




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、探索勾股定理探索勾股定理(第1课时) 成都石室联合中学成都石室联合中学 杨泽海杨泽海一、情境引入 会标中央的图案是赵爽弦会标中央的图案是赵爽弦图,它与图,它与“勾股定理勾股定理”有关,有关,数学家曾建议用数学家曾建议用“勾股定理勾股定理”的图来作为与的图来作为与“外星人外星人”联系联系的信号的信号. 2002年世界数学家大会在我国北京召开,下年世界数学家大会在我国北京召开,下图是本届数学家大会的会标:图是本届数学家大会的会标:探究活动一:探究活动一: 观察下面地板砖示意图:观察下面地板砖示意图:二、探索发现勾股定理 观察这三观察这三个正方形个正方形 你发现图中三个正方形的面积之间你发现图中三个
2、正方形的面积之间存在什么关系吗?存在什么关系吗?换个角度来看呢?换个角度来看呢?结论1 以等腰直角三角形两直角以等腰直角三角形两直角边为边长的小正方形的面积的和,等边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积于以斜边为边长的正方形的面积. .你发现了什么?你发现了什么?探究活动二:探究活动二:观察右边两观察右边两幅图:幅图: 填表(每个小正方形的面积为单位填表(每个小正方形的面积为单位1):):a的面积的面积b的面积的面积c的面积的面积左图左图右图右图4 4 ?怎样计算怎样计算正方形正方形c的面积呢?的面积呢?9 9 1616 9 9 “割割”“补补”“拼拼”方法一:方法一:方
3、法二:方法二:方法三:方法三:分分割割为四个直为四个直角三角形和一角三角形和一个小正方形个小正方形补补成大正方形,成大正方形,用大正方形的面用大正方形的面积减去四个直角积减去四个直角三角形的面积三角形的面积将几个小块将几个小块拼拼成成一个正方形,如一个正方形,如图中两块红色图中两块红色(或绿色)可拼(或绿色)可拼成一个小正方形成一个小正方形分析表中数据,你发现了什么?分析表中数据,你发现了什么? a的面积的面积b的面积的面积c的面积的面积左图左图4913右图右图16925cbasss结论2 以直角三角形两直角边为以直角三角形两直角边为边长的小正方形的面积的和,等于以边长的小正方形的面积的和,等
4、于以斜边为边长的正方形的面积斜边为边长的正方形的面积. .议一议:议一议: (1)你能用直角三角形的两直角边的长)你能用直角三角形的两直角边的长a,b和和斜边长斜边长c来表示图中正方形的面积吗?来表示图中正方形的面积吗?abcabc (2)你能发现直角三角形三边长度之间存在)你能发现直角三角形三边长度之间存在什么关系吗?什么关系吗?222cba (3)分别以)分别以5厘米、厘米、12厘米为直角边作出一厘米为直角边作出一个直角三角形,并测量斜边的长度个直角三角形,并测量斜边的长度. (2)中的规)中的规律对这个三角形仍然成立吗?律对这个三角形仍然成立吗?如果直角三角形两直角边长分别如果直角三角形
5、两直角边长分别为为a,b,斜边长为,斜边长为 c ,那么,那么即直角三角形两直角边的平方和等于即直角三角形两直角边的平方和等于斜边的平方斜边的平方. . 222cba 勾股定理勾股定理 (gou-gu theoremgou-gu theorem) 我国古代把直角三角形中较短的直我国古代把直角三角形中较短的直角边称为角边称为勾勾,较长的直角边称为,较长的直角边称为股股,斜,斜边称为边称为弦弦,“勾股定理勾股定理”因此而得名因此而得名. (在西方称为毕达哥拉斯定理)(在西方称为毕达哥拉斯定理)弦股勾三、简单应用三、简单应用 例例 如图所示,一棵大树在一次强烈如图所示,一棵大树在一次强烈台风中于离地
6、面台风中于离地面10米处折断倒下,树顶米处折断倒下,树顶落在离树根落在离树根24米处米处. 大树在折断之前高多大树在折断之前高多少米?少米? 基础巩固练习:基础巩固练习:(口答)求下列图形中未知正方形的面积(口答)求下列图形中未知正方形的面积或未知边的长度:或未知边的长度: ?225100 x1517已知直角三角形两边,求第三边已知直角三角形两边,求第三边.生活中的应用:生活中的应用:小明妈妈买了一部小明妈妈买了一部29英寸(英寸(74厘米)厘米)的电视机的电视机. 小明量了电视机的屏幕后,发现小明量了电视机的屏幕后,发现屏幕只有屏幕只有58厘米长和厘米长和46厘米宽,他觉得一厘米宽,他觉得一
7、定是售货员搞错了定是售货员搞错了. 你同意他的想法吗?你你同意他的想法吗?你能解释这是为什么吗?能解释这是为什么吗?1这一节课我们一起学习了哪些这一节课我们一起学习了哪些知识知识和和思想方法思想方法?2对这些内容你有什么对这些内容你有什么体会体会?请与你?请与你的同伴的同伴交流交流.四、课堂小结 知识知识:勾股定理:勾股定理 如果直角三角形两直角边长分别为如果直角三角形两直角边长分别为a,b,斜,斜边长为边长为 c ,那么,那么 .222cba方法方法:1. 观察观察探索探索猜想猜想验证验证归纳归纳应用;应用; 2. “割、补、拼、接割、补、拼、接”法法.思想思想:1. 特殊特殊一般一般特殊;特
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肇庆市实验中学高二上学期地理高效课堂教案第周:问题研究:我的家乡怎样发展
- DB33T 1421-2025产品碳足迹核算方法
- 苏州河水系截污治污工程排水管道工程施工组织设计方案
- 2025税务咨询合同精粹
- 2025建筑材料采购供应合同范本
- 2025年网络维护合同示范文本
- 2025简式的蔬菜交易合同
- 艺术鉴赏与理解
- 医疗健康的AI革新
- 2025专用网络接入服务合同
- (高清版)JTGT 3383-01-2020 公路通信及电力管道设计规范
- 国际公法学马工程全套教学课件
- 微专题地质地貌的形成过程(解析)
- YY/T 0655-2024干式化学分析仪
- 中华民族共同体概论课件专家版2第二讲 树立正确的中华民族历史观
- 四年级四年级下册阅读理解100篇及答案经典
- 中职对口升学复习资料:《汽车机械基础》试题库+答案
- 部编版语文五年级下册第六单元整体教学设计教案
- 平面变压器设计与仿真
- 合作取得更大的成功辩论稿范文六篇
- 西南科技大学井巷工程课程设计样本
评论
0/150
提交评论