普通式双柱汽车举升机设计(全套含CAD图纸)
收藏
资源目录
压缩包内文档预览:(预览前20页/共22页)
编号:145759989
类型:共享资源
大小:1.45MB
格式:ZIP
上传时间:2021-09-29
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
普通
式双柱
汽车
举升机
设计
全套
CAD
图纸
- 资源描述:
-
喜欢就充值下载吧,,资源目录下展示的全都有,,下载后全都有,dwg格式的为CAD图纸,有疑问咨询QQ:414951605 或1304139763
- 内容简介:
-
XX大学毕业设计说明书(论文) 第 22 页 共 22 页 普通式双柱汽车举升机设计摘 要:双柱式汽车举升机是一种汽车修理和保养单位常用的举升设备,广泛应用于轿车等小型车的维修和保养。目前,全国生产汽车举升机的厂家较多,生产的举升机的形式也比较繁多,有双柱式举升机、四柱式举升机、剪式举升机、组合移动汽车式举升机等。本文较全面地介绍了举升机的分类,在确定了所要设计的举升机的方案之后,即针对举升机的结构及其特点要求进行了设计与说明,同时对举升机设计过程中所涉及到的工艺性问题进行补充说明。然后分析了普通式双柱汽车举升机主立柱的截面特性,并对主立柱的强刚度和托臂的强度进行了校核验算。对液压缸活塞杆强度以及受压杆的稳定性也进行了验算,以保证所设计的举升机满足使用要求。本课题所设计的是液压驱动的普通式双柱汽车举升机。它的特点是:性能可靠,低能耗,操作方便;无横梁,结构简单;非对称托臂可伸缩,保证了安全性;托脚的最低位置低,使得车辆的底盘可以比较低,对各种车辆的适应性扩大了;与螺杆式的举升机相比,使用寿命较长;价格低廉,拥有的市场份额较大。关键词:普通式,双柱举升机,结构特点,非对称式,机械结构设计,液压驱动,截面特性1 绪论2 举升机的方案拟定1.1 举升机的基本情况1.1.1 常用汽车举升机的结构类型目前,全国生产汽车举升机的厂家较多,生产的举升机的形式也比较繁多,有双柱式举升机、四柱式、剪式、组合移动汽车式等。仅从举升机的外型来分类的基本形式就有:普通双柱式、龙门双柱式、四立柱式、剪式、移动式和单立柱式等汽车举升机。按照举升机的举升装置的形式分类也有很多种,包括丝杠螺母举升式、链条传动举升式、液压缸举升式、齿轮齿条举升式等举升机。从举升机的驱动方式分,主要有:电机驱动式举升机和液压驱动式举升机。1.2 汽车举升机的主要结构与要求1.2.1举升机的结构形式主要有:(1)整体结构形式;(2)举升方式;(3)驱动方式;(4)平衡方式;(5)保险与保护方式;(6)托盘结构。1.2.2 举升装置的要求在我国的规定中讲到举升机的设备安装电器系统的绝缘、耐压和保护电路的连续性都要符合GB5226的有关规定。而在欧美地区同样也有其相应的明文规定。举升机的设计中液压系统的设计也是至关重要的。在欧洲地区液压缸、气缸、管路及接头受调压阀设定的最大压力的限制。他们至少应承受该压力的2倍(采用液压驱动时)或是该压力的3倍(采用气压驱动时)并且要没有永久变形。软管、气袋、膜盒的尺寸在设计时应使之承受至少3倍的调压阀设定的最大压力值的爆破压力。我国对举升机的性能要求也比较繁多,例如:(1)举升机应设有限制行程限位装置,如有需要则该装置应动作灵敏、安全可靠。(2)液压系统工作应平稳、无振动、无爬行现象。(3)液压式举升机除液压系统能自锁外还应没有机械锁止装置。(4)机械式举升机任意时刻都能安全自锁。(5)举升机正常运行时的噪音不得超过80dB。(6)举升机工作环境温度为040,全行程连续举升额定质量20次,油温不得高于60。(7)在试验台上对液压系统施高150%的额定使用压力,维持2min,不允许有永久变形、漏油及其他异常现象。(8)在无故障工作基础上,机械式举升机的使用继续进行到3000次,则液压举升机可以继续进行到9000次,以安全可靠为前提,检查零部件损坏程度,允许更换损坏件,允许添加润滑剂。1.3 普通式双柱汽车举升机结构方案的确定通过对汽车举升机的结构的认识和了解,确定了本次设计的举升机的总体方案。如下图1.1所示:图1.1普通式双柱举升机的结构示意图本次设计的是由液压驱动的QJY04-02B型普通式双柱汽车举升机。它的结构主要包括以下几个部分:举升装置、同步驱动装置、立柱和托臂。QJY04-02B型普通式双柱汽车举升机的举升机构的传动系统是由液压系统来驱动和控制的,由两边两个立柱里安装的液压油缸来推动连接立柱与滑台的链条,使滑台上安装的大滚轮沿立柱滚动,实现滑台的上下移动。用钢丝绳作为同步装置来保持整个举升机的同步性。托臂与立柱内的滑台相连,当滑台上下移动时就带动托臂一起移动。2 普通式双柱汽车举升机的结构设计2.1 举升装置本次设计的举升机的举升装置是由液压系统以及电箱组成的。通过电箱的开关启动电动机来控制液压单元,液压油进出液压缸,并通过链条连接液压缸和滑台来带动整个设备的举升动作,如图2.1所示图2.1驱动举升装置示意图图2.1是本次设计的普通式双柱汽车举升机的驱动装置及举升装置的示意图,从图中可以看到左右两边立柱内的两个举升装置是通过液压软管来连接的,它的一个不足的地方就是左右两个液压缸在开始举升时有一个时间差,这会导致因左右两边的举升速度不一样而举升不平衡。因此,我们在液压举升的基础上增加了钢丝绳的同步装置,用这样的同步装置来弥补液压缸带来的缺点。图2.2是普通式双柱汽车举升机的举升装置的结构图。图2.2普通式双柱汽车举升机的举升装置结构图从图中可以看到,普通式双柱汽车举升机的举升装置是将链条镶嵌在滑轮槽内来带动液压杆达到举升的目的。2.2 立柱普通式双柱汽车举升机的立柱有两个,分别是左、右两边各一个立柱。图2.3是左边立柱的俯视图。整个举升机的重量几乎都是由立柱来支撑的,因此它必须要有一定的强度和刚度。(强刚度的设计计算在第四章)。立柱中间的空间是用来放置举升装置以及滑台部件的。整个立柱部分的行位公差要求也比较高,如图水平方向的立柱臂和垂直方向的立柱壁要求要保持一定的直线度和平行度,立柱内外表面还要有一定的粗糙度等。图2.3左立柱的俯视图2.3 支撑机构托臂部分是属于举升机的支撑机构。当汽车进入到举升机的范围里时,整个支撑机构就通过改变摇臂的角度或方向来改变托臂的整个工作范围的宽度。本次设计的支撑机构是非对称式的托臂,这样设计增加了托臂的宽度,实质就等于增加了托臂的工作范围,而且左右两侧的托臂的臂长都是有一定的伸缩性的。如图2.4所示:图2.4非对称式托臂的工作范围示意图1托臂原始工作位置,2托臂伸长后的工作位置其中,图中方格阴影部分就是托臂的工作范围。托臂未伸长前的工作范围按照轨迹1来运动;托臂伸长后的工作范围按照轨迹2来运动;而且,图中的轨迹1和2是托臂的两个极限位置,在1和2的范围内,托臂的长度是可以伸缩的。但是由于托臂属于支撑机构,它是要承受一定的重量的,所以本次设计采用非对称式的结构就更能保证托臂的强刚度了。非对称式托臂的详细结构如图2.5所示:图2.5非对称式托臂的结构图2.4 平衡机构由于举升机在上升或下降时必须要采用强制性的平衡装置来确保汽车整体的水平位置保持一致,所以本次设计采用了钢丝绳来作为整个举升机的平衡机构。本次设计所采用的是在单个立柱内安装两副左右对称的钢丝绳,但是在这个单个立柱里面的钢丝绳的走向确是两个相反的方向,用户可以通过改变钢丝绳的张力来使左右两边的滑台在抬升的过程中保持平衡。要注意的是两边确定的钢丝绳的张力必须一致,这样才能真正的平衡。单个立柱里的钢丝绳的走向如图2.6所示: 图2.6单个立柱内钢丝绳的走向示意图2.5 保险机构汽车举升机是一种对安全性能要求特别高的举升设备。通常设有多种保险装置和保护措施:液压回路的保压、机械锁止保险装置、机械自锁装置、举升过载保护、冲顶保护、防滑等等。机械自锁是指失去驱动力后,利用机械机构的重力(被驱动物体的阻力)来自动阻碍其运动的保护10。本次设计中电磁铁安全锁机构的组成是:在两个滑台上均有安装安全卡位条,当汽车升起后,卡位条与电磁铁连接的支撑板构成机械自锁机构,由于两个立柱上均装有电磁铁安全锁,如图2.7所示,并且这两个安全锁所装的位置不在同一直线上而是互相错开在对角线上,起到双保险的作用7。图2.7电磁铁安全锁1电磁铁,2保险孔板,3保险孔支撑座作为保险装置的电磁铁安全锁是由好几个零件组成的。其中主要的几个零件包括:保险孔板、保险孔支撑座和电磁铁。当电磁铁得电将保险孔支撑座吸住时,它和锁紧板之间没有接触,此时的举升机处于保险打开状态,整个滑台可以自由地上下移动。当电磁铁失电时,保险孔支撑座处于图示状态,此时的保险孔支撑座将与滑台上的锁紧板互相顶住,使滑台固定在一个位置而不能上下移动,起到保险的作用。3 普通式双柱汽车举升机的强刚度分析与验算双柱式汽车举升机的结构形式有多种,QJY04-02B型举升机系是指液压驱动的双柱举升机。此类举升机构的传动系统由液压系统驱动和控制的,通过两立柱内安装的液压油缸实现上下运动,推动连接立柱与滑台的链条,使滑台上安装的大滚轮沿立柱滚动,实现滑台的上下移动。举升设备的主要部分有:举升机构、支承机构、平衡机构和电磁铁安全锁机构。本次设计的举升机的主要性能参数为:额定举升载荷3吨;在载重3吨情况下,由最低位置举升到最高位置需60秒;当拉下操纵杆使溢流阀接通,3吨轿车由最高位置降到最低位置所需时间是50秒;举升臂在最低位置时的举升高度为150mm,最大举升高度为1900mm,工作行程为1750mm。3.1 普通式双柱举升机立柱的结构分析和验算3.1.1 主立柱的截面特性分析与计算5主立柱体是举升机主要的受力承重部件。举升机立柱在工作时受来自于保险锁机构处因承重的压力和升降滑台滚轮作用在立柱上的弯矩。因此,立柱在这两种力的作用下,有向内弯的变形趋势,底部焊口在拉压应力的作用下有开裂的倾向,故立柱底部与底座处焊有加强筋。立柱壳体用钢板整体压制成形,其内部相应位置焊有保险装置支承板,用于锁定状态时受力和承重,下部与底座焊接。其中一个立柱体上还装有液压泵站和电气控制箱。主立柱作为主要的承重部件,先对其截面特征进行分析,主要是确定立柱截面形心的位置和截面的惯性矩。3.1.1.1 确定立柱截面形心和中性轴的位置将整个截面分为A1、A2、A3三个部分,取与截面底边互相重合的Z轴为参考轴(见图4.1举升机主立柱横截面示意图),Z1、Z2、Z3分别为三个组合截面的中性轴,则三个截面的面积及其形心至Z轴的距离分别为:图4.1举升机主立柱横截面示意图A1=19682+2708=5296(mm2)A2=(588)82=800(mm2)A3=(388)82=480(mm2)求重心C到各想应边的距离:Y1=e1=aH2+bd22(aH+bd)=161962+270822(16196+2708)=59.662(mm)e2=He1=19659.662=136.338(mm)Y2=1964=192(mm)Y3=196815=173(mm)所以整个截面形心C在对称轴Y上的位置是:Yc=AiYiA=A1Y1+A2Y2+A3Y3A1+A2+A3=529659.662+800192+4801735296+800+480=84.034(mm)3.1.1.2 确定惯性矩设三截面的形心分别为C1、C2、C3,其形心轴为Z1、Z2、Z3(图4.1),它们距Z轴的距离分别为:a1=CC1=84.03459.662=24.372(mm)a2=CC2=19284.034=107.966(mm)a3=CC3=173-84.034=88.966(mm)根据平行移轴公式,得出三个截面对中性轴Z的惯性矩:Iz1=Iz1+a12A1=Be13bh3+ae233+24.37225296=2449.823(cm4)Iz2=Iz2+a22A2=5083122+107.9662800=932.745(cm4)Iz3=Iz3+a32A3=8303122+88.9662480=383.517(cm4)式中Iz1、Iz2、Iz3分别是三个截面对各自形心轴的惯性矩。所以立柱整个截面对中性轴Z的惯性矩:IZ=IZ1+IZ2+IZ3=2449.823+932.745+383.517=3766.085(cm4)3.1.1.3 立柱静矩S的计算:(1)立柱整个截面上半部分的静矩S1:先求各个截面各自的静矩:SA1=28(196-84.034)19684.0342=100291.081(mm3)SA2=2(588) 8(19684.0344)=86372.800(mm3)SA3=2(388)8(19684.03415)46543.680(mm3)所以S1=SA1+SA2+SA3=233207.561(mm3)(2)立柱整个截面下半部分的静矩S2:S=2884.03420.5=56493.71(mm3)S”=2708(84.0344)=172873.44(mm3)所以S2=S+S”=229367.15(mm3)3.1.2 主立柱的强度分析与验算举升机工作时,其托臂将汽车举升至一定高度后锁定,举升机直接承载处位于托臂端部,故应先对滑台部件进行受力分析(见图4.2滑台部件受力情况示意图),在分析之前,对滑台部件进行了调查。其中本次设计的滑台部件的组成之一是大滑轮,滑轮的种类形状有很多,有“两个大圆柱滚轮型”、“四个顶角处是采用四个小滚轮型”、还有最原始的“四个角用四个橡胶滑块”或是“用两个滑块代替两个大圆柱滚轮”,但是用的较多的是“采用两个大圆柱滚轮”的形式,如果采用其他类型的滚轮例如用滑块来代替滚轮,那么整个滑台就不容易锁定,容易滑动;除此之外就是同步性的问题也不容易解决。图4.2滑台部件受力情况示意图3.1.2.1 滑台部件受力情况分析滑台部件重量估计:钢材比重选:7.8t/m3滑台组合件:160160方钢,壁厚10mm,高900mm体积:V1=16169014.414.490=4377.60(cm3)质量:G1=4377.67.8=34.15(kg)摇臂座:100100方钢,壁厚10mm,长450mm体积:V2=1010458.48.445=1324.80(cm3)质量:G2=1324.87.8=10.33(kg)托臂:100100方钢,壁厚10mm,长900+310=1210mm体积:V3=10101218.48.4121=3562.24(cm3)质量:G3=3562.247.8=27.79(kg)所以滑台部件总质量是:72.27(kg)图4.2中,单侧托臂受到的最大载荷为2吨,加上自重,托臂端部受力为2072.27kg,F1和F2是立柱通过滚轮给予的反力,FBX和FBY为保险支承板给予的支承力,B处为支承点,假定自重全部集中在负载处,受力分析:得到MB=0,MC=0,X=0,Y=0即:F1(180+600)F2180=0F1600+FBX180=0F1=F2+FBYFBY=2072.27kg假设:F1=F2,FBX=0解出:F1=4956.18(kg),F2=4956.18(kg),FBY=2072.27(kg)综上所述,由滑台组合件、摇臂座、托臂考虑自重。假定自重全部集中在负载处,大约是72.27kg。单侧托臂受到的最大载荷为2000kg,加上滑台部件的自重,托臂端部所受的力是2072.27kg。B点是支承点,F1,F2分别是立柱通过滑轮所给的反力,且F1=F2;FBX和FBY为保险支承板给予的支承力,此时:F1=F2=4956.18(kg),FBX=0,FBY=2072.27(kg)3.1.2.2 举升机主立柱受力情况分析主立柱受力情况(见图4.3普通式双柱举升机主立柱受力情况示意图),F1和F2是滑台通过滚轮作用在立柱上的力(图示为最高位置),FBX和FBY为滑台作用在立柱上的支承力(压力),RHX、RHY和MH为底部支座反力。针对立柱受力情况,经计算得:图4.3普通式双柱举升机主立柱受力情况示意图MH=0,MH+F21900F1(1900+600)+FBY(84.03416)=0Y=0,FBYRHY=0RHX=0,FBY=RHY=2072.27(kg)所以MH=2832723.183(kgmm)3.1.2.3 普通式双柱举升机主立柱强度校核计算从图4.3看出,整个立柱体相当于一个悬臂梁,可画出立柱的弯矩图和剪力图。F1引起的弯矩图和剪力图如图4.4:F1=4956.18kg24152600图4.4立柱上F1作用力及其弯矩图和剪力图l=2600mm b=2415mm a=185mmMmax1=p(la)=4956.18(2600185)=11969.17(kgmm)Qmax1=4956.18(kgmm)F2引起的弯矩图和剪力图如图4.5:1900700图4.5 立柱上F2作用力及其弯矩图和剪力图l=2600mm b=1900mm a=700mmMmax2= p(la)=4956.181900=9416742(kgmm)Qmax2=4956.18(kgmm)FBY产生的M引起的弯矩图如图4.6图4.6立柱上M作用力及其弯矩图M=FBY68.034=2072.2768.034=140984.8(kgmm)Qmax3=M=140984.8(kgmm)所以立柱受力的合成弯矩图和剪力图如图4.78501750700700图4.7立柱受力的合成弯矩图和合成剪力图由图可得:M=P(a1a2)=4956.18600=2973708(kgmm)MD=2973708140984.8=2832723.2(kgmm)此时C出的剪力和弯矩达到最大值,所以此处是危险截面。前面计算得IZ=3765.294cm4,则抗弯截面模数:W=IZe2=IZHYc=3765.29419684.034=336.63(cm3)截面上半部分静矩S=229.37cm3,IZS=3765.294229.37=16.42(mm)强度校验:(1)正应力强度:max=MmaxW=McW=2973708336.62=883.38(kg/cm2)许用应力取:=5411009.85=1102.04(kg/cm2)max,满足强度条件(2)剪应力强度:max=QmaxSIZb=QCIZb/S=4956.1816.4228.2=10.70(kg/cm2)取s=235MPa,许用应力=2351009.85=479.59(kg/cm2)max,满足强度条件3.1.3 主立柱的刚度计算迭加法:(1)=xl,=al=7002600=0.269,=bl=0.731F2所引起的挠度:向外弯曲:fA1=Pb2l6EI=4956.1819022609.8(30.731)620.11063765.294=2.3(cm)(2)=xl,=al=7002600=0.269,=bl=24152600=0.929F1所引起的挠度:向内弯曲:fA2=Pb2l6EI=4956.18241.522609.82.07362.011073765.294=3.3(cm)所以fA=fA1+fA2=3.32.3=1(cm)3.2 托臂部分的强度校核3.2.1 托臂部分截面特性(1)小臂截面尺寸:7070方钢,壁厚10mm,a=70mm,b=50mm惯性矩:I1=a4b412=70250212=148(cm4)Wx1=a4b46a=704504670=42.29(cm3)(2)小臂截面尺寸:9090方钢,壁厚10mm,a=90mm,b=70mm惯性矩:I2=a4b412=90270212=346.67(cm4)Wx2=a4b46a=904704690=77.04(cm3)3.2.2 托臂部分强度核算图示为左后托臂部件图:图4.9左后托臂部件图图中的A、B、C、D分别对应着托臂示意图中的A、B、C、D四个截面:下图是托臂示意图:图4.10托臂示意图对A,B,C,D截面进行分析,各个截面的截面图如下:501080 (a) A-A截面 (b) B-B截面(同D-D截面) (c) C-C截面图4.10典型截面示意图(1)A截面:惯性矩:I=148(cm4),Wx=42.29(cm3)MA=2072.2731=64240.37(kgcm)maxA=MAWx=64240.3742.29=1519.4(kg/cm2)取=5401009.83=1836.73(kg/cm2)所以:maxA,满足强度要求(2)B截面:A1=8015=1200(mm2)yA1=90+15/2=97.5(mm)A2=9090-7070=3200(mm2)yA2=902=45(mm)YC=(120097.5+320045)/(1200+3200)=60.05(mm)IA1=80153/2+(97.5-60.05)21200=181.8(cm4)IA2=90470412+(60.05-45)23200=409.84 (cm4)所以IB=IA1+IA2=591.64(cm4),Wx=96.61(cm3)MB=2072.2761=126408.471(kgcm)maxB=MBWx=126408.47196.61=1308.44(kg/cm2)取=5401009.83.5=1574.34(kg/cm2)所以:maxB,满足强度要求(3)C截面:A1=1200(mm2)yA1=90+152+60=15.75(cm)A2=32(cm2)yA2=4.6(cm)A3=6010=6(cm2)yA3=90602=12(cm)yc=(1215.75324.6612)12+328=7.85(cm)IA1=501532+(15.757.85)212=851.24(cm4)IA2=92476412+(7.854.6)222=762.47(cm4)所以IA=IA1+IA2+IA3=1613.71(cm4),Wx=IA7.85=205.57(cm3)Mc=2072.2794=194793.38(kgmm)maxC=MCWx=194793.38205.57=947.58(kg/cm2)取=5401009.83.5=1574.34(kg/cm2)所以:maxC,满足强度要求(4)D截面:惯性矩:I=346.67(cm4),Wx=77.04(cm3)MD=2072.2753=109830.31(kgmm)maxD=MDWx=109830.3177.04=1425.63(kg/cm2)取=5401009.83.4=1620.64(kg/cm2)所以:maxD,满足强度要求3.2.3 托臂处的挠度情况这里可以把托臂看做一个悬臂梁,端部受力P2072.27kg,托臂部件由大臂和小臂组成。分别考虑大小臂端处的挠度:小臂端部处挠度:f1=Pl133EI=2072.274639.832.01107148=0.221(cm)大臂端部处挠度:受力分析,大臂端部受一个力P2072.27kg和一个弯矩M=2072.2775=155425.25(kgmm)作用。所以f2=Pl233EI=2072.277539.832.01107346.67=0.409(cm),fM=Ml222EI=2072.27707029.822.01107346.67=0.535(cm)所以因载荷引起的挠度:f=f1+f2+fM=0.221+0.409+0.535=1.165(cm)因托臂的大小臂之间存在大小1mm的间隙,其产生的挠度: f间隙 =1.864(cm)主立柱的弯曲绕度会使滑台产生转动,滑台的转动又会使托臂有一定的下沉量,其产生的挠度:f转动=27.236(mm)所以托臂部总下沉量:f总=f+f间隙+f转动=1.165+1.864+2.723=5.302(cm)6(cm),满足举升机行业标准规定值4 液压系统4.1 液压系统及其工作原理汽车举升机液压系统原理图如图2所示,系统执行元件为液压马达5,系统采用定量泵2供油,系统压力由溢流阀3调节,并由压力表8来显示 马达正反转停止由手动换向阀4控制,马达5的转速由调速阀9调节,当过载时,由溢流阀3溢流 液控单向阀6 、7在马达5旋转时开启,马达5停止旋转时能可靠锁紧,防止举升机在维修时运动,可起到安全保护作用,同时液压泵通过换向阀4卸荷。1过滤器 2液压泵 3溢流阀 4手动换向阀 5液压马达 6、7液控单向阀 8压力表 9调速阀图2液压系统图4.1.1工作原理:举升:启动液压泵2,手动换向阀4扳至左位;进油路:液压油由过滤器1进入液压泵2,通过调速阀9,换向阀4,液控单向阀6进入马达5;回油路: 由马达5 单向阀7,手动换向阀4进入油箱;下降:启动液压泵2,手动换向阀4扳至右位;进油路:液压油由过滤器1进入液压泵2,通过调速阀9,换向阀4,液控单向阀7进入马达5;回油路: 由马达5 单向阀6,手动换向阀4进入油箱;停止: 启动液压泵2,手动换向阀4扳至中位 马达的两个油口被液控单向阀6 7可靠封闭,同时,液压泵2通过调速阀9,手动换向阀4卸荷。4.2液压马达的选择本设计在满载时工作行程1.175m,工作时间60s得出实际最大提升速度v=0.02m/s。选用低速液压马达, 力臂为绞缆筒半径与钢丝绳半径之和即钢丝绳缠绕半径为015m,得到最大提升速度v=03m/s,代入:n=v60/(2R)n:马达转速r/min,v:钢丝绳转动速度m/s,R:钢丝绳缠绕半径m得出n=19.1r/min本设计取液压马达和绞车滚筒处的机械效率=0.95,起升平台的重量不考虑,代入:T=FR/T:马达最大转矩Nm,F:起吊重量,这里取30000N,R:钢丝绳缠绕半径m;得出T=4736.84Nm综上选取NJM-G125马达,其参数:排量/mLr11.25额定压力/MPa25最大压力/MPa32最高转速/rmin1100最大输出转矩/Nm57244.3液压泵的选择NJM系列液压马达,容积效率取 =09。回路中的最大流量即液压马达的最大工作流量计算公式:Q=Vn/vQ:液压泵的最大工作流量mL/min,V液压泵的排量mL/r,n:液压泵转速r/min,v:液压泵的容积效率得出Q=25.1mL/min综上选取25* CY14-1B型轴向液压泵,其主要参数:型号25* CY14-1B额定压力/MPa32额定转速/rmin11500额定流量/Lmin125功率/KW13.7排量/mLr1254.4 泵电机的选择根据主油泵最高转速1500r/min,选择三相异步电机Y160L-4,其功率为15kW,转速1460r/min。4.5油箱容量的计算按照经验计算公式:V=aqpV:油箱的有效容积L,a:经验系数L/min,本设计取10,qp:油压泵的总额定流量L得出V=250L4.6 液压管道计算管道内径计算公式: d=4qvd:油管内径m,q:油管的最大流量m3/s,v:油管中允许的流速m/s,本设计取3得出d=13.3mm结论本文首先对所有的汽车举升机的情况进行了简单的阐述,并介绍了各类汽车举升机的结构特点,对汽车举升机有了初步了认识。然后再根据各类汽车举升机的各种使用要求,结合前
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。