锁定螺母.gif
锁定螺母.gif

内卧8字形糟加工装置设计及仿真【三维UG】【6张CAD图纸+文档全套】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:156142854    类型:共享资源    大小:16.48MB    格式:ZIP    上传时间:2021-10-19 上传人:好资料QQ****51605 IP属地:江苏
150
积分
关 键 词:
三维UG 6张CAD图纸+文档全套 字形 加工 装置 设计 仿真 三维 UG CAD 图纸 文档 全套
资源描述:

喜欢就充值下载吧,,资源目录下展示的全都有,,下载后全都有,dwg格式的为CAD图纸,有疑问咨询QQ:414951605 或1304139763========================================喜欢就充值下载吧,,资源目录下展示的全都有,,下载后全都有,dwg格式的为CAD图纸,有疑问咨询QQ:414951605 或1304139763========================================喜欢就充值下载吧,,资源目录下展示的全都有,,下载后全都有,dwg格式的为CAD图纸,有疑问咨询QQ:414951605 或1304139763========================================

内容简介:
毕业设计说明书(论文)摘要我国社会主义现代化要求机械制造工业为国民经济各部门的技术进步、技术改造提供先进、高效的技术装备,它首先要为我国正在发展的产业包括农业、重工业、轻工业以及其它产业提供质量优良、技术先进的技术装备,同时还要为新材料、新能源、机械工程等新技术的生产和应用提供基础装备。本论文是结合目前实际生产中,通用夹具不能满足生产要求,用通用夹具装夹工件效率低、劳动强度大、加工质量不高,而且往往需要增加划线工序,而专门设计的一种内8字加工夹具,主要包括夹具的主动齿轮、从动齿轮、定位架、拉杆刀架等。该夹具具有良好的加工精度,针对性强,主要用内8字油槽工序的加工。本夹具具有夹紧力装置,具备现代机床夹具所要求的高效化和精密化的特点,可以有效的减少工件加工的基本时间和辅助时间,大大提高了劳动生产力,有效地减轻了工人的劳动强度。本夹具能在加工常规零件的时候使质量进一步提升,并降低劳动强度,能在保证产品质量加工精度的同时批量生产,从而降低生产成本。从而夹具的使用在某种程度上提高实际生产中企业的效益 。因而对夹具知识的认识和学习,在今天显的优为重要起来。 关键词: 装备,制造,机床夹具,内8字油槽 AbstractChinas socialist modernization requires machinery manufacturing industry to provide advanced and efficient technology and equipment for the technological progress of the various sectors of the national economy, technological innovation, first to China is the development of industry, including agriculture, heavy industry, light industry and other industries to provide good quality, technical state-of-the-art technology and equipment, but also provide a basis for the production and application of new materials, new energy, mechanical engineering and other new technologies and equipment.This thesis is a combination of actual production, universal fixture can not meet the production requirements, universal fixture clamping efficiency of the workpiece is low, labor-intensive, high processing quality, and often need to increase the marking process, and designed a 8 word processing jig, including a fixture of the pinion gear, the driven gear, the positioning frame, rod turret.The fixture has good processing accuracy, targeted, mainly used word processing sump process. The fixture has a clamping force device with efficiency and precision of the characteristics of modern jigs and fixtures required, can effectively reduce the the workpiece processing time and auxiliary time, greatly improving labor productivity, effectively reduce the labor intensity .The fixture in the processing of conventional parts quality to further enhance and reduce labor intensity and mass production to ensure product quality and machining accuracy, thus reducing production costs. So that the use of the fixture in a way to improve the efficiency of enterprises in the actual production. Thus the the fixture knowledge and learning, is important in todays explicit excellent.Keywords: equipment, manufacturing, machine tools, fixtures, within 8 words sumpII目 录摘要IAbstractII第一章 绪论11.1 夹具概念11.2 夹具的主要功能11.3 夹具的分类11.4 夹具的组成21.5 常用定位元件及选用21.6 工件的夹紧71.7 机床夹具的现状及发展方向9第二章 内8字型槽夹具设计122.1 工件预加工内容122.2 初定夹具结构方案122.3 绘图18第三单 模型实体图例193.1整体机构装配图193.2主动齿轮203.3从动齿轮203.4拉动连杆销孔组件213.5从动齿轮固定法兰盘213.6小结22结 论23致 谢24参考文献25附 录26Necmettin Kaya*26Abstract26Keywords: Fixture design; Genetic algorithms; Optimization261. Introduction262. Review of related works273. Genetic algorithm concepts294. Approach294.1. Fixture positioning principles29Fig. 4. 3-2-1 locating layout for 2D prismatic workpiece304.2. Genetic algorithm based fixture layout optimization approach315. Fixture layout optimization case studies326. Conclusion321.引言342.回顾相关工程结构344.1夹具定位原则364.2基于夹具布局优化方法的遗传算法375.夹具布局优化的个案研究386.结论38IV11第一章 绪论1.1 夹具概念夹具是在机械制造过程中,用来固定加工对象,使之占有正确的位置,以接受加工或检测并保证加工要求的机床附加装置,简称为夹具。在我们实际生产中夹具的作用是将工件定位,以使加工工件获得相对于机床和刀具的正确位置,并把工件可靠地夹紧。1.2 夹具的主要功能在机床上加工工件的时候,必须用夹具装好夹牢所要加工工件。将工件装好,就是在机床上确定工件相对于刀具的正确位置,这一过程称为定位。将工件夹紧,就是对工件施加作用力,使之在已经定好的位置上将工件可靠地夹紧,这一过程称为夹紧。从定位到夹紧的全过程,称为装夹。1.3 夹具的分类夹具的种类很多,形状千差万别。为了设计、制造和管理的方便,往往按某一属性进行分类。1.3.1按夹具的通用特性分类目前中国常用夹具有通用夹具、专用夹具、可调夹具、组合夹具和自动线夹具等五大类。1通用夹具 通用夹具是指结构、尺寸已规格化,且具有一定通用性的夹具。其优点是适应性强、不需要调整或稍加调整即可装夹一定形状和尺寸范围内的各种工件。这类夹具已商品化。如三爪自定心卡盘、四爪单动卡盘、台虎钳、万能分度头、顶尖、中心架、电磁吸盘等。采用这类夹具可缩短生产准备周期,减少夹具品种,从而减低生产成本。其缺点是夹具的加工精度不高,生产力较低且较难装夹形状复杂的工件,故适用于单件小批量生产中。2专用夹具专用夹具是针对某一工件的某一道工序的加工要求而专门设计和制造的夹具。特点是针对性强。适用与产品相对稳定、批量较大的生产中,可获得较高的生产率和加工精度。3可调夹具 夹具的某些元件可调整或可更换,已适应多中工件的夹具,称为可调夹具。它还分通用可调夹具和成组夹具两类。4组合夹具组合夹具是由可循环使用的标准夹具零部件(或专用零部件)组装成易于连接和拆卸的夹具。根据被加工零件的工艺要求可以很快地组装成专用夹具,夹具使用完毕,可以方便地拆开。夹具主要应用在单件,中、小批多品种生产和数控加工中,是一种较经济的夹具。5自动线夹具 自动线夹具一般分为两种,一种为固定式夹具,它与专用夹具相似;另一种为随行夹具,使用中夹具随工件一起运动,并将工件沿着自动线从一个工位移至下一个工位进行加工。1.3.2按夹具的动力源分类按夹具夹紧动力源可将夹具分为手动夹具和机动夹具两大类。为减轻劳动强度和确保安全生产,手动夹具应有扩力机构与自锁性能。常用的机动夹具有气动夹具、液压夹具、气液夹具、电动夹具、电磁夹具、真空夹具和离心力夹具等。上述各分类中:最常用的分类方法是,按通用,专用和组合进行分类。1.4 夹具的组成虽然夹具的种类繁多,但它们的工作原理基本上是相同的。将各类夹具中,作用相同的结构或元件加以概括,可得出夹具一般所共有的以下几个组成部分,这些组成部分既相互独立又相互联系。1定位支承元件定位支承元件的作用是确定工件在夹具中的正确位置并支承工件,是夹具的主要功能元件之一。定位支承元件的定位精度直接影响工件加工的精度。2夹紧装置夹紧元件的作用是将工件压紧夹牢,并保证在加工过程中工件的正确位置不变。3连接定向元件这种元件用于将夹具与机床连接并确定夹具对机床主轴、工作台或导轨的相互位置。4对刀元件或导向元件 这些元件的作用是保证工件加工表面与刀具之间的正确位置。用于确定刀具在加工正确位置的元件称为对刀元件,用于确定刀具位置并引导刀具进行加工的元件称为导向元件。5其它装置或元件 根据加工需要,有些夹具上还设有分度装置、靠模装置、上下料装置、工件顶出机构、电动扳手和平衡块等,以及标准化了的其它联接元件。6夹具体 夹具体是夹具的基体骨架,用来配置、安装各夹具元件使之组成一整体。常用的夹具体为铸件结构、锻造结构、焊接结构和装配结构,形状有回转体形和底座形等形状。上述各组成部分中,定位元件、夹紧装置、夹具体是夹具的基本组成部分。1.5 常用定位元件及选用工件在夹具中要想获得正确定位,首先应正确选择定位基准,其次是选择合适的定位元件。工件定位时,工件定位基准和夹具的定位元件接触形成定位副,以实现工件的六点定位。用定位元件选用时,应按工件定位基准面和定位元件的结构特点进行选择。1.5.1工件以平面定位 1.以面积较小的已经加工的基准平面定位时,选用平头支承钉,以基准面粗糙不平或毛坯面定位时,选用圆头支承钉,侧面定位时,可选用网状支承钉。2.以面积较大、平面度精度较高的基准平面定位时,选用支承板定位元件,用于面定位时用不带斜槽的支承板,通常尽可能选用带斜槽的支承板,以利清除切屑。3.以毛坯面,阶梯平面和环形平面作基准平面定位时,选用自位支承作定位元件。但须注意,自位支承虽有两个或三个支承点,由于自位和浮动作用只能作为一个支承点。4.以毛坯面作为基准平面,调节时可按定位面质量和面积大小分别选用可调支承作定位元件。5.当工件定位基准面需要提高定位刚度、稳定性和可靠性时,可选用辅助支承作辅助定位元件,但须注意,辅助支承不起限制工件自由度的作用,且每次加工均需重新调整支承点高度,支承位置应选在有利工件承受夹紧力和切削力的地方。1.5.2工件以外圆柱定位1.当工件的对称度要求较高时,可选用V形块定位。V形块工作面间的夹角常取60、90、120三种,其中应用最多的是90V形块。90V形块的典型结构和尺寸已标准化,使用时可根据定位圆柱面的长度和直径进行选择。V形块结构有多种形式,有的V形块适用于较长的加工过的圆柱面定位;有的V形块适于较长的粗糙的圆柱面定位;有的V形块适用于尺寸较大的圆柱面定位,这种V形块底座采用铸件,V形面采用淬火钢件,V块是由两者镶合而成。2.当工件定位圆柱面精度较高时(一般不低于IT8),可选用定位套或半圆形定位座定位。大型轴类和曲轴等不宜以整个圆孔定位的工件,可选用半圆定位座。1.5.3工件以内孔定位1.工件上定位内孔较小时,常选用定位销作定位元件。圆柱定位销的结构和尺寸标准化,不同直径的定位销有其相应的结构形式,可根据工件定位内孔的直径选用。当工件圆柱孔用孔端边缘定位时,需选用圆锥定位销。当工件圆孔端边缘形状精度较差时,选用圆锥定位销;当工件需平面和圆孔端边缘同时定位时,选用浮动锥销。2.在套类、盘类零件的车削、磨削和齿轮加工中,大都选用心轴定位,为了便于夹紧和减小工件因间隙造成的倾斜,当工件定位内孔与基准端面垂直精度较高时,常以孔和端面联合定位。因此,这类心轴通常是带台阶定位面的心轴,当工件以内花键为定位基准时,可选用外花键轴,当内孔带有花键槽时,可在圆柱心轴上设置键槽配装键块;当工件内孔精度很高,而加工时工件力矩很小时,可选用小锥度心轴定位。综上:正确定位,必须选对定位基准。1.5.4对定位元件的基本要求 1.限位基面应有足够的精度。定位元件具有足够的精度,才能保证工件的定位精度。2.限位基面应有较好的耐磨性。由于定位元件的工作表面经常与工件接触和磨擦,容易磨损,为此要求定位元件限位表面的耐磨性要好,以保持夹具的使用寿命和定位精度。3.支承元件应有足够的强度和刚度。定位元件在加工过程中,受工件重力、夹紧力和切削力的作用,因此要求定位元件应有足够的刚度和强度,避免使用中变形和损坏。4.定位元件应有较好的工艺性。定位元件应力求结构简单、合理,便于制造、装配和更换。5.定位元件应便于清除切屑。定位元件的结构和工作表面形状应有利于清除切屑,以防切屑嵌入夹具内影响加工和定位精度。1.5.5常用定位元件所能限制的自由度 定位元件可按工件典型定位基准面分为以下几类:1.用于平面定位的定位元件:括固定支承(钉支承和板支承),自位支承,可调支承和辅支承。2.用于外圆柱面定位的定位元件:括V形架,定位套和半圆定位座等。3.用于孔定位的定位元件:括定位销(圆柱定位销和圆锥定位销),圆柱心轴和小锥度心轴。1.5.6定位误差分析六点定位原则解决了消除工件自由度的问题,即解决了工件在夹具中位置“定与不定”的问题。但是,由于一批工件逐个在夹具中定位时,各个工件所占据的位置不完全一致,即出现工件位置定得“准与不准”的问题。如果工件在夹具中所占据的位置不准确,加工后各工件的加工尺寸必然大小不一,形成误差。这种只与工件定位有关的误差称为定位误差,用D表示。在工件的加工过程中,产生误差的因素很多,定位误差仅是加工误差的一部分,为了保证加工精度,一般限定定位误差不超过工件加工公差T的1/51/3,即: D(1/51/3)T (1-1)式中 D定位误差,单位为mm; T工件的加工误差,单位为mm。1.5.7定位误差产生的原因工件逐个在夹具中定位时,各个工件的位置不一致的原因主要是基准不重合,而基准不重合又分为两种情况:一是定位基准与限位基准不重合,产生的基准位移误差;二是定位基准与工序基准不重合,产生的基准不重合误差。由于定位副的制造误差或定位副配合间所导致的定位基准在加工尺寸方向上最大位置变动量,称为基准位移误差,用Y表示。不同的定位方式,基准位移误差的计算方式也不同。如果工件内孔直径与心轴外圆直径做成完全一致,作无间隙配合,即孔的中心线与轴的中心线位置重合,则不存在因定位引起的误差。但实际上,如图所示,心轴和工件内孔都有制造误差。于是工件套在心轴上必然会有间隙,孔的中心线与轴的中心线位置不重合,导致这批工件的加工尺寸H中附加了工件定位基准变动误差,其变动量即为最大配合间隙。可按下式计算: Y=amax-amin=1/2(Dmax-dmin)=1/2(D+d) (1-2)式中: Y基准位移误差单位为mm; Dmax孔的最大直径单位为mm; dmin轴的最小直径单位为mm。 D工件孔的最大直径公差,单位为mm; d圆柱心轴和圆柱定位销的直径公差,单位为mm。基准位移误差的方向是任意的。减小定位配合间隙,即可减小基准位移误差Y值,以提高定位精度。加工尺寸的基准是外圆柱面的母线时,定位基准是工件圆柱孔的中心线。这种由于工序基准与定位基准不重合所导致的工序基准在加工尺寸方向上的最大位置变动量,称为基准不重合误差,用B表示。此时除定位基准位移误差外,还有基准不重合误差。综上:定位误差产生的原因是,定位基准与限位基准不重合及定位基准与工序基准不重合而产生的误差。1.5.8常见定位方式中基准位移误差1.用圆柱定位销、圆柱心轴中心定位计算式: YXmax=D+d0+Xmin(定位心轴较短) (1-3)Xmax工件定位后最大配合间隙;D工件定位基准孔的直径公差; d0圆柱定位销或圆柱心轴的直径公差; Xmin定位所需最小间隙,由设计而定。注意:基准位移误差的方向是任意的。当工件用长定位心轴定位时,需考虑平行度要求。计算式: YXmax=(D+d+Xmin)L1L2 (1-4)L1加工面长度;L2定位孔长度。2.定位套定位计算式: YXmax=D0+d+Xmin (1-5)D0定位套的孔径公差; d工件定位外圆的直径公差。注意:基准位移误差的方向是任意的。3.平面支承定位平面支承定位的位移误差较容易计算,当忽略支承误差且定位基准制作精度较高时,工序尺寸的基准位移误差视为零。4.V形体定心定位 若不计V形体制造误差,仅有工件基准面的圆度误差时,工件的定位中心会发生偏移即O1O2T1T2,产生基准位移误差。即: YO1O2=T1T2 (1-6)故:对于90V形体Y0.707d。1.5.9定位误差的合成定位误差是两误差的合成即:D=B+Y (1-7)在圆柱间隙配合定位和V形块中心定位中,当基准不重合误差和位移误差都存在时,定位误差的合成需判断“”、“”号。例如:V形块中:Bd2 (1-8)当B与Y的变动方向相同时:DBYd2+Y (1-9)当B与Y的变动方向相反时:DBYd2Y (1-10)1.5.10六点定位原理当工件在不受任何条件约束时,其位置是任意的不确定的。由理论力学可知,在空间处于自由状态的钢体,具有六个自由度,即沿着X、Y、Z三个坐标轴的移动和绕着这三个坐标轴转动的自由度。六个自由度是工件在空间位置不确定的最高程度。定位的任务,就是要限制工件的自由度。在夹具中,用分别适当的与工件接触的六个支撑点,来限制工件六个自由度的原理,称为六点定位原理。1.5.11应用定位的几种情况1.完全定位工件的六个自由度全部被限制,它在夹具中只有唯一的位置,称为完全定位。2.部分定位工件定位时,并非所有情况下都必须使工件完全定位。在满足加工要求的条件下,少于六个支撑点的定位称为部分定位。在满足加工要求的前提下,采用部分定位可简化定位装置,在生产中应用很多。如工件装夹在电磁吸盘上磨削平面只需限制三个自由度。3.过定位(重复定位)几个定位支撑点重复限制一个自由度,称为过定位。(1)一般情况下,应该避免使用过定位。通常,过定位的结果将使工件的定位精度受到影响,定位不确定可使工件(或定位件)产生变形,所以在一般情况下,过定位是应该避免的。(2)过定位亦可合理应用虽然工件在夹具中定位,通常要避免产生“过定位”,但是在某些条件下,合理地采用“过定位”,反而可以获得良好的效果。这对刚性弱而精度高的航空、仪表类工件更为显著。工件本身刚性和支承刚性的加强,是提高加工质量和生产率的有效措施,生产中常有应用。大家都熟知车削长轴时的安装情况,长轴工件的一端装入三爪卡盘中,另一端用尾架尖支撑。这就是个“过定位”的定位方式。只要事先能对工件上诸定位基准和机床(夹具)有关的形位误差从严控制,过定位的弊端就可以免除。由于工件的支撑刚性得以加强,尾架的扶持有助于实现稳定,可靠的定位,所以工件安装方便,加工质量和效率也大为提高。1.6 工件的夹紧在机械加工过程中,工件会受到切削力、离心力、惯性力等的作用。为了保证在这些外力作用下,工件仍能在夹具中保持已由定位元件所确定的加工位置,而不致发生振动和位移,在夹具结构中必须设置一定的夹紧装置将工件可靠地夹牢。工件定位后,将工件固定并使其在加工过程中保持定位位置不变的装置,称为夹紧装置。1.6.1夹紧装置的组成夹紧装置的组成由以下三部分组成。第一部分:动力源装置 它是产生夹紧作用力的装置。分为手动夹紧和机动夹紧两种。手动夹紧的力源来自人力,用时比较费时费力。为了改善劳动条件和提高生产率,目前在大批量生产中均采用机动夹紧。机动夹紧的力源来自气动、液压、气液联动、电磁、真空等动力夹紧装置。第二部分:传力机构 它是介于动力源和夹紧元件之间传递动力的机构。传力机构的作用是:改变作用力的方向;改变作用力的大小;具有一定的自锁性能,以便在夹紧力一旦消失后,仍能保证整个夹紧系统处于可靠的夹紧状态,这一点在手动夹紧时尤为重要。第三部分:夹紧元件 它是直接与工件接触完成夹紧作用的最终执行元件。1.6.2夹紧装置的设计原则在夹紧工件的过程中,夹紧作用的效果会直接影响工件的加工精度、表面粗糙度以及生产效率。因此,设计夹紧装置应遵循以下原则:1.工件不移动原则夹紧过程中,应不改变工件定位后所占据的正确位置。2.工件不变形原则夹紧力的大小要适当,既要保证夹紧可靠,又应使工件在夹紧力的作用下不致产生加工精度所不允许的变形。3.工件不振动原则 对刚性较差的工件,或者进行断续切削,以及不宜采用气缸直接压紧的情况,应提高支承元件和夹紧元件的刚性,并使夹紧部位靠近加工表面,以避免工件和夹紧系统的振动。4.安全可靠原则 夹紧传力机构应有足够的夹紧行程,手动夹紧要有自锁性能,以保证夹紧可靠。5.经济实用原则 夹紧装置的自动化和复杂程度应与生产纲领相适应,在保证生产效率的前提下,其结构应力求简单,便于制造、维修,工艺性能好;操作方便、省力,使用性能好。1.6.3定位夹紧力的基本原则设计夹紧装置时,夹紧力的确定包括夹紧力的方向、作用点和大小三个要素。夹紧力的方向夹紧力的方向与工件定位的基本配置情况,以及工件所受外力的作用方向等有关。选择时必须遵守以下准则:1.力的方向应有助于定位稳定,且主夹紧力应朝向主要定位基面。2.紧力的方向应有利于减小夹紧力,以减小工件的变形、减轻劳动强度。3.力的方向应是工件刚性较好的方向。由于工件在不同方向上刚度是不等的。不同的受力表面也因其接触面积大小而变形各异。尤其在夹压薄壁零件时,更需注意使夹紧力的方向指向工件刚性最好的方向。夹紧力的作用点夹紧力作用点是指夹紧件与工件接触的一小块面积。选择作用点的问题是指在夹紧方向已定的情况下确定夹紧力作用点的位置和数目。夹紧力作用点的选择是达到最佳夹紧状态的首要因素。合理选择夹紧力作用点必须遵守以下准则:1.力的作用点应落在定位元件的支承范围内,应尽可能使夹紧点与支承点对应,使夹紧力作用在支承上。如夹紧力作用在支承面范围之外,会使工件倾斜或移动,夹紧时将破坏工件的定位。2.力的作用点应选在工件刚性较好的部位。这对刚度较差的工件尤其重要,如将作用点由中间的单点改成两旁的两点夹紧,可使变形大为减小,并且夹紧更加可靠。3.力可的作用点应尽量靠近加工表面,以防止工件产生振动和变形,提高定位的稳定性和靠性。夹紧力的大小夹紧力的大小,对于保证定位稳定、夹紧可靠,确定夹紧装置的结构尺寸,都有着密密切的关系。夹紧力的大小要适当。夹紧力过小则夹紧不牢靠,在加工过程中工件可能发生位移而破坏定位,其结果轻则影响加工质量,重则造成工件报废甚至发生安全事故。夹紧力过大会使工件变形,也会对加工质量不利。理论上,夹紧力的大小应与作用在工件上的其它力(力矩)相平衡;而实际上,夹紧力的大小还与工艺系统的刚度、夹紧机构的传递效率等因素有关,计算是很复杂的。因此,实际设计中常采用估算法、类比法和试验法确定所需的夹紧力。 当采用估算法确定夹紧力的大小时,为简化计算,通常将夹具和工件看成一个刚性系统。根据工件所受切削力、夹紧力(大型工件应考虑重力、惯性力等)的作用情况,找出加工过程中对夹紧最不利的状态,按静力平衡原理计算出理论夹紧力,最后再乘以安全系数作为实际所需夹紧力,即 Fwk=KFw (1-11)式中 Fwk实际所需夹紧力,单位为N; Fw在一定条件下,由静力平衡算出的理论夹紧力,单位为N; K安全系数,粗略计算时,粗加工取K2.53,精加工取K1.52。夹紧力三要素的确定,实际是一个综合性问题。必须全面考虑工件结构特点、工艺方法、定位元件的结构和布置等多种因素,才能最后确定并具体设计出较为理想的夹紧装置。1.6.4减小夹紧变形的措施有时,一个工件很难找出合适的夹紧点。如较长的套筒在车床上镗内孔和高支座在镗床上镗孔,以及一些薄壁零件的夹持等,均不易找到合适的夹紧点。这时可以采取以下措施减少夹紧变形。1.均匀的对称变形,以便获得变形量的统计平均值,通过调整刀具适当消除部分变形量,也可以达到所要求的加工精度。)增加辅助支承和辅助夹紧点 。 若高支座可采用增加一个辅助支承点及辅助夹紧力,就可以使工件获得满意的夹紧状态。2.分散着力点 ,用一块活动压板将夹紧力的着力点分散成两个或四个,从而改变着力点的位置,减少着力点的压力,获得减少夹紧变形的效果。3.增加压紧件接触面积,在压板下增加垫环,使夹紧力通过刚性好的垫环均匀地作用在薄壁工件上,避免工件局部压陷。4.利用对称变夹具的夹紧设计,应保证形状在加工薄壁套筒时,采用加宽卡爪,如果夹紧力较大,仍有可能发生较大的变形。因此,在精加工时,除减小夹紧力外,工件能产生。5.其它措施 对于一些极薄的特形工件,靠精密冲压加工仍达不到所要求的精度而需要进行机械加工时,上述各种措施通常难以满足需要,可以采用一种冻结式夹具。这类夹具是将极薄的特形工件定位于一个随行的型腔里,然后浇灌低熔点金属,待其固结后一起加工,加工完成后,再加热熔解取出工件。低熔点金属的浇灌及熔解分离,都是在生产线上进行的。1.7 机床夹具的现状及发展方向夹具最早出现在18世纪后期。随着科学技术的不断进步,夹具已从一种辅助工具发展成为门类齐全的工艺装备。1.7.1机床夹具的现状有关统计表明,目前的中、小批多品种生产的工件品种已占工件种类总数的85左右。现代生产要求企业所制造的产品品种经常更新换代,以适应市场的需求与竞争。然而,一般企业都仍习惯于大量采用传统的专用夹具,一般在具有中等生产能力的工厂里,约拥有数千甚至近万套专用夹具;另一方面,在多品种生产的企业中,每隔34年就要更新5080左右专用夹具,而夹具的实际磨损量仅为1020左右。特别是近年来,数控机床、加工中心、成组技术、柔性制造系统(FMS)等新加工技术的应用,对机床夹具提出了如下新的要求:1能迅速而方便地装备新产品的投产,以缩短生产准备周期,降低生产成本;2能装夹一组具有相似性特征的工件;3能适用于精密加工的高精度机床夹具;4能适用于各种现代化制造技术的新型机床夹具;5采用以液压站等为动力源的高效夹紧装置,以进一步减轻劳动强度和提高劳动生产率;6.提高机床夹具的标准化程度。1.7.2现代机床夹具的发展方向现代机床夹具的发展方向主要表现为标准化、精密化、高效化和柔性化等四个方面。1.标准化机床夹具的标准化与通用化是相互联系的两个方面。目前我国已有夹具零件及部件的国家标准:GB/T2148T225991以及各类通用夹具、组合夹具标准等。机床夹具的标准化,有利于夹具的商品化生产,有利于缩短生产准备周期,降低生产总成本。2.精密化随着机械产品精度的日益提高,势必相应提高了对夹具的精度要求。精密化夹具的结构类型很多,例如用于精密分度的多齿盘,其分度精度可达0.1;用于精密车削的高精度三爪自定心卡盘,其定心精度为5m。3.高效化高效化夹具主要用来减少工件加工的基本时间和辅助时间,以提高劳动生产率,减轻工人的劳动强度。常见的高效化夹具有自动化夹具、高速化夹具和具有夹紧力装置的夹具等。例如,在铣床上使用电动虎钳装夹工件,效率可提高5倍左右;在车床上使用高速三爪自定心卡盘,可保证卡爪在试验转速为9000r/min的条件下仍能牢固地夹紧工件,从而使切削速度大幅度提高。目前,除了在生产流水线、自动线配置相应的高效、自动化夹具外,在数控机床上,尤其在加工中心上出现了各种自动装夹工件的夹具以及自动更换夹具的装置,充分发挥了数控机床的效率。4.柔性化机床夹具的柔性化与机床的柔性化相似,它是指机床夹具通过调整、组合等方式以适应可变因素的能力。工艺的可变因素主要有:工序特征、生产批量、工件的形状和尺寸等。具有柔性化特征的新型夹具种类主要有:组合夹具、通用可调夹具、成组夹具、模块化夹具、数控夹具等。为适应现代机械工业多品种、中小批量生产的需要,扩大夹具的柔性化程度,改变专用夹具的不可拆结构为可拆结构,发展可调夹具结构,将是当前夹具发展的主要方向。 第二章 内8字型槽夹具设计2.1 工件预加工内容1.该工件其他部位都已经加工完毕,工件所待加工的部位为内8字型油槽;零件的形状、尺寸及其位置如零件图2-1所示。2.零件生产批量10000件,属中小批量生产。图2-1 设计零件2.2 初定夹具结构方案2.2.1工件定位方案及定位装置图2-2该8字型油槽是在工件旋转2周和刀具往复运动一个行程的条件下形成的。如果将车床主轴的旋转运动和刀具的往复运动合成在一起,则不论工件旋转多少转,刀具始终能在固定的油槽中进行切削。在曲柄滑块机构中,由柄转一周,滑块作一次往复运动。由图2知,此运动形式的转换是通过传动比为l:2的一对锥齿轮来实现的。此工装夹持在车床刀架上,主动齿轮的滑套装在夹具体的圆柱上,并由拨杆或软轴与车床的卡盘相连。当车床主轴转动(即工件转动时)时,主动齿轮带动从动齿轮旋转,从动齿轮上安装着开槽的圆盘,使连杆端点相对圆盘回转中心的距离r(即曲柄长度)可以按需要进行调节。刀杆上装有导向键,以防止刀杆在夹具体中转动。这样,工件旋转2周,刀具就定程地做一次往复运动。油槽的宽度尺寸由刀具尺寸来确定;油槽深度由于摇中拖板来控制,手摇小拖板可控制刀具相对于零件端面的距离。 当加工双8字型油槽时,工件需旋转4周,刀杆做两次往复运动,即刀具完成一次往复运动,切出一个 8字型油槽后,将工件相对刀具的原来起始位置旋转l80,再重复以上运动就可切出双8字型油槽了。 还需注意的是,加工刀具的刀头应是对称的成型刀。由于导程大、螺旋角大,如图2-2。2.2.2设计内8字型槽夹具装置整个装置安装在车床上,不用加任何的动力,我们通过下图中左侧的序号1 、2将车床的爪盘转速转移动夹具的动力齿轮上;这种机构的优势主要是动力统一到个转速上,加工工件与夹具统一的动作,使整个机构在加工时有一个联动的作用,将爪盘动力无损传动。图2-4 夹具动力装置2.2.4动力传输设计传动方式选择由于爪盘运转中我们要考虑转动方向的变换,在通用机械中,我们采用锥齿轮。斜齿轮传动的特点优点(1)啮合性好,传动平稳、噪声小。 (2)重合度大,降低了每对齿轮的载荷,提高了齿轮的承载能力。 (3)不产生根切的最少齿数少。 缺点人字齿轮制造比较麻烦。1)啮合性能好:斜齿圆柱齿轮轮齿之间是一种逐渐啮合过程,轮齿上的受力也是逐渐由小到大,再由大到小;因此斜齿轮啮合较为平稳,冲击和噪声小,适用于高速、大功率传动。2)重合度大:在同等条件下,斜齿轮的啮合过程比直齿轮长,即重合度较大,这就降低了每对齿轮的载荷,从而提高了齿轮的承载能力,延长了齿轮的使用寿命,并使传动平稳。3)结构紧凑:用齿条形刀具切制斜齿圆柱齿轮时,其无根切标准齿轮的最小齿数比直齿圆柱齿轮的少,因而可以得到更加紧凑的结构。齿轮计算1、选择齿轮材料及精度等级考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240260HBS。大齿轮选用45钢调质,齿面硬度220HBS;根据教材P210表10-8选7级精度。齿面粗糙度Ra1.63.2m2、按齿面接触疲劳强度设计根据教材P203式10-9a:进行计算确定有关参数如下: 传动比i齿=2取小齿轮齿数Z1=27。则大齿轮齿数:Z2=iZ1=227=54实际传动比i0=52/20=2.6传动比误差:i-i0/I=2.6-2.6/2.6=0%2.5% 可用齿数比:u=i0=2.6 由教材P224取R=0.3 转矩T1T1=35.4Nmm 载荷系数k 取k=1.3 许用接触应力H H=HlimkHN/SH由教材P209图10-21查得: HlimZ1=560Mpa HlimZ2=500Mpa由教材P206式10-13计算应力循环次数NN1=60njLh=60331.031(1636510)=2.7648109N2=N1/i=1.16109/3=9.216108由教材P207图10-19查得接触疲劳的寿命系数:KHN1=0.87 KHN2=0.90通用齿轮和一般工业齿轮,按一般可靠度要求,选取安全系数SH=1.0H1=Hlim1 KHN1/SH=5600.93/1.0Mpa=487.2MpaH2=Hlim2 KHN2/SH=3500.97/1.0Mpa=450Mpa弹性影响系数ZE 由教材P201表10-6查得ZE=189.8MPa1/2故得:=67.9计算平均分度圆处的圆周速度vm分锥角1=arctan(Z1/Z2)=当量齿数 Zv1= Z1/cos1=21.43 Zv2= Z2/cos1=144.86平均分度圆处的圆周速度:计算载荷系数 根据v=3.41m/s锥齿轮为7级精度由教材P194图10-8查得:动载系数KV=1.08 由教材P193表10-2查得: 使用系数KA=1由教材P195表10-3查得: 齿间啮合系数Ka=1由教材P226b表10-9查得: 轴承系数KHbe=1.10 故载荷系数K=KAKVKHaKH=2.475按实际的载荷系数校正所得的分度圆直径根据P226式(10-10(a)模数:m=d1/Z1=152.58/20=7.6mm取标准模数:m=73、校核齿根弯曲疲劳强度根据教材P226公式10-23:确定有关参数和系数 分度圆直径:d1=mZ1=720=140mm d2=mZ2=752=364mm齿宽: 故得 取b=65 齿形系数YFa和应力修正系数YSa根据教材P200表10-5得:YFa1=2.72 YSa1=1.57 YFa2=2.14 YSa2=1.83许用弯曲应力F 根据公式:F= FLim2/SF根据教材P208图10-20(c)得 FLim1=420Mpa FLim2 =330Mpa按一般可靠度选取安全系数SF=1.25计算两轮的许用弯曲应力F1=FLim1 /SF=420/1.25=336MpaF2=FLim2/SF=330/1.25=264Mpa 将求得的各参数代入式故轮齿齿根弯曲疲劳强度足够2.3 绘图完善整个夹具总草图上应标注主要尺寸、公差配合等,如图2-7。 图2-7 装配图第三单 模型实体图例3.1整体机构装配图3.2主动齿轮3.3从动齿轮3.4拉动连杆销孔组件3.5从动齿轮固定法兰盘3.6小结整体装置动力来源于车床爪盘,车床爪盘通动第一连杆将旋转动力输入主动锥齿轮,主动齿轮与机构的中间空心销轴中间配合,主动齿轮配合从动齿轮,带动凸轮拐臂结构,将转动的力改动为左右运的直线运动,在爪盘带动工件旋转时,拐臂左右直线运动,刀具与工作在3轴线上运动,在工件内部加工成8字型槽,本装置在无外力作用情况下达到一个非常规的动作状态。完成工作设计要求,装置简单,操作方便,在通过仿真运动的模拟下,达到了设计的运动状态。(仿真运动附图纸中)结 论毕业设计是我们作为学生在学习阶段的最后一个环节,是对所学基础知识和专业知识的一种综合应用,是一种综合的再学习、再提高的过程,这一过程对学生的学习能力和独立思考及工作能力也是一个培养,同时毕业设计的水平也反映了大学教育的综合水平,因此学校十分重视毕业设计这一环节,加强了对毕业设计工作的指导和动员教育。在大学的学习过程中,毕业设计是一个重要的环节,是我们步入社会参与实际工作的一次极好的演示,也是对我们自学能力和解决问题能力的一次考验,是学校生活与社会生活间的过渡。在完成毕业设计的时候,我尽量的把毕业设计和实际工作有机的结合起来,实践与理论相结合。这样更有利于自己能力的提高。社会是在不断的变化、发展的,眼下社会变革迅速,对人才的要求也越来越高,要用发展的眼光看问题,要学会学习,学会创新,学会适应社会的发展要求。在走出校园,迈向社会之即,把握今天,才能创造未来,老师的熏陶和教诲,使我懂得了更多处世为人的道理,有了一定的创新精神和钻研精神。本夹具设计课程实践环节即将结束,课题是根据零件的加工内容所设计的车床专用内8字油槽加工夹具。从零件的结构特点及加工内容初步拟定定位方案,夹紧方案,绘制草图,修改方案,最终确定方案。这期间巩固复习了以前学习过的内容并进行了综合运用,提高了我们综合运用所学知识以及理论结合实际的能力。通过此次的学习不仅使我对课本内容有了更深入的认识,培养了我分析问题的能力。对灵活运用工具手册解决问题的能力有了明显地提高。我基本掌握了专用夹具设计的方法和步骤。由于自己的能力所限,设计中还有许多不足之处,以后还要继续不断的学习改进。39致 谢本论文是在XXX老师的亲切关怀和悉心指导下完成的。她严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我。从课题的选择到项目的最终完成,周老师都始终给予我细心的指导和不懈的支持。在此谨向XXX老师致以诚挚的感谢和崇高的敬意。搞毕业设计也是一个新学习和检验学习知识的过程,充分将学习的知识应用于实际的设计中,温故而知新,有助于我们更好的掌握所学的内容。在此次论文写作中,我去图书馆查资料,在网上搜集资料,经过两个月的精心准备,在周老师的指导下我终于把论文底稿给定了下来,在此要感谢所有曾在论文写作期间对我提供一臂之力的同学和朋友。最后再次感谢我的指导XXXX老师,她严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;她循循善诱的教导和不拘一格的思路给予我无尽的启迪。在这里请接受我诚挚的谢意。在设计中我深刻的体会到:无论做什么,都要做一个自始自终的人,尽力把每一个章节都做好,一切按照要求做,充分发挥自己的想象空间和创造能力。虽然自己将要告别学生生活,但自己在以后工作中还要需要更加的努力学习,我坚信四年的大学搞毕业论文设计工作的过程中,我增长了知识的同时也深刻的发现自己知识的欠缺,自己在学校的书本上学的知识,还远远不能满足以后的需生活,将成为我人生中的一笔宝贵的财富。最后,感谢XXXX学院的各位老师四年来对我们的教育,感谢学院能给我们提供这次非常好的学习实践机会!参考文献1 王光斗.机床夹具设计手册【M】科学技术出版社,19882 戴陆武.机床夹具设计【M】国防.工业出版社,19943 韩洪涛.机械制造技术【M】上海.化学出版社,20024 李清旭.机械加工工艺【M】北京.机械工业出版社,20015. 王昆. 机械设计手册【M】 化学工业出版社,20046. 詹启贤. 自动机械设计【M】 机械工业出版社,19967. 周开勤 机械零件手册【M】 高等教育出版社,19988. 杨君兴 国家标准机械制图应用示例图册【M】中国标准出版社,19949. 孙恒 机械原理【M】 西北工业大学机械原理及机械零件教研室,200610. 陈于萍 互换性于测量技术【M】 机械工业出版社,200511. 何明新 机械制图(第五版)【M】 高等教育出版社,200412. 孔午光 高速凸轮【M】 高等教育出版社,199813. 孟原先 现代机构手册【M】 机械工业出版社,199414. 詹启军 机器和结构综合分析【M】 中国轻工业出版社,199415. 邹慧贤 机械运动方案设计手册【M】 上海交通大学出版社,199416. 王成涛 现代机械设计思想和方法【M】 上海科学技术文献出版社,199917. 谢黎明 机械工程与技术创新【M】 化学工业出版社,200518. 吕忠文 机械创新设计【M】 机械工业出版社,2004附 录Machining fixture locating and clamping position optimization using genetic algorithmsNecmettin Kaya*Department of Mechanical Engineering, Uludag University, Gorukle, Bursa 16059, Turkey Received 8 July 2004; accepted 26 May 2005Available online 6 September 2005AbstractDeformation of the workpiece may cause dimensional problems in machining. Supports and locators are used in order to reduce the error caused by elastic deformation of the workpiece. The optimization of support, locator and clamp locations is a critical problem to minimize the geometric error in workpiece machining. In this paper, the application of genetic algorithms (GAs) to the fixture layout optimization is presented to handle fixture layout optimization problem. A genetic algorithm based approach is developed to optimise fixture layout through integrating a finite element code running in batch mode to compute the objective function values for each generation. Case studies are given to illustrate the application of proposed approach. Chromosome library approach is used to decrease the total solution time. Developed GA keeps track of previously analyzed designs; therefore the numbers of function evaluations are decreased about 93%. The results of this approach show that the fixture layout optimization problems are multi-modal problems. Optimized designs do not have any apparent similarities although they provide very similar performances.Keywords: Fixture design; Genetic algorithms; Optimization1. IntroductionFixtures are used to locate and constrain a workpiece during a machining operation, minimizing workpiece and fixture tooling deflections due to clamping and cutting forces are critical to ensuring accuracy of the machining operation. Traditionally, machining fixtures are designed and manufactured through trial-and-error, which prove to be both expensive and time-consuming to the manufacturing process. To ensure a workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped, making it imperative to develop tools that will eliminate costly and time-consuming trial-and-error designs. Proper workpiece location and fixture design are crucial to product quality in terms of precision, accuracy and finish of the machined part. Theoretically, the 3-2-1 locating principle can satisfactorily locate all prismatic shaped workpieces. This method provides the maximum rigidity with the minimum number of fixture elements. To position a part from a kinematic point of view means constraining the six degrees of freedom of a free moving body (three translations and three rotations). Three supports are positioned below the part to establish the location of the workpiece on its vertical axis. Locators are placed on two peripheral edges and intended to establish the location of the workpiece on the x and y horizontal axes. Properly locating the workpiece in the fixture is vital to the overall accuracy and repeatability of the manufacturing process. Locators should be positioned as far apart as possible and should be placed on machined surfaces wherever possible. Supports are usually placed to encompass the center of gravity of a workpiece and positioned as far apart as possible to maintain its stability. The primary responsibility of a clamp in fixture is to secure the part against the locators and supports. Clamps should not be expected to resist the cutting forces generated in the machining operation. For a given number of fixture elements, the machining fixture synthesis problem is the finding optimal layout or positions of the fixture elements around the workpiece. In this paper, a method for fixture layout optimization using genetic algorithms is presented. The optimization objective is to search for a 2D fixture layout that minimizes the maximum elastic deformation at different locations of the workpiece. ANSYS program has been used for calculating the deflection of the part under clamping and cutting forces. Two case studies are given to illustrate the proposed approach.2. Review of related worksFixture design has received considerable attention in recent years. However, little attention has been focused on the optimum fixture layout design. Menassa and DeVries1used FEA for calculating deflections using the minimization of the workpiece deflection at selected points as the design criterion. The design problem was to determine the position of supports. Meyer and Liou2 presented an approach that uses linear programming technique to synthesize fixtures for dynamic machining conditions. Solution for the minimum clamping forces and locator forces is given. Li and Melkote3used a nonlinear programming method to solve the layout optimization problem. The method minimizes workpiece location errors due to localized elastic deformation of the workpiece. Roy andLiao4developed a heuristic method to plan for the best supporting and clamping positions. Tao et al.5presented a geometrical reasoning methodology for determining the optimal clamping points and clamping sequence for arbitrarily shaped workpieces. Liao and Hu6presented a system for fixture configuration analysis based on a dynamic model which analyses the fixtureworkpiece system subject to time-varying machining loads. The influence of clamping placement is also investigated. Li and Melkote7presented a fixture layout and clamping force optimal synthesis approach that accounts for workpiece dynamics during machining. A combined fixture layout and clamping force optimization procedure presented.They used the contact elasticity modeling method that accounts for the influence of workpiece rigid body dynamics during machining. Amaral et al. 8 used ANSYS to verify fixture design integrity. They employed 3-2-1 method. The optimization analysis is performed in ANSYS. Tan et al. 9 described the modeling, analysis and verification of optimal fixturing configurations by the methods of force closure, optimization and finite element modeling. Most of the above studies use linear or nonlinear programming methods which often do not give global optimum solution. All of the fixture layout optimization procedures start with an initial feasible layout. Solutions from these methods are depending on the initial fixture layout. They do not consider the fixture layout optimization on overall workpiece deformation. The GAs has been proven to be useful technique in solving optimization problems in engineering 1012. Fixture design has a large solution space and requires a search tool to find the best design. Few researchers have used the GAs for fixture design and fixture layout problems. Kumar et al. 13 have applied both GAs and neural networks for designing a fixture. Marcelin 14 has used GAs to the optimization of support positions. Vallapuzha et al. 15 presented GA based optimization method that uses spatial coordinates to represent the locations of fixture elements. Fixture layout optimization procedure was implemented using MATLAB and the genetic algorithm toolbox. HYPERMESH and MSC/NASTRAN were used for FE model. Vallapuzha et al. 16 presented results of an extensive investigation into the relative effectiveness of various optimization methods. They showed that continuous GA yielded the best quality solutions. Li and Shiu 17 determined the optimal fixture configuration design for sheet metal assembly using GA. MSC/NASTRAN has been used for fitness evaluation. Liao 18 presented a method to automatically select the optimal numbers of locators and clamps as well as their optimal positions in sheet metal assembly fixtures. Krishnakumar and Melkote 19 developed a fixture layout optimization technique that uses the GA to find the fixture layout that minimizes the deformation of the machined surface due to clamping and machining forces over the entire tool path. Locator and clamp positions are specified by node numbers. A built-in finite element solver was developed. Some of the studies do not consider the optimization of the layout for entire tool path and chip removal is not taken into account. Some of the studies used node numbers as design parameters. In this study, a GA tool has been developed to find the optimal locator and clamp positions in 2D workpiece. Distances from the reference edges as design parameters are used rather than FEA node numbers. Fitness values of real encoded GA chromosomes are obtained from the results of FEA. ANSYS has been used for FEA calculations. A chromosome library approach is used in order to decrease the solution time. Developed GA tool is tested on two test problems. Two case studies are given to illustrate the developed approach. Main contributions of this paper can be summarized as follows:(1) developed a GA code integrated with a commercial finite element solver;(2) GA uses chromosome library in order to decrease the computation time;(3) real design parameters are used rather than FEA node numbers;(4) chip removal is taken into account while tool forces moving on the workpiece.3. Genetic algorithm conceptsGenetic algorithms were first developed by John Holland. Goldberg 10 published a book explaining the theory and application examples of genetic algorithm in details. A genetic algorithm is a random search technique that mimics some mechanisms of natural evolution. The algorithm works on a population of designs. The population evolves from generation to generation, gradually improving its adaptation to the environment through natural selection; fitter individuals have better chances of transmitting their characteristics to later generations.In the algorithm, the selection of the natural environment is replaced by artificial selection based on a computed fitness for each design. The term fitness is used to designate the chromosomes chances of survival and it is essentially the objective function of the optimization problem. The chromosomes that define characteristics of biological beings are replaced by strings of numerical values representing the design variables.GA is recognized to be different than traditional gradient based optimization techniques in the following four major ways 10:1. GAs work with a coding of the design variables and parameters in the problem, rather than with the actual parameters themselves.2. GAs makes use of population-type search. Many different design points are evaluated during each iteration instead of sequentially moving from one point to the next.3. GAs needs only a fitness or objective function value. No derivatives or gradients are necessary.4. GAs use probabilistic transition rules to find new design points for exploration rather than using deterministic rules based on gradient information to find these new points.4. Approach4.1. Fixture positioning principlesIn machining process, fixtures are used to keep workpieces in a desirable position for operations. The most important criteria for fixturing are workpiece position accuracy and workpiece deformation. A good fixture design minimizes workpiece geometric and machining accuracy errors. Another fixturing requirement is that the fixture must limit deformation of the workpiece. It is important to consider the cutting forces as well as the clamping forces. Without adequate fixture support, machining operations do not conform to designed tolerances. Finite element analysis is a powerful tool in the resolution of some of these problems 22.Common locating method for prismatic parts is 3-2-1 method. This method provides the maximum rigidity with the minimum number of fixture elements. A workpiece in 3D may be positively located by means of six points positioned so that they restrict nine degrees of freedom of the workpiece. The other three degrees of freedom are removed by clamp elements. An example layout for 2D workpiece based 3-2-1 locating principle is shown in Fig. 4.Fig. 4. 3-2-1 locating layout for 2D prismatic workpieceThe number of locating faces must not exceed two so as to avoid a redundant location. Based on the 3-2-1 fixturing principle there are two locating planes for accurate location containing two and one locators. Therefore, there are maximum of two side clampings against each locating plane. Clamping forces are always directed towards the locators in order to force the workpiece to contact all locators. The clamping point should be positioned opposite the positioning points to prevent the workpiece from being distorted by the clamping force.Since the machining forces travel along the machining area, it is necessary to ensure that the reaction forces at locators are positive for all the time. Any negative reaction force indicates that the workpiece is free from fixture elements. In other words, loss of contact or the separation between the workpiece and fixture element might happen when the reaction force is negative. Positive reaction forces at the locators ensure that the workpiece maintains contact with all the locators from the beginning of the cut to the end. The clamping forces should be just sufficient to constrain and locate the workpiece without causing distortion or damage to the workpiece. Clamping force optimization is not considered in this paper. 4.2. Genetic algorithm based fixture layout optimization approachIn real design problems, the number of design parameters can be very large and their influence on the objective function can be very complicated. The objective function must be smooth and a procedure is needed to compute gradients. Genetic algorithms strongly differ in conception from other search methods, including traditional optimization methods and other stochastic methods 23. By applying GAs to fixture layout optimization, an optimal or group of sub-optimal solutions can be obtained.In this study, optimum locator and clamp positions are determined using genetic algorithms. They are ideally suited for the fixture layout optimization problem since no direct analytical relationship exists between the machining error and the fixture layout. Since the GA deals with only the design variables and objective function value for a particular fixture layout, no gradient or auxiliary information is needed 19.The flowchart of the proposed approach is given in Fig. 5.Fixture layout optimization is implemented using developed software written in Delphi language named GenFix. Displacement values are calculated in ANSYS software 24. The execution of ANSYS in GenFix is simply done by WinExec function in Delphi. The interaction between GenFix and ANSYS is implemented in four steps:(1) Locator and clamp positions are extracted from binary string as real parameters.(2) These parameters and ANSYS input batch file (modeling, solution and post processing commands) are sent to ANSYS using WinExec function.(3) Displacement values are written to a text file after solution.(4) GenFix reads this file and computes fitness value for current locator and clamp positions.In order to reduce the computation time, chromosomes and fitness values are stored in a library for further evaluation. GenFix first checks if current chromosomes fitness value has been calculated before. If not, locator positions are sent to ANSYS, otherwise fitness values are taken from the library. During generating of the initial population, every chromosome is checked whether it is feasible or not. If the constraint is violated, it is eliminated and new chromosome is created. This process creates entirely feasible initial population. This ensures that workpiece is stable under the action of clamping and cutting forces for every chromosome in the initial population. The written GA program was validated using two test cases. The first test case uses Himmelblau function 21. In the second test case, the GA program was used to optimise the support positions of a beam under uniform loading.5. Fixture layout optimization case studiesThe fixture layout optimization problem is defined as: finding the positions of the locators and clamps, so that workpiece deformation at specific region is minimized. Note that number of locators and clamps are not design parameter, since they are known and fixed for the 3-2-1 locating scheme. Hence, the design parameters are selected as locator and clamp positions. Friction is not considered in this paper. Two case studies are given to illustrate the proposed approach.6. ConclusionIn this paper, an evolutionary optimization technique of fixture layout optimization is presented. ANSYS has been used for FE calculation of fitness values. It is seen that the combined genetic algorithm and FE method approach seems to be a powerful approach for present type problems. GA approach is particularly suited for problems where there does not exist a well-defined mathematical relationship between the objective function and the design variables. The results prove the success of the application of GAs for the fixture layout optimization problems.In this study, the major obstacle for GA application in fixture layout optimization is the high computation cost. Re-meshing of the workpiece is required for every chromosome in the population. But, usages of chromosome library, the number of FE evaluations are decreased from 6000 to 415. This results in a tremendous gain in computational efficiency. The other way to decrease the solution time is to use distributed computation in a local area network.The results of this approach show that the fixture layout optimization problems are multi-modal problems. Optimized designs do not have any apparent similarities although they provide very similar performances. It is shown that fixture layout problems are multi-modal therefore heuristic rules for fixture design should be used in GA to select best design among others.Fig. 5. The flowchart of the proposed methodology and ANSYS interface.采用遗传算法优化加工夹具定位和加紧位置摘要:工件变形的问题可能导致机械加工中的空间问题。支撑和定位器是用于减少工件弹性变形引起的误差。支撑、定位器的优化和夹具定位是最大限度的减少几何在工件加工中的误差的一个关键问题。本文应用夹具布局优化遗传算法(GAs)来处理夹具布局优化问题。遗传算法的方法是基于一种通过整合有限的运行于批处理模式的每一代的目标函数值的元素代码的方法,用于来优化夹具布局。给出的个案研究说明已开发的方法的应用。采用染色体文库方法减少整体解决问题的时间。已开发的遗传算法保持跟踪先前的分析设计,因此先前的分析功能评价的数量降低大约93%。结果表明,该方法的夹具布局优化问题是多模式的问题。优化设计之间没有任何明显的相似之处,虽然它们提供非常相似的表现。关键词:夹具设计;遗传算法;优化1.引言夹具用来定位和束缚机械操作中的工件,减少由于对确保机械操作准确性的夹紧方案和切削力造成的工件和夹具的变形。传统上,加工夹具是通过反复试验法来设计和制造的,这是一个既造价高又耗时的制造过程。为确保工件按规定尺寸和公差来制造,工件必须给予适当的定位和夹紧以确保有必要开发工具来消除高造价和耗时的反复试验设计方法。适当的工件定位和夹具设计对于产品质量的精密度、准确度和机制件的完饰是至关重要的。从理论上说,3-2-1定位原则对于定位所有的棱柱形零件是很令人满意的。该方法具有最大的刚性与最少量的夹具元件。从动力学观点来看定位零件意味着限制了自由移动物体的六自由度(三个平动自由度和三个旋转自由度)。在零件下部设置三个支撑来建立工件在垂直轴方向的定位。在两个外围边缘放置定位器旨在建立工件在水平x轴和y轴的定位。正确定位夹具的工件对于制造过程的全面准确性和重复性是至关重要的。定位器应该尽可能的远距离的分开放置并且应该放在任何可能的加工面上。放置的支撑器通常用来包围工件的重力中心并且尽可能的将其分开放置以维持其稳定性。夹具夹子的首要任务是固定夹具以抵抗定位器和支撑器。不应该要求夹子反抗加工操作中的切削力。对于给定数量的夹具元件,加工夹具合成的问题是寻找夹具优化布局或工
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:内卧8字形糟加工装置设计及仿真【三维UG】【6张CAD图纸+文档全套】
链接地址:https://www.renrendoc.com/paper/156142854.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!