一次函数经典例题大全_第1页
一次函数经典例题大全_第2页
一次函数经典例题大全_第3页
一次函数经典例题大全_第4页
一次函数经典例题大全_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档.定义型例1.已知函数v = (龊-3旷-* + 3是一次函数,求其解析式。解:由一次函数定义知ffi3 - 3 = 1jm = 3m- 3 * 0* 3/, ftt = -3,故一次函数的解析式为y=-6x+3。注意:利用定义求一次函数y=kx+b解析式时,要保证 kw0。如本例中应保证 m-3w 0。2 .点斜型例2.已知一次函数y=kx-3的图像过点(2,-1),求这个函数的解析式。解:一次函数 的图像过点(2,-1),-1=2k - 3,即k=1。故这个一次函数的解析式为y=x-3。变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1 ,求这个函数的解析式。3 .两点型例

2、3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0) 、(0, 4),则这个函数的解析式为。解:设一次函数解析式为y=kx+b ,由题意得=+ jk =2j b = 4匕= 4i,故这个一次函数的解析式为 y=2x+49欢在下载例4.已知某个一次函数的图像如图所示,则该函数的解析式为解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1,0)(0, 2)故这个一次函数的解析式为y=-2x+2五.斜截型例5.已知直线y=kx+b与直线y=-2x平行,且在 y轴上的截距为2,则直线的解析式为解析:两条直线 =+ 当 k1=k2 , b1wb2时,=,直线y=kx+b与直线

3、y=-2x平行,二上二一2 。又:直线y=kx+b在y轴上的截距为2,故直线的解析式为 y=-2x+2六.平移型例6.把直线y=2x+1向下平移2个单位得到的图像解析式为 。解析:设函数解析式为y=kx+b ,:直线y=2x+1向下平移2个单位得到的直线 y=kx+b与直线y=2x+1平行=2 直线y=kx+b在y轴上的截距为b=1-2=-1 ,故图像解析式为了二2* - l七.实际应用型例7.某油箱中存油20升,油从管道中匀速流出,流速为 0.2升/分钟,则油箱中剩油量 q (升)与流出时间t (分钟)的函数关系式为 。解:由题意得 q=20-0.2t ,即 q=-0.2t+20q左也二10

4、0故所求函数的解析式为q=-0.2t+20 (0 f 100)注意:求实际应用型问题的函数关系式要写出自变量的取值范围。八.面积型例8.已知直线 y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为441(t-.o)4 = m.解:易求得直线与x轴交点为k,所以 1*12 ,所以|k|=2 ,即k=士2 故直线解析式为 y=2x-4或y=-2x-4九.对称型若直线与直线y=kx+b关于(1) x轴对称,则直线f的解析式为y=-kx-b(2) y轴对称,则直线f的解析式为y=-kx+bi1 t(3)直线y=x对称,则直线的解析式为$k1 b(4)直线y=-x对称,则直线1的解析式为k

5、k(5)原点对称,则直线,的解析式为y=kx-b例9.若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为 。解:由(2)得直线l的解析式为y=-2x-1十.开放型例10.已知函数的图像过点a(1,4) , b(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。解:(1)若经过 a b两点的函数图像是直线,由两点式易得y=-2x+6(2)由于a b两点的横、纵坐标的积都等于4,所以经过 a b两点的函数图像还可以_ 4是双曲线,解析式为文(3)其它(略)十一.几何型例11.如图,在平面直角坐标系中,a b是x轴上的两点,ace=90kab=3胪,以aq bo为

6、直径的半圆分别交 ag bc于e、f两点,若c点的坐标为(0, 3)。(1)求图像过a、r c三点的二次函数的解析式,并求其对称轴;(2)求图像过点e、f的一次函数的解析式。解:(1)由直角三角形的知识易得点a(-3,3, 0)、b(v3, 0),由待定系数法可求得二次函数解析式为1 2 2.v = x x + 333,对称轴是x=- v3(2)连结oe of,则。ej_4c, of, ec。过e、f分别作x、y轴的垂线,垂足为m3v3 9丁i ,由待定系数法可求得一次函数解析式为1 - 1n、p、g,易求得 e 4 *4、f祗3 v 一 + y 32十二.方程型例12.若方程x2+3x+1=

7、0的两根分别为优,力求经过点。(“/7方)2 +产)1 的一次函数图像的解析式解:由根与系数的关系得,.一 ;一 二m +俨=g+产-2町= 9 + 2 = 11,,+ 5 = 3二小ci p ap -= -11g 上_ g歼-2町_ 11以 g afi -1j点 p(11, 3) 、q(-11, 11)1 il *。= 31 l _|_ l _ 1 1设过点p、q的一次函数的解析式为y=kx+b则有i心-11b = 7解得 一 故这个一次函数的解析式为 十三.综合型一 5例13.已知抛物线 y=(9-m2)x2-2(m-3)x+3m 的顶点d在双曲线h上,直线y=kx+c经过- b - 3

8、= 02a ab 4fr - 10 = 0点d和点c(a, b)且使y随x的增大而减小,a、b满足方程组,求这条直线的解析式。/13m2 4- 10m - 3解:由抛物线y=(9-m2)x2-2(m-3)x+3m 的顶点d楸+3 阳+ 3在双曲线上,可求得抛物线的解析式为:yi=-7x2+14x-12,顶点d(1, -5)及y2=-27x2+18x-18顶点;r_叮1 二 -1= 24/bi = 4 bn = 1解方程组得i1,i1即g(-1, -4), c2(2,-1)19了 jc 由题意知c点就是c1(-1, -4),所以过c1、di的直线是22 ;过c1、d2的直线3349是二,函数问题

9、1已知正比例函数 ,则当kw0时,y随x的增大而减小。解:根据正比例函数的定义和性质,得 ky2,则x1 与x2的大小关系是()a. x1x2 b. x10,且y1y2。根据一次函数的性质“当k0时,y随x的增大而增大”,得x1x2 o故选ao函数问题3一次函数y=kx+b满足kb0 ,且y随x的增大而减小,则此函数的图象不经过()a.第一象限b.第二象限c.第三象限d.第四象限解:由kb0,知k、b同号。因为y随x的增大而减小,所以 k0,从而b3cb寸,y1y2, 当 x30时,y1y2函数问题6(1) y与x成正比例函数,当 y=5时,x=2.5 ,求这个正比例函数的解析式.(2)已知一

10、次函数的图象经过a ( 1, 2)和b (3, 5)两点,求此一次函数的解析式.解:(1)设所求正比例函数的解析式为y=kx ,把y=5 ,x=2.5代入上式 得,5=2.5k,解之,得k=2所求正比例函数的解析式为y=2x(2)设所求一次函数的解析式为y=kx+b此图象经过 a(1, 2)、b (3, 5)两点,此两点的坐标必满足 y=kx+b ,将x=-1 、y=2和 x=3、y=-5 分别代入上式,得 2=-k+b,-5=3k+b 解得 k=-7/4,b=1/4,此一次函数的解析式为 y=-7x/4+1/4点评:(1)不能化成带分数.(2)所设定的解析式中有几个待定系数,就需根据已知 条

11、件列几个方程.函数问题7拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量 q(升) 与工作时间t (时)之间的函数关系式,指出自变量 t的取值范围,并且画出图象.分析:拖拉机一小时耗油 5升,t小时耗油5t升,以20升减去5t升就是余下的油量.解:函数关系式:q=20-5t,其中t的取值范围:0w t 4o图象是以(0, 20)和(4, 0)为端点的一条线段(图象略)。点评:注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线 段,而不是一条直线.函数问题8已知一次函数的图象经过点p(2, 0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式

12、.分析:从图中可以看出,过点p作一次函数的图象,和y轴的交点可能在y轴正半轴上, 也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.解:设所求一次函数解析式为y=kx+b点 p的坐标为(一2,0)|op|=2设函数图象与y轴交于点b (0, m)根据题意,sa pob=3,|m|二3,一次函数的图象与 y轴交于b1 (0, 3)或b2 (0, 3)将 p (2, 0)及 b1 (0, 3);或 p (2, 0)及 b2 (0, 3)的坐标代入 y=kx+b 中, 得-2k+b=0 , b=3; 或-2k+b=0 , b=-3。解得 k=1.5 , b=3;或 k=-

13、1.5 , b=-3。,所求一次函数的解析式为 y=1.5x+3或y=-1.5-3 。点评:(1)本题用到分类讨论的数学思想方法 .涉及过定点作直线和两条坐标轴相交的 问题,一定要考虑到方向,是向哪个方向作 .可结合图形直观地进行思考,防止丢掉一条直 线.(2)涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值.【考点指要】一次函数的定义、图象和性质在中考说明中是c级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是d级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中 考题中,大约占有8分

14、左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.函数问题9如果一次函数y=kx+b中x的取值范围是-2 wxw 6,相应的函数值的范围是 -11 y 0时,x = -2, y = 11; x= 6, y= 9。(2) k0,则y随x的增大而增大;若 k0,则 y随x的增大而减小。基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1下列函数中,哪些是一次函数?哪些是正比例函数?(1) y=- -x;(2) y=- - ;(3) y=-3-5x ;2x(4) y=-5x2;(5) y=6x- (6) y=x

15、(x-4)-x 2.2分析本题主要考查对一次函数及正比例函数的概念的理解.解:(1) (3) (5) (6)是一次函数,(i) (6)是正比例函数.一2 c例2当m为何值时,函数 y=- (m-2) x 3 + ( m-4)是一次函数?分析某函数是一次函数,除应符合 y=kx+b外,还要注意条件 kw0.2 -m2 3 1,m=-2.(m 2) 0,解::函数y= (m-2) xm + (m-4)是一次函数,m2 3,当 m=-2时,函数 y= (m-2) x + (m-4)是一次函数.小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为 1,系数不为0.而某函数若是正比例函数,则

16、还需添加一个条件:常数项为0.基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm,它所挂物体的质量不能超过 18kg,并且每挂1kg的物体,弹 簧就伸长0. 5cm,写出挂上物体后,弹簧的长度 y (cm)与所挂物体的质量 x(kg )之间的 函数关系式,写出自变量 x的取值范围,并判断 y是否是x的一次函数.分析(1)弹簧每挂1kg的物体后,伸长0. 5cm,则挂xkg的物体后,弹簧的长度 y 为(15

17、+0 . 5x) cm,即 y=15+0. 5x.(2)自变量x的取值范围就是使函数关系式有意义的x的值,即0x18.(3)由y=15+0. 5x可知,y是x的一次函数.解:(1) y=15+0. 5x. (2)自变量x的取值范围是 0wxw18. (3) y是x的一次函数.学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与彳t驶时间t (时)之间的函数关系式是 老师评一评 研究本题可采用线段图示法,如图11-19所示.火车。卜n j 谊wr一王次-5 -1乌令木齐库尔勒闺 11 - 1u火车从乌鲁木齐出发,t小时

18、所走路程为58t千米,此时,距离库尔勒的距离为 s千米, 故有 58t+s=600 ,所以,s=600-58t .例4某物体从上午 7时至下午4时的温度m(c)是时间t (时)的函数:m=t2-5t+100 (其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 c.分析 本题给出了函数关系式,欲求函数值,但没有直接给出t的具体值.从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2 ,当t=-2 时,m= (-2) 3-5 x (-2) +100=102 (c). 答案:102 例5已知y-3与x成正比例,且 x=2时,y=7.(1)写

19、出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.分析由y-3与x成正比例,则可设 y-3=kx ,由x=2, y=7,可求出k,则可以写出关 系式.解:(1)由于y-3与x成正比例,所以设 y-3=kx .把 x=2, y=7 代入 y-3=kx 中,得 7-3= 2k,,k=2.,y与x之间的函数关系式为 y-3=2x ,即y=2x+3.(2)当 x=4 时,y=2x 4+3=11.(3)当 y=4 时,4=2x+3, x=.2学生做一做 已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数关系式是.老师评一评 由y与x+1成正比例,可设 y与x的

20、函数关系式为 y=k (x+1).再把x=5, y=12代入,求出k的值,即可得出y关于x的函数关系式.设y关于x的函数关系式为 y=k (x+1).当x=5时,y=12 ,1-12= (5+1) k,,k=2.y 关于 x 的函数关系式为 y=2x+2.【注意】y与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y= (1-2m) x的图象经过点 a (xb y。和点b (x2, y2),当x1 y2,则m的取值范围是()a. m 0 c , m m2分析本题考查正比例函数的图象和性质,因为当xix2时,v。乎,说明y随x的增,一 ,1_大而减小,所以1-2m

21、 ,故正确答案为 d项.2学生做一做某校办工厂现在的年产值是15万元,计划今后每年增加2万元.(1)写出年产值y (万元)与年数 x (年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值.老师评一评(1)年产值y (万元)与年数x (年)之间的函数关系式为 y=15+2x.(2)画函数图象时要特别注意到该函数的自变量取值范围为x0,因此,函数y=15+2x的图象应为一条射线.画函数y=12+5x的图象如图11 21所示.11 - 22(3)当 x=5 时,y= 15+2x5=25 (万元).5年后的产值是25万元.例7已知一次函数y=kx+b的图象如图11 22所示,求函数表达式

22、.分析1 从图象上可以看出,它与x轴交于点(-1 , 0),与y轴交于点(0, -3),代入关系式中,求出 k为即可.解:由图象可知,图象经过点(-1 , 0)和(0,-3)两点,代入到y=kx+b中,得0 k b, . k 3,3 0 b,b 3.,此函数的表达式为y=-3x-3.精品文档例8求图象经过点(2, -1 ),且与直线y=2x+1平行的一次函数的表达式.分析1图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2, -1 )代入,求出b即可.解:由题意可设所求函数表达式为y=2x+b ,,图象经过点(2, -1 ), .-l=2 x2+b.

23、 . b=-5,,所求一次函数的表达式为y=2x-5.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用; (3)与实际生活相联系,通过函数解决生活中的实际问题.例8 已知y+a与x+b (a, b为是常数)成正比例.(1) y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?分析1判断某函数是一次函数,只要符合y=kx+b (k, b中为常数,且kw0)即可;判断某函数是正比例函数,只要符合y=kx(k为常数,且kw 0)即可.解:(1) y是x的一次函数.: y+a与x+b是正比例函数,设 y+a=k(x+b) (k为常数,且kw

24、0)整理得 y=kx+ (kb-a ).,kw0, k, a, b 为常数,y=kx+(kb-a)是一次函数.(2)当kb-a=0 ,即a=kb时,y是x的正比例函数.例9某移动通讯公司开设了两种通讯业务:“全球通”使用者先交 50元月租费,然后每通话1分,再付电话费0. 4元;“神州行”使用者不交月租费,每通话 1分,付话费0. 6 元(均指市内通话)若 1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1, y2与x之间的关系;(2) 一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?分析 这是一道实际生活中

25、的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论.解:(1) y1=50+0. 4x (其中x0,且x是整数) y 2=0. 6x (其中x0,且x是整数)(2) 两种通讯费用相同,y产y2,即 50+0. 4x=0. 6x.,x=250. 一个月内通话250分时,两种通讯方式的费用相同.(3)当 y1=200 时,有 200=50+0. 4x,.x=375 (分).“全球通”可通话 375分.当 y2=200 时,有 200=0. 6x,. =333-(分).3 “神州行”可通话 3331分.3753331,选择“全球通”较合算.33例10 已知y+2与x成正比

26、例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y0?(4)若点(m 6)在该函数的图象上,求 m的值;(5)设点p在y轴负半轴上,(2)中的图象与x轴、y轴分别交于 a b两点,且saabf=4,求p点的坐标.分析由已知y+2与x成正比例,可设 y+2=kx,把x=-2 , y=0代入,可求出k,这样即可得到y与x之间的函数关系式,再根据函数图象及其性质进行分析,点(m 6)在该函数的图象上,把x=m, y=6代入即可求出m的值.解:(1) ; y+2与x成正比例,设 y+2=kx (k是常数,且kw。).当 x=-2 时,y=0

27、. .0+2=k (-2 ), .k=-1.,函数关系式为x+2=-x ,即y=-x-2 .(2)列表;x0-2y-20描点、连线,图象如图所示.x0.m= -8 . a (-2, 0), b (0,-2).(3)由函数图象可知,当 xw-2时,y0.,当(4) .点(m, 6)在该函数的图象上,6=-m-2,8 4.2-2),且p在y轴负半轴上,(5)函数y=-x-2分别交x轴、y轴于a, b两点, c 1,一8. s/ abk |ap| |oa|=4 ,|bp|=2|oa|,点p与点b的距离为4. 又 b点坐标为(0,.p点坐标为(0, -6).例 11 已知一次函数 y= (3-k) x

28、-2k2+18.(1) k为何值时,它的图象经过原点? (2) k为何值时,它的图象经过点(0, -2) ?(3) k为何值时,它的图象平行于直线y=-x ? (4) k为何值时,y随x的增大而减小?分析函数图象经过某点,说明该点坐标适合方程;图象与 y轴的交点在y轴上方, 说明常数项bo;两函数图象平行,说明一次项系数相等;y随x的增大而减小,说明一次 项系数小于0.解:(1)图象经过原点,则它是正比例函数.22k2 183 k 0,0,k= -2 .当k=-3时,它的图象经过原点.(2)该一次函数的图象经过点(0,-2).-2=-2k 2+18, 且 3-k k= 710.当k=j10时,

29、它的图象经过点(0,-2)(3)函数图象平行于直线 y=-x ,3-k=-1 , k = 4.当k=4时,它的图象平行于直线x=-x .(4) 随 x 的增大而减小, 3-k3.当k3时,y随x的增大而减小.例12 判断三点 a (3, 1), b (0, -2), c (4, 2)是否在同一条直线上.1欺速下载精品文档分析由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把 第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.解:设过a, b两点的直线的表达式为 y=kx+b.由题意可知,1 3k b, . k 1,2 0 b, b 2.过a, b

30、两点的直线的表达式为 y=x-2 .当x=4时,y=4-2=2 .点 c (4, 2)在直线 y=x-2 上.a (3, 1), b (0, -2), c (4, 2)在同一条直线上.学生做一做判断三点a (3, 5), b (0,-1), c (1, 3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、 数形结合思想在数学问题中的广泛应用.例13老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1) x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到 30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6

31、x的函数值先达到 30,说明y=6x比y=2x+8的值增长得快.”乙生说:直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?分析(1)可先画出这两个函数的图象,从图象中发现,当 x2时,6x2x+8,所以,y=6x的函数值先达到 30.(2)直线y=-x与y=-x+6中的一次项系数相同,都是 -1 ,故它们是平行的,所以这两 位同学的说法都是正确的.解:这两位同学的说法都正确.例14某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的 6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收

32、费为 y甲元,乙旅行社的收费为 y乙元,分别表示 两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.分析先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论.解:(1)甲旅行社的收费 y甲(元)与学生人数 x之间的函数关系式为y 甲=240+ 1 x240x=240+120x.2乙旅行社的收费y乙(元)与学生人数 x之间的函数关系式为y 乙=240x 60%x (x+1) =144x+144.(2)当 丫甲=丫 乙时,有 240+120x=144x+144 ,,24x= 96,x=4.当x=4时,两家旅行社的收费相同,去哪家都可以.当 y 甲y 乙时,240+120

33、x144x+144 , -24x 96,x4.,.当x4时,去乙旅行社更优惠.当 y 甲 y 乙时,有 240+120x96,x4. 当x4时,去甲旅行社更优惠.小结此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法.学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克 9元,由基地送货 上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费 为5000元.(1)分别写出该公司两种购买方案的付款y (元)与

34、所购买的水果量 x (千克)之间的函数关系式,并写出自变量x的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.老师评一评先求出两种购买方案的付款y (元)与所购买的水果量 x (千克)之间的函数关系式,再通过比较,探索出结论.(1)甲方案的付款y甲(元)与所购买的水果量x (千克)之间的函数关系式为y 甲=9x (x 3000);乙方案的付款y乙(元)与所购买的水果量x (千克)之间的函数关系式为y 乙=8x+500o (x3000).(2)有两种解法:解法 1:当 丫甲=丫 乙时,有 9x=8x+5000,x=5000 . 当x=5000时,两种方案付款一样,按哪种

35、方案都可以.当y甲y乙时,有9x 8x+5000, .x3000, 当3000wxw5000时,甲方案付款少,故采用甲方案.当y甲y乙时,有9x8x+5000,. x5000.当x5000时,乙方案付款少,故采用乙方案.解法2:图象法,作出 y甲二9x和y乙=8x+5000的函数图象,如图11 24所示,由图象 可得:当购买量大于或等于3000千克且小于5000千克时,y甲y乙即两种方案付款一样;当购买量大于5000千克时,y甲4000q300002000010000y即选择乙方案付款最少.【说明】图象法是解决问题的 重要方法,也是考查学生读图能 力的有效途径.(7-/千克例15 一次函数y=

36、kx+b的量x的取值范围是-3 w xw 6,相数值的取彳1范围是-5 y0时,y随x的增大而增大,则有:当x=-3 ,y=-5 ;当x=6时,y=-2 ,把它们代入 y=kx+b中可得113 ,函数解析式为y=-x-4.4,当k0),. . y=kx+b .又.当 x=20 时,y=1600;当 x=30 时,y=2000 ,.1600 20k b, . k 40,2000 30k b, b 800.二. y与x之间的函数关系式为 y=40x+800 (x 0).(2)当x=50时,y=40x 50+800=2800 (元).,每名运动员需支付 2800与0=56 (元答:每名运动员需支付

37、56元.例2已知一次函数 y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3 .(1)求这个函数的解析式。(2)在直角坐标系内画出这个函数的图象.分析求函数的解析式,需要两个点或两对x, y的值,把它们代入 y=kx+b中,即可求出k在的值,也就求出这个函数的解析式,进而画出这个函数的图象.解:(1)由题意可知9 4k b, . k 23 2k b, b 1.,这个函数的解析式为x=-2x+1.(2)列表如下:x012y10描点、连线,如图11-26所示 即为y=-2x+1的图象.17欠0迎下载精品文档例3如图11 27所示,大拇指与小拇指 尽量张开时,两指尖的距离称为指距.某项

38、研究表明,一般情况下人的身高 h是指距d的一次函 数,下表是测得的指距与身高的一组数据.指距d/cm20212223身高h/cm160169178187(1)求出h与d之间的函数关系式;(不要求写出自变量 d的取值范围)(2)某人身高为196cm, 一般情况下他的指距应是多少? 分析设h与d之间的函数关系式是 h=kd+b (kw。) 当 d = 20 时,h=160;当 d=21 时,h=169 .把这两对d,h值代人h=kd+b得160 20k b, . k 9,169 21k b, b 20.所以得出h与d之间的函数关系式,当 h=196时,即可求出 解:(1)设h与d之间的函数关系式为

39、 h=kd+b(kwo) 由题中图表可知当 d=2o时,h=16o;当d=21时,h=169.把它们代入函数关系式,得160 20k b, . k 9,169 21k b, b 20.,h与d之间的函数关系式是h=9d-20 .(2)当 h=196 时,有 196=9d-20 . . . d = 24.,当某人的身高为196cm时,一般情况下他的指距是24cm.例4汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是 100 千米/时,那汽车距成都的路程 s(千米)与行驶时间t (时)的函 数关系用图象(如图1128所示) 表示应为( )分析本题主要考查函数关系式的 表达及函数图象的知识,

40、由题意可知,汽车 距成都的路程s (千米)与行驶时间t (时) 的函数关系式是s=400-100t ,其中自变量t的取值范围是 0w t 4,所以有0wsw中的 k=-100 0400,因此这个函数图象应为一条线段,故淘汰掉d.又因为在s=400-100t,s随t的增大而减小,所以正确答案应该是c.小结 画函数图象时,要注意自变量的取值范围,尤其是对实际问题.例5 已知函数:(1)图象不经过第二象限;(2)图象经过点(2, -5).请你写出一 个同时满足(1)和(2)的函数关系式:.分析这是一个开放性试题,答案是不惟一的,因为点(2,-5)在第四象限,而图象又不经过第二象限,所以这个函数图象经

41、过第一、三、四象限,只需在第一象限另外任意找 到一点,就可以确定出函数的解析式.设经过第一、二、四象限的直线解析式为y=kx+b (kwo),另外的一点为(4, 3),把这两个点代入解析式中即可求出k, b.答案:y = 4x-133 4k b, k 4,1. y=4x-13.5 2k b, b 13.【注意】后面学习了反比例函数二次函数后可另行分析例6人在运动时的心跳速率通常和人的年龄有关.如果用a表示一个人的年龄,用b表示正常情况下这个人运动时所能承受的每分心跳的最高次数,另么b=0. 8 (220-a).(1)正常情况下,在运动日一个16岁的学生所能承受的每分心跳的最高次数是多少?(2)

42、 一个50岁的人运动10秒时心跳的次数为 20次,他有危险吗?分析(1)只需求出当a=16时b的值即可.(2)求出当a=50时b的值,再用b和20x60 =120 (次)相比较即可.10解:(1)当 a=16 时,b=0. 8 (220-16 ) = 163. 2 (次).163. 2.正常情况下,在运动时一个16岁的学生所能承受的每分心跳的最高次数是次.(2)当 a=50 时,b=0. 8 (220-50 ) =0. 8x 170=136 (次),表示他最大能承受每分 136次.而20 x ;0 =120 136,所以他没有危险. 一个50岁的人运动10秒时心跳的次数为 20次,他没有危险.

43、例7某市的a县和b县春季育苗,急需化肥分别为 90吨和60吨,该市的c县和d县 分别储存化肥100吨和50吨,全部调配给 a县和b县.已知c, d两县运化肥到 a, b两县 的运费(元/吨)如下表所示.目c县d县a县3540b县3045(1)设c县运到a县的化肥为x吨,求总运费 w(元)与x (吨)的函数关系式,并写 出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.分析1 利用表格来分析 c, d两县运到 a b两县的化肥情况如下表.地 、b#的吨)c具瓦。吨)xloo-xd县(5。吨)19欠迎下载精品文档则总运费 w (元)与x (吨)的函数关系式为w=35x+40

44、(90-x) +30 (100-x) +4560- (100-x ) =10x+4800 .自变量x的取值范围是 40 x 90.解:(1)由c县运往a县的化肥为x吨,则c县运往b县的化肥为(100-x)吨.d县运往a县的化肥为(90-x)吨,d县运往b县的化肥为(x-40)吨. 由题意可知w 35x+40 (90-x) +30 (100-x) +45 (x-40 ) = 10x+4800.自变量x的取值范围为 40 x0, w x的增大而增大.,当 x=40时,wi小值=10x40+4800=5200 (元),运费最低时,x=40, 90-x=50 (吨),x-40=0 (吨).当总运费最低

45、时,运送方案是:c县的100吨化肥40吨运往a县,60吨运往b县,d县的50吨化肥全部运往 a县.例8 2006年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降,图 11-29是某水库的蓄水量 v (万米2)与干旱持续时间t (天)之问的关系图,请根据此图回答下列与干旱时间t (天)之间的函数关系为问题.(1) 该水库原蓄水量为多少万米 2 ?持续干旱10天后.水库蓄水量为多少万米 3?(2) 若水库存的蓄水量小于 400万米3时,将发出严重干旱警报,请问:持续干旱多少天后,将发 生严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?分析由函数图象可知,水库的蓄水量v (万米2)

46、一次函数,设一次函数的解析式是v=kt+b (k, b是常数,且kw0).由图象求得这个函数解析式,进而求出本题(1) (2) (3)问即可.解:设水库的蓄水量 v (万米3)与干旱时间t (天)之间的函数关系式是v=kt+b (k, b是常数,且 k=0).由图象可知,当t=10时,v=800;当t=30时,v=400.把它们代入v=kt+b中,得800 10k b, . k 20, 400 30k b, b 1000.v=-20t+1000 (0wtw50).(1)当 t=0 时,v=-20 x 0+1000=1000 (万米 2);当 t=10 时,v=-20x 10+1000=800 (万米 3).,该水库原蓄水量为 1000万米3,持续干旱10天后,水库蓄水量为800万米(2)当 v

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论