专题03 函数型应用题(原卷版)[共13页]_第1页
专题03 函数型应用题(原卷版)[共13页]_第2页
专题03 函数型应用题(原卷版)[共13页]_第3页
专题03 函数型应用题(原卷版)[共13页]_第4页
专题03 函数型应用题(原卷版)[共13页]_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、决战2020年中考典型压轴题大突破模块一 中考压轴题应用题专题考向导航新的课程标准指出:“数学是人们生活、劳动和学习必不可少的工具。”为了和新的教育理念接轨,各地中考命题都加大了考查应用题的力度.近几年的数学应用题主要有以下特色:涉及的数学知识并不深奥,也不复杂,无需特殊的解题枝巧,涉及的背景材料十分广泛.涉及到社会生产生活的方方面面:再就是题目文字冗长.常令学生抓不住要领,不知如何解题。解答的关键是要学会运用数学知识去观察、分析、概括所给的实际问题.将其转化为数学模型。专题03 函数型应用题方法点拨函数及其图象是初中数学的主要内容之一,也是初中数学与高中数学相联系的纽带。它与代数、几何、三角

2、函数等知识有着密切联系,中考命题中既重点考查函数及其图象的有关基础知识,同时以函数为背景的应用性问题也是命题热点之一,多数省市将其作为压轴题、因此,在中考温习中,关注这热点显得十分重要,解这类题的方法是对问题的审读和理解,掌握用一个变量的代数式表示另一个变量,建立两个变量间的等量关系,同时从题中确定自变量的取值范围。精典例题1(2019郫都区模拟)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750

3、元若商店准备购进这两种家电共100台,其中购进电冰箱x台(33x40),那么该商店要获得最大利润应如何进货?【点睛】(1)设每台电冰箱的进价m元,每台空调的进价(m400)元,根据:“用8000元购进电冰箱的数量与用6400元购进空调的数量相等”列分式方程求解可得;(2)设购进电冰箱x台,则购进空调(100x)台,根据:总利润冰箱每台利润冰箱数量+空调每台利润空调数量,列出函数解析式,结合x的范围和一次函数的性质可知最值情况2(2020武侯区模拟)据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可预计的损失某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒,已知一瓶药物释

4、放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;药物释放完后,y与x之间满足反比例函数关系,如图所示,结合图中提供的信息解答下列问题:(1)分别求当0x10和x10时,y与x之间满足的函数关系式;(2)据测定,当空气中每立方米的含药量不低于6毫克时,消毒才有效,那么这次熏药的有效消毒时间是多少分钟【点睛】(1)分别利用当0x10,设y与x之间满足的函数关系式为ykx,以及x10时,设y与x之间满足的函数关系式为y=kx,分别得出函数关系式;(2)直接利用y6时得出x的取值范围即可3(2020都江堰市模拟)绿色植物销售公司打算销售某品种的“赏叶植物”,在

5、针对这种“赏叶植物”进行市场调查后,绘制了以下两张函数图象其中图象为一条直线,图象为一条抛物线,且抛物线顶点为(6,1),请根据图象解答下列问题:(1)如果公司在3月份销售这种“赏叶植物”,单株获利多少元;(2)请直接写出图象中直线的解析式;(3)请你求出公司在哪个月销售这种“赏叶植物”,单株获利最大?(备注:单株获利单株售价单株成本)【分析】(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为541(元),即可求解;(2)点(3,5)、(6,3)为一次函数上的点,求得直线的表达式为:y1=-23x+7;(3)求得y2的解析式后计算y1y2的值,配方可得结论稳固突破1(

6、2019常熟市二模)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元152025y/件252015已知日销售量y是销售价x的一次函数(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?2(2019金台区二模)为了贯彻落实“精准扶贫”精神,某单位决定运送一批物资到某贫困村,货车自早上8时出发,行驶一段路程后发现未带货物清单,便立即以50km/h的速度回返,与此同时单位派车去送清单,途中相遇拿到清单后,货车又立即掉头并开到目的地,整个过程中,货车距离出发地的路程s(

7、km)与行驶时间t(h)的函数图象如图所示(1)两地相距 千米,当货车司机拿到清单时,距出发地 千米(2)试求出途中BC段的函数表达式,并计算出中午12点时,货车离贫困村还有多少千米?3(2019商丘二模)为落实“精准扶贫”,某村在政府的扶持下建起了蔬菜大棚基地,准备种植A,B两种蔬菜,若种植20亩A种蔬菜和30亩B种蔬菜,共需投入36万元;若种植30亩A种蔬菜和20亩B种蔬菜,共需投入34万元(1)种植A,B两种蔬菜,每亩各需投入多少万元?(2)经测算,种植A种蔬菜每亩可获利0.8万元,种植B种蔬菜每亩可获利1.2万元,村里把100万元扶贫款全部用来种植这两种蔬菜,总获利w万元设种植A种蔬菜

8、m亩,求w关于m的函数关系式;(3)在(2)的条件下,若要求A种蔬菜的种植面积不能少于B种蔬菜种植面积的2倍,请你设计出总获利最大的种植方案,并求出最大总获利4(2019丰南区二模)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为 km/h,快车的速度为 km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km5(2019淅川一模)某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三

9、台A型换气扇和二台B型换气扇共需300元(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;(2)若该宾馆准备同时购进这两种型号的换气扇共80台,并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由6(2019淮阴区一模)如图,点A表示小明家,点B表示学校小明妈妈骑车带着小明去学校,到达C处时发现数学书没带,于是妈妈立即骑车原路回家拿书后再追赶小明,同时小明步行去学校,到达学校后等待妈妈假设拿书时间忽略不计,小明和妈妈在整个运动过程中分别保持匀速妈妈从C处出发x分钟时离C处的距离为y1米,小明离C处的距离为y2米,如图,折线ODEF表示y1与x的函数图象;折

10、线OGF表示y2与x的函数图象(1)小明的速度为 m/min,图中a的值为 (2)设妈妈从C处出发x分钟时妈妈与小明之间的距离为y米写出小明妈妈在骑车由C处返回到A处的过程中,y与x的函数表达式及x的取值范围;在图中画出整个过程中y与x的函数图象(要求标出关键点的坐标)7(2019邗江区一模)一辆货车从甲地出发以50km/h的速度匀速驶往乙地,行驶1h后,一辆轿车从乙地出发沿同一条路匀速驶往甲地,轿车行驶0.8h后两车相遇,图中折线ABC表示两车之间的距离y(km)与货车行驶时间x(h)的函数关系(1)甲乙两地之间的距离是 km,轿车的速度是 km/h;(2)求线段BC所表示的函数表达式;(3

11、)在图中画出货车与轿车相遇后的y(km)与x(h)的函数图象8(2019河南一模)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件(1)第24天的日销售量是 件,日销售利润是 元(2)求线段DE所对应的函数关系式(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?9(201

12、9安次区一模)某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种新型商品成本为20元/件,第x天销售量为p件,销售单价为q元,经跟踪调查发现,这40天中p与x的关系保持不变,前20天(包含第20天),q与x的关系满足关系式q30+ax;从第21天到第40天中,q是基础价与浮动价的和,其中基础价保持不变,浮动价与x成反比且得到了表中的数据 X(天)102135q(元/件)354535(1)请直接写出a的值为 ;(2)从第21天到第40天中,求q与x满足的关系式;(3)若该网店第x天获得的利润y元,并且已知这40天里前20天中y与x的函数关系式为y=-12x2+15x+500i请直接写出

13、这40天中p与x的关系式为: ;ii求这40天里该网店第几天获得的利润最大?10某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为1520的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y()随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=240x的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15的时间有多少小时?11(2019青岛模拟)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药

14、物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?12(2019蕲春模拟)如图,实验数据显示,一般成年人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克

15、/百毫升)与时间x(时)的关系可以近似的用二次函数y200x2+400x刻画,1.5小时后(包括1.5小时)y与x可近似的用反比例函数y=kx(k0)刻画(1)根据上述数学模型计算;喝酒后几时血液中的酒精含量达到最大值?最大值为多少?当x5时,y45,求k的值(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早晨7:00能否驾车去上班?请说明理由13(2019自贡模拟)学生上课时注意力集中的程度可以用注意力指数表示某班学生在一节数学课中的注意力指数y随上课时间x(分钟)

16、的变化图象如图上课开始时注意力指数为30,第2分钟时注意力指数为40,前10分钟内注意力指数y是时间x的一次函数10分钟以后注意力指数y是x的反比例函数(1)当0x10时,求y关于x的函数关系式;(2)当10x40时,求y关于x的函数关系式;(3)如果讲解一道较难的数学题要求学生的注意力指数不小于50,为了保证教学效果本节课讲完这道题不能超过多少分钟?14(2019富顺一模)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散经过实验分析可知,学生的注意力指

17、标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?15(2019开平区二模)某小工厂生产一种产品,月销售量为x吨(x0),每吨售价为7万元,每吨的成本y(万元)由两部分组成,一部分是原材料成本a固定不变,另一部分人力及其他成本ya与月销售量x成反比,市场部研究发现月销售量x吨与月份n(n为112的正整数)符合关系式x2n22

18、6n+k2(k为常数)参考下面给出的数据解决问题月份n(月)12成本y(万元/吨)55.6销售量x(吨/月)120100(1)求ya与x的函数关系式,请说明一吨产品的利润能否是5万元;(2)求k的值,并推断是否存在某个月总成本和总销售额相等的情况;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m16(2019河池三模)制作一种产品,需先将材料加热达到60后,再进行操作设该材料温度为y(),从加热开始计算的时间为x(分钟)据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图)已知该材料在操作加工前的温度为15,加热5

19、分钟后温度达到60(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?(3)该种材料温度维持在40以上(包括40)的时间有多长?17(2019新都区模拟)我市“佳禾”农场的十余种有机蔬菜在北京市场上颇具竞争力某种有机蔬菜上市后,一经销商在市场价格为10元/千克时,从“佳禾”农场收购了某种有机蔬菜2000 千克存放入冷库中据预测,该种蔬菜的市场价格每天每千克将上涨0.2元,但冷库存放这批蔬菜时每天需要支出各种费用合计148元,已知这种蔬莱在冷库中最多保存90天,同时,平均每天将会有6

20、千克的蔬菜损坏不能出售(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式(2)经销商想获得利润7200元,需将这批蔬菜存放多少天后出售?(利润销售总金额收购成本各种费用)(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?18(2019任城区二模)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨

21、价多少元,能使商场获利最多?19(2019青岛模拟)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积20(2019新宾四模)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)100

22、8060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润收入成本);并求出售价为多少元时获得最大利润,最大利润是多少?21(2019望花区二模)某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:yx+60(30x60)设这种双肩包每天的销售利润为w元(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润

23、,销售单价应定为多少元?22(2019安徽二模)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元(毛利润销售额生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资

24、金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?23(2019合肥一模)草莓进入采摘旺季,某公司以3万元/吨的价格向农户收购了20吨草莓,分拣出甲类草莓x吨,其余为乙类草莓,甲类草莓包装后直接销售,乙类草莓深加工后再销售甲类草莓的包装成本为1万元/吨,根据市场调查,它每吨平均销售价格y(单位:万元)与销售量m(单位:吨)之间的函数关系为ym+14(2m8),乙类草莓深加工(不含进价)总费用S(单位:万元)与销售量n(单位:吨)之间的函数关系为S3n+12,平均销售价格为9万元/吨(1)请直接写出该公司,购买和包装甲类草莓所需资金: 万元购买和加工乙类草莓所需资金: 万元(2)若该公司将这20吨草莓全部售出,获得的毛利润为w万元(毛利润销售总收入经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论