




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、13.1 命题、定理与证明第13章 全等三角形导入新课讲授新课当堂练习课堂小结2. 定理与证明1.理解基本事实、定理等概念.(重点)2.理解证明的概念,并会对真命题进行证明.(难点)学习目标问题导入问题导入导入新课导入新课问题:我们学过的哪些命题是真命题1.两点确定一条直线;2.两点之间,线段最短;3.过一点有且只有一条直线与已知直线垂直;4.过直线外一点有且只有一条直线与这条直线平行. 基本事实基本事实 :数学中这些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,即出发点.这样的真命题视为基本事实.我们也称它为公理.例如下列的真命题作为基本事实: 1.一条直
2、线截两条平行直线所得的同位角相等; 2.两条直线被第三条直线所截,如果同位角相等,那么这两条 直线平行; 3.全等三角形的对应边、对应角分别相等讲授新课讲授新课基本事实与定理一定理: 数学中,有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理. 比如:“内错角相等,两直线平行”这条定理就是在“同位角相等,两直线平行”这条公理的基础上推理而出的,它又可以作为判定平行线的依据.基本事实、定理、命题的关系:命题真命题假命题基本事实(正确性由实践总结)定理(正确性通过推理证实)思思 考考(1)一位同学在钻研数学题时发
3、现:2+1=3,23+1=7,235+1=31,2357+1=211, 于是,他根据上面的结果并利用质数表得出结论:从质数2开始,排在前面的任意多个质数的乘积加1一定也是质数.他的结论正确吗?试一试: 计算一下235711+1与23571113+1,你发现了什么? (2)如果a=b,那么a2=b2.由此我们猜想:当a b时,a2 b2.这个命题是真命题吗? (3)我们曾经通过计算四边形、五边形、六边形、七边形等的内角和,得到一个结论:n边形的内角和等于(n-2)180.这个结论正确吗?是否有一个多边形的内角和不满足这一规律?不正确,因为3-5,但是32(-5)2实际上,这是一个正确的结论.上面
4、的几个例子说明了什么问题?探讨归纳探讨归纳 通过特殊的事例得到的结论可能正确,也可能不正确. 定义:根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.例1 证明命题:直角三角形的两个锐角互余.已知:如图,在ABC中,C=90.求证:A+B=90.证明:A+B+C=180(三角形的内角和等于180),又C=90(已知),A+B=180-C=90(等式的性质). 此命题可以用来作为判断其他命题真假的依据,因此我们把它也作为定理. 方法归纳:演绎推理是研究数学的一个重要方法.除了基本事实与已知的定理外,等式与不等式的有关性质以及等量代换也可以作为推理的
5、依据.典例精析 现在我们就用演绎推理的方法来证明下面的判别方法:例2内错角相等,两直线平行.ABl1l2l3()3已知:如图,直线l3分别与l1,l2交于点,点,且,且=.求证:l1l2.2.你能根据图写出此定理的已知和求证吗?注意注意: : 如果要证明一个文字语言叙述的证明题,而没有给出图形、 已知、求证, 我们要证明这个命题,必须: 1.首先必须根据命题的要求准确的画出图形,标出字母.2.再根据要求按照图中所标字母写出数学语言表示的已知和求证.3.如果命题已给出已知和求证,就可以按照所学有关公理、定理、性质等直接进行证明了.证明:=3=23=21=lll1l2l3AB)1(2)3(已知),(对顶角相等),(等量代换).(同位角相等,两直线平行).分析:要证明OEOF,只要证明EOF 90,即12 90即可 1.证明:邻补角的平分线互相垂直已知:如图,AOBBOC180,OE平分AOB,OF平分BOC求证:OEOF 当堂练习当堂练习 证明:OE平分AOB, 1 AOB.OF平分 BOC, 2 BOC. 1 2 ( A O B B O C ) AOC 18090. OEOF(垂直定义) 12121212122.用演绎推理证明下面的定理:(1)同旁
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025家居装修工程承包合同范本
- 商务二手车买卖合同协议
- 2025版权许可合同内容
- 2025中式家具买卖合同模板
- 2025专营授权销售合同
- 2025企业装修合同(简易版本)
- 2025年国际贸易合同协议书模板
- 2025届湖北省部分高中协作体高三下学期期中联考物理试题及答案
- 新疆维吾尔自治区2025届高三下学期三模试题 数学 含解析
- 2025企业软件授权合同范本
- 吉林省长春市宽城区2023-2024学年七年级下学期期末语文试题(原卷版)
- CJ/T 156-2001 沟槽式管接头
- 安徽省合肥一六八玫瑰园校2024年中考二模物理试题含解析
- 2024年生态环境部黄河流域生态环境监督管理局直属事业单位招聘9人高频考题难、易错点模拟试题(共500题)附带答案详解
- 公交车辆轻量化与节能技术
- 历史类常识考试100题及完整答案
- 公立医院运营分析总结报告
- 医疗机构执业登记汇报
- 群文阅读《杜甫诗三首》(公开课课件)
- 《浙江省建筑垃圾资源化利用技术导则》
- 2023年福建省招聘事业单位人员考试真题及答案
评论
0/150
提交评论