版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 让更多的孩子得到更好的教育反比例函数全章复习与巩固(基础) 责编:常春芳【学习目标】1使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式,能判断一个给定函数是否为反比例函数;2能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式;3能根据图象数形结合地分析并掌握反比例函数的性质,能利用这些性质分析和解决一些简单的实际问题.【知识网络】【要点梳理】【高清课堂406878 反比例函数全章复习 知识要点】要点一、反比例函数的概念一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.要点诠释:在中,自变量的取
2、值范围是, ()可以写成()的形式,也可以写成的形式.要点二、反比例函数解析式的确定 反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.要点三、反比例函数的图象和性质1.反比例函数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限它们关于原点对称,反比例函数的图象与轴、轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交要点诠释:观察反比例函数的图象可得:和的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对
3、称中心是坐标原点的图象是轴对称图形,对称轴为两条直线;的图象是中心对称图形,对称中心为原点(0,0);(k0)在同一坐标系中的图象关于轴对称,也关于轴对称. 注:正比例函数与反比例函数,当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称. 2.反比例函数的性质(1)图象位置与反比例函数性质 当时,同号,图象在第一、三象限,且在每个象限内,随的增大而减小;当时,异号,图象在第二、四象限,且在每个象限内,随的增大而增大.(2)若点()在反比例函数的图象上,则点()也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数反比例函数解析
4、式图 像直线有两个分支组成的曲线(双曲线)位 置,一、三象限;,二、四象限,一、三象限,二、四象限增减性,随的增大而增大,随的增大而减小,在每个象限,随的增大而减小,在每个象限,随的增大而增大(4)反比例函数y中的意义过双曲线(0) 上任意一点作轴、轴的垂线,所得矩形的面积为.过双曲线(0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为.要点四、应用反比例函数解决实际问题须注意以下几点1反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2列出函数关系式后,要注意自变量的取值范围.【典型例题】类型一、确定反比例函数的解析式1、已
5、知函数是反比例函数,则的值为. 【答案】【解析】根据反比例函数概念,且,可确定的值.【总结升华】反比例函数要满足以下两点:一个是自变量的次数是1,另一个是自变量的系数不等于0.举一反三:【变式】反比例函数图象经过点(2,3),则的值是( ).A. B. C. 0D. 1【答案】D;反比例函数过点(2,3) 类型二、反比例函数的图象及性质2、已知,反比例函数的图象在每个分支中随的增大而减小,试求的取值范围【思路点拨】由反比例函数性质知,当0时,在每个象限内随的增大而减小,由此可求出的取值范围,进一步可求出的取值范围【答案与解析】解:由题意得:,解得,所以,则3【总结升华】熟记并能灵活运用反比例函
6、数的性质是解答本题的关键举一反三:【变式】已知反比例函数,其图象位于第一、第三象限内,则的值可为_(写出满足条件的一个的值即可)【答案】3(满足2即可).3、在函数(,为常数)的图象上有三点(3,)、(2,)、(4,),则函数值的大小关系是( )A B C D【答案】D;【解析】 |0, |0,反比例函数的图象在第二、四象限,且在每一个象限里,随增大而增大,(3,)、(2,)在第二象限,(4,)在第四象限, 它们的大小关系是:【总结升华】根据反比例函数的性质,比较函数值的大小时,要注意相应点所在的象限,不能一概而论,本题的点(3,)、(2,)在双曲线的第二象限的分支上,因为32,所以,点(4,
7、)在第四象限,其函数值小于其他两个函数值举一反三:【变式1】(2014春海口期中)在同一坐标系中,函数y=和y=kx+3(k0)的图象大致是().A. B.C. D. 【答案】C;提示:分两种情况讨论:当k0时,y=kx+3与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;当k0时,y=kx+3与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限故选C【高清课堂406878 反比例函数全章复习 例7】【变式2】已知,且则函数与在同一坐标系中的图象不可能是( ) . 【答案】B ;提示:因为从B的图像上分析,对于直线来说是,则,对于反比例函数来说,所以相互之间是矛盾的
8、,不可能存在这样的图形.4、如图所示,P是反比例函数图象上一点,若图中阴影部分的面积是2,求此反比例函数的关系式【思路点拨】要求函数关系式,必须先求出的值,P点既在函数的图象上又是矩形的顶点,也就是说,P点的横、纵坐标的绝对值是矩形的边长【答案与解析】解:设P点的坐标为(,),由图可知,P点在第二象限, 0,0 图中阴影部分矩形的长、宽分别为、 矩形的面积为2, 2, 2 , 2 此反比例函数的关系式是【总结升华】此类题目,要充分利用过双曲线上任意一点作轴、轴的垂线所得矩形面积为|这一条件,进行坐标、线段、面积间的转换举一反三:【变式】如图,过反比例函数的图象上任意两点A、B,分别作轴的垂线,
9、垂足为,连接OA,OB,与OB的交点为P,记AOP与梯形的面积分别为,试比较的大小.【答案】解:, 且,.类型三、反比例函数与一次函数综合5、已知反比例函数和一次函数的图象的一个交点坐标是(3,4),且一次函数的图象与轴的交点到原点的距离为5,分别确定反比例函数和一次函数的表达式【思路点拨】因为点(3,4)是反比例函数与一次函数的图象的一个交点,所以把(3,4)代入中即可求出反比例函数的表达式欲求一次函数的表达式,有两个待定未知数,已知一个点(3,4),只需再求一个一次函数图象上的点即可由已知一次函数图象与轴的交点到原点的距离是5,则这个交点坐标为(5,0)或(5,0),分类讨论即可求得一次函
10、数的解析式【答案与解析】解:因为函数的图象经过点(3,4), 所以,所以12 所以反比例函数的表达式是 由题意可知,一次函数的图象与轴的交点坐标为(5,0)或(5,0),则分两种情况讨论:当直线经过点(3,4)和(5,0)时,有 解得所以当直线经过点(3,4)和(5,0)时,有 解得 所以所以所求反比例函数的表达式为,一次函数的表达式为或【总结升华】本题考查待定系数法求函数解析式,解答本题时要注意分两种情况讨论,不能漏解举一反三:【变式】如图所示,A、B两点在函数的图象上(1)求的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点请直接写出图中阴影部分(不包括边
11、界)所含格点的个数【答案】解:(1)由图象可知,函数的图象经过点A(1,6),可得6设直线AB的解析式为 A(1,6),B(6,1)两点在函数的图象上, 解得 直线AB的解析式为(2)题图中阴影部分(不包括边界)所含格点的个数是3类型四、反比例函数应用6、(2015兴化市三模)一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60v120(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇求两车的平均速度;甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离【答案与解析】解:(1)设函数关系式为v=,t=5,v=120,k=1205=600,v与t的函数关系式为v=(5t10);(2)依题意,得3(v+v20)=600,解得v=110,经检验,v=110符合题意当v=110时,v20=90答:客车和货车的平均速度分别为110千米/小时和90千米/小时;当A加油站在甲地和B加油站之间时,110t(60090t)=200,解得t=4,此时110t=1104=440;当B加油站在甲地和A加油站之间时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东惠州博罗县广厦市政集团有限公司招聘工作人员5人笔试考试备考题库及答案解析
- 2025年宽甸满族自治县教育局所属部分学校面向普通高校公开招聘急需紧缺教师54人考试笔试参考题库附答案解析
- 2025云南昆明市呈贡区马金铺街道卫生院第一批招聘10人考试笔试备考题库及答案解析
- 《JBT10099-2005 电动工具双重绝缘导则》(2026年)实施指南
- 2025广东深圳市福田区专职幼儿园音乐教研员招聘1人笔试考试参考试题及答案解析
- 肾风IgA肾病健康教育与康复指导
- 《JBT9168.4-1998 切削加工通 用工艺守则刨插削》(2026年)实施指南
- 《JBT9163.9-1999 插齿刀接套尺寸》(2026年)实施指南
- 2025年宁波市奉源水利勘测规划设计有限公司公开招聘工作人员10人考试笔试备考题库及答案解析
- 《JBT9109-1999 制版照相机技术条件》(2026年)实施指南
- TPACK美国“信息技术与课程整合”途径与方法研究的新发展
- 山东国开《行政伦理学》2022年形考1-3终考答案行政伦理学山东
- 中医诊断四诊合参
- 桥梁下部施工技术-施工基本能力
- 特种水产养殖技术-鳗鲡养殖技术
- 健康环保类、健康安全环保词典(EHS的常见英语单词缩写表)
- 语用学-文化语用原则
- GB/T 14366-2017声学噪声性听力损失的评估
- 灭火器每月定期检查及记录(卡)表
- 力拓和必和必拓风险管理实践
- GB_T41040-2021 宇航用商业现货(COTS)半导体器件 质量保证要求(高清最新版)
评论
0/150
提交评论