n=6m由结构确定,在这里均取3,d3为螺钉直径.(1)D=26时的尺寸 =n-d3-1 则d3=2.5 取M4的螺钉=26+2.52.5=32.25 =32.25+32.5=39.25=0.9D=0.926=23.4m=3(2)D=37d3=2.5mm 取M4的螺钉=37+6.25=43.25mm=43.25+7.5=50.75mm=0.937=33.3mmm=3mm3.4.2 通盖 图3-6 通盖=D+(22.5)d3+2S2(有套环)=D。+(2.53)d3 =(0.850.9)Dd。=d3+(12) D100mm时n=4D100mm时n=6m由结构确定,在这里均取3mm,d3为螺钉直径.(1)D=6通盖尺寸,内加密封圈d3取M4螺钉=32.5 =39.75=23.4 d=18m=3(2)D=37通盖尺寸 d3取M4螺钉=43.25 =50.75=33.3 d=25m=3选用型号 7602025TVP的60推力角接触轴承 轴径 d=25mm 外径d=52mm 宽度B=12mm 球径Dw=6.35mm 球数Z=16 动载荷Ca=22000N 静载荷Coa=44000N 预加载荷500N 极限转速2600r/min3.5.校核 大部分滚动轴承是由于疲劳点蚀而失效的。轴承中任一元件出现疲劳步剥落扩展迹象前院运转的总转数或一定转速下的工作小时数称为轴承寿命(指的是两个套圈间的相对转数或相对转速)。 同样的一批轴承载相同工作条件下运转,各轴承的实际寿命大不相同,最高和最低的可能相差数十倍。对一个具体轴承很难预知其确切寿命,但是一批轴承则服从一定的概率分布规律,用数理统计的方法处理数据可分析计算一定可靠度R或失效概率n下的轴承寿命。实际选择轴承时常以基本额定寿命为标准。轴承的基本额定寿命是指90%可靠度,常用材料和加工质量,常规运转条件下的寿命,以符号L10(r)或L10h(h)表示。不同可靠度,特殊轴承性能和运转条件时其寿命可对基本额定寿命进行修正,称为修正额定寿命。 标准中规定将基本额定寿命一百万转(10r)时轴承所能承受的恒定载荷取为基本额定动载荷C。也就是说,在基本额定动载荷作用下,轴承可以工作10r而不发生点蚀失效,其可靠度为90%。基本额定动载荷大,轴承抗疲劳的承载能力相应较强。径向基本额定动载荷Cr对向心轴承(角接触轴承除外)是指径向载荷,对角接触轴承则是指引起轴承套圈间产生相对径向位移时的载荷径向分量。对推力轴承,轴向基本额定动载荷Ca是指中心轴向载荷。(1) 当量载荷滚动轴承若同时承受径向和轴向联合载荷,为了计算轴承寿命时在相同条件下比较,需将实际工作载荷转化为当量动载荷。在当量动载荷作用下,轴承寿命与实际联合载荷下轴承的寿命相同。当量动载荷P的计算公式是:P= (3-14)表3.2 轴承滚动当量动载荷计算的X,Y值轴承类型 Fa/Cor e 单向轴承双列轴承Fa/FreFa/FreFa/FreFa/FreX Y XY XYXY 角接触球轴承=120.0120.381 00.441.4711.65 0.722.390.0290.41.401.572.280.0580.431.301.462.110.0870.461.231.3820.120.471.191.341.930.170.501.121.261.820.290.551.021.141.660.440.561.001.121.630.580.561.001.121.63当量动载荷式中Fr为径向载荷,N;Fa为轴向载荷,N;X,Y分别为径向动载荷系数和轴向动载荷系数,可由上表查出。 上表中,e是一个判断系数,它是适用于各种X,Y系数值的Fa/Fr极限值。试验证明,轴承Fa/Fre或 Fa/Fre时其X,Y值是不同的。单列向心轴承或角接触轴承当Fa/Fre时,Y=0,P=Fr,即轴向载荷对当量动载荷的影响可以不计。深沟球轴承和角接触球轴承的e值随Fa/Cor的增大而增大。Fa/Cor反映轴向载荷的相对大小,它通过接触角的变化而影响e值。=0的圆柱滚子轴承与滚针轴承只能承受径向力,当量动载荷Pr=Fr;而=90的推力轴承只能承受轴向力,其当量动载荷Pa=Fa。 由于机械工作时常具有振动和冲击,为此,轴承的当量动载荷应按下式计算: P=fd(XFr+Yfa)冲击载荷系数fd由表3.3选取表3.3:载荷性质 机器举例fd平稳运转或轻微冲击电机,水泵,通风机,汽轮机1.01.2中等冲击车辆,机床,起重机,冶金设备,内燃机1.21.8强大冲击破碎机,轧钢机,振动筛,工程机械,石油钻机1.83.0由于轴承载荷与纵向载荷之比:=0.25C 此轴承合乎要求另外由于横向丝杠与纵向丝杠采用同一轴承,且载荷小于纵向,因此同理可验证其是合理的。第4章 步进电机的选择4.1 纵向步进电机的选择4.1.1 确定系统的脉冲当量脉冲当量是指一个进给脉冲使机床执行部件产生的进给量,它是衡量数控机床加工精度的一个基本技术参数。因此,脉冲当量应根据机床精度的要求来确定,CA6140的定位精度为0.012mm,因此选用的脉冲当量为0.01mm/脉冲 0.005mm/脉冲。4.1.2步距角的选择根据步距角初步选步进电机型号,并从步进电机技术参数表中查到步距角b ,三种不同脉冲分配方式对应有两种步距角。步距角b 及减速比 i与脉冲当量p 和丝杠导程 L0 有关。初选电机型号时应合理选择b及i, 并满足: b (pi360)/L0 (4-1)由上式可知:b pi360/L0=3600.011/10=0.36初选电机型号为:90BYG5502具体参数如表4.1所示 表4.1: 纵向电机步距角相数驱动电压电流90BYG55020.36 550V3A静转矩空载起动频率空载运行频率转动惯量重量 5N.m 2200 3000040 kg.cm4.5kg图4-1 电机简图4.1.3矩频特性: =J=J10(N.cm) 由于:nmax=(r/min)则: Mka=J(N.cm)式中:J为传动系统各部件惯量折算到电机轴上的总等效转动惯量(kg.cm);为电机最大角加速度(rad/s);nmax为与运动部件最大快进速度对应的电机最大转速(r/min);t为运动部件从静止启动加速到最大快进速度所需的时间(s);vmax为运动部件最大快进速度(mm/min); p为脉冲当量(mm/脉冲);b为初选步进电机的步距角()步,对于轴、轴承、齿轮、联轴器,丝杠等圆柱体的转动惯量计算公式为J=(kg.cm),对于钢材,材料密度为7.810(kg.cm),则上式转化为J=0.78DL10(kg.cm),式中:Mc为圆柱体质量(kg);D为圆柱体直径(cm),JD为电动机转子转动惯量,可由资料查出。(1)丝杠的转动惯量Js Js=Js/i,i为丝杠与电机轴之间的总传动比由于i=1则: Js=0.78DL10=0.78(6.3)17010=208.9( kg.cm)(2)工作台质量折算工作台是移动部件,其移动质量惯量折算到滚珠丝杠轴上的转动量JG:JG=()M( kg.cm),式中:L。为丝杠导程(cm);M为工作台质量(kg).由于L。=1cm,M=90kg则 : JG=()M=90=2.28( kg.cm)1)一对齿轮传动小齿轮装置在电机轴上转动惯量不用折算,为J1.大齿轮转动惯量J2折算到电机轴上为=J2()2)两对齿轮传动传动总速比i=i1i2,二级分速比为i1=z2/z1和i2=z4/z3.于是,齿轮1的转动惯量为J1,齿轮2和3装在中间轴上,其转动惯量要分别折算到电机轴上,分别为J2()和J3().齿轮4的转动惯量要进行二次折算或以总速比折算为:=J4()() (4-2)因此,可以得到这样的结论:在电机轴上的传动部件转动惯量不必折算,在其他轴上的传动部件转动惯量折算时除以该轴与电机轴之间的总传动比平方。由于减速机构为一对齿轮传动,且第一级i=1,则可分别求出各齿轮与轴的转动惯量如下:n=45,m=1.5的转动惯量J45,其分度圆直径d=451.5=67.5mmS=27mm 则:J45=0.786.7510=4.371 kg.cmn=40,m=1.5的转动惯量J40,其分度圆直径d=401.5=60mmS=27mm 则:J40=0.78610=2.73kg.cmn=30,m=1.5的转动惯量J30,其分度圆直径d=301.5=45mmS=27mm 则:J30=0.784.510=0.964 kg.cmn=45,m=1.5的转动惯量J45,其分度圆直径d=451.5=67.5mmS=30mm 则:J45=0.786.7510=4.9538 kg.cmn=50,m=1.5的转动惯量J50,其分度圆直径d=501.5=75mmS=30mm 则:J50=0.787.510=7.548 kg.cmn=60,m=1.5的转动惯量J60,其分度圆直径d=601.5=90mmS=30mm 则:J60=0.78910=12.66 kg.cm两输入输出轴的转动惯量为:J输入=0.781.81310=0.106 kg.cm ; L=130mmJ输出=0.782.51310=0.396 kg.cm ; L=130mm查表得:JD=4 kg.cm综上可知:J=JD+Js+JG+J30+J40+J60+J50+2J45 (4-3) =252.302 kg.cm又由于 V =1.461600=2236mm/min则:Mka=252.30210=41.1N.cm(3)力矩的折算:1)Mkf空载摩擦力矩Mkf= (4-4)式中:G为运动部件的总重力(N); f为导轨摩擦系数;i为齿轮传动降速比;为传动系统总效率,一般取=0.70.85;L。为滚珠丝杠的基本导程(cm)。由于G=9010=900N, f=0.05, i=1, =0.85则Mkf =8.4N.cm2)M。附加摩擦力矩 M。=(1-。) (4-5)式中:Fyj为滚珠丝杠预加负载,即预紧力,一般取1/3Fm;Fm为进给牵引力(N), 。为滚珠丝杠未预紧时的传动效率,一般取。0.9得 Fyj=1/3Fm=1/31728.8=576.3N又 L。=10mm , =0.95则 M。=96.6 N.cm 则 =+M。=41.1+8.4+96.6=140 N.cm由于=则所选步进电机为五相十拍的经表查得 :=0.951则 =1.67N.m=0.955=4.75N.m所以所选步进电机合乎要求4.1.4据步进电机的矩频特性计算加减速时间校核的快速性T=(fn-f0) (4-6)式中:T为加减速时间,Jr和Jl分别为转子,负载的转动惯量(kg.m)为电机得步距角(),Tcp,Tl为电机最大平均转矩,负载转矩(N.m)f。,fn为起始加速时,加速终了时的频率(Hz)由于 Jr=0.410 kg.m Jl=0.0252 kg.m =0.36Tcp=5 N.m Tl=1.67 N.m f0=2200Hz fn=30000Hz 则 T=(30000-2200) =1.2s1.5s所以选此步进电机能满足要求。矩频特性曲线4.2 横向步进电机的选择4.2.1步距角的确定b pi360/L。 (4-7) L。=6mm , i=1 , p=0.005 b 0.3 初选电机型号为:110BYG5602横向电机步距角相数驱动电压电流110BYG56020.3 580V3A静转矩空载起动频率空载运行频率转动惯量重量 16 N.m 2500 3500012kg.cm16kg图4-2 电机简图4.2.2距频特性(1)力矩的折算1)空载摩擦力矩Mkf =GfL。/2i G=6010=600N f=0.05 L。=6mm =0.8 =3.5(N.cm)2)附加摩擦力矩 M。=(1-。)(N.cm) Fyj=1/3Fm=1/33433.6=1144.5N L。=6 M。=112 N.cm(2)转动惯量的折算1)滚珠丝杠的转动惯量 Js=0.78DL10 D=4cm L=26cm Js=0.78DL10=0.78(4)2610 =5.19 N.cm2)工作台转动惯量 JG=M (4-8) L。=0.6cm M=60kg JG=M =60=0.54( kg.cm)(3)多脉冲减速装置的转动惯量折算Z=30 d=mz=1.530=45mm J=0.78D L10 =0.784.51.810 =0.58kg.cmZ=40 d=mz=1.540=60mm J=0.78D L10
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。