




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中数学圆总复习初中数学圆总复习卷柏卷柏2014年年2月月知识体系知识体系圆圆基本性质基本性质直线与圆的直线与圆的位置关系位置关系圆与圆的圆与圆的位置关系位置关系概概念念对对称称性性垂垂径径定定理理圆心角、圆心角、弧、弦之弧、弦之间的关系间的关系定理定理圆周角与圆周角与圆心角的圆心角的关系关系切切线线的的性性质质切切线线的的判判定定切切线线的的作作图图弧长、扇形面积和圆锥弧长、扇形面积和圆锥的侧面积相关计算的侧面积相关计算正多边形正多边形和圆和圆位位置置分分类类性性质质关关系系定定理理有有关关计计算算切切线线长长定定理理 判定判定圆的有关性质圆的有关性质圆的定义(运动观点)l在一个平面内,线段
2、oa绕它固定的一个端点o旋转一周,另一个端点a随之旋转所形成的图形叫做圆。l固定的端点o叫做圆心,线段oa叫做半径,以点o为圆心的圆,记作o,读作“圆o”圆的定义辨析 篮球是圆吗? 圆必须在一个平面内 以3cm为半径画圆,能画多少个? 以点o为圆心画圆,能画多少个? 由此,你发现半径和圆心分别有什么作用? 半径确定圆的大小;圆心确定圆的位置 圆是“圆周”还是“圆面”? 圆是一条封闭曲线 圆周上的点与圆心有什么关系?圆的定义(集合观点) 圆是到定点的距离等于定长的点的集合。 圆上各点到定点(圆心)的距离都等于定长(半径); 到定点的距离等于定长的点都在圆上。 一个圆把平面内的所有点分成了多少类?
3、 你能模仿圆的集合定义思想,说说什么是圆的内部和圆的外部吗?点与圆的位置关系 圆是到定点(圆心)的距离等于定长(半径)的点的集合。 圆的内部是到圆心的距离小于半径的点的集合。 圆的外部是到圆心的距离大于半径的点的集合。 由此,你发现点与圆的位置关系是由什么来决定的呢?如果圆的半径为r,点到圆心的距离为d,则: 点在圆上 d=r 点在圆内 dr与圆有关的概念 弦和直径 什么是弦?什么是直径? 直径是弦吗?弦是直径吗? 弧与半圆 什么是圆弧(弧)?怎样表示? 弧分成哪几类? 半圆是弧吗?弧是半圆吗? 弓形是什么? 同心圆、同圆、等圆和等弧 怎样的两个圆叫同心圆? 怎样的两个圆叫等圆? 同圆和等圆有
4、什么性质? 什么叫等弧?圆的有关性质圆的有关性质过三点的圆过三点的圆:确定一条直线的条件是什么?:确定一条直线的条件是什么?:是否也存在由几个点确定一个圆呢?:是否也存在由几个点确定一个圆呢?:经过一个点,能作出多少个圆?:经过一个点,能作出多少个圆? 经过两个点,如何作圆,能作多少个?经过两个点,如何作圆,能作多少个? 经过三个点,如何作圆,能作多少个?经过三个点,如何作圆,能作多少个?ocab经过三角形的三个顶点的圆叫做三角形的经过三角形的三个顶点的圆叫做三角形的外接圆外接圆,外接圆的圆心叫做三角形的外接圆的圆心叫做三角形的外心外心,三角形叫做圆的三角形叫做圆的内接三角形内接三角形。问题问
5、题1:如何作三角形的外接圆?:如何作三角形的外接圆?如何找三角形的外心?如何找三角形的外心?问题问题2:三角形的外心一定:三角形的外心一定 在三角形内吗?在三角形内吗?ocabc90ocababc是锐角三角形是锐角三角形ocababc是钝角三角形是钝角三角形垂直于弦的直径及其推论及其推论想一想想一想:将一个圆沿着任一条直径对折,两:将一个圆沿着任一条直径对折,两侧半圆会有什么关系?侧半圆会有什么关系?性质:性质:圆是圆是轴对称图形轴对称图形,任何一条,任何一条直径直径所在所在的直线都是它的的直线都是它的对称轴对称轴。ocdabocdab观察右图,有什么等量关系?观察右图,有什么等量关系?obc
6、daeao=bo=co=do,弧ad弧bc,弧ac弧bd。ao=bo=co=do,弧ad弧bc=弧ac弧bd。ao=bo=co=do,弧ad弧bd,弧ac弧bc, aebe 。obcdae垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。判断下列图形,能否使用垂径定理?判断下列图形,能否使用垂径定理?ocdbaocdbaocdbaocde注意:定理中的两个条件注意:定理中的两个条件(直径,垂直于弦)缺一不(直径,垂直于弦)缺一不可!可!oabe若圆心到弦的距离用若圆心到弦的距离用d表示,表示,半径用半径用r表示,弦长用表示,弦长用a表示,表示,这三者之间有怎样的关系?这三者之间有怎样的关系?2
7、222adroabcdac、bd有什么关系?有什么关系?acbd依然成依然成立吗立吗?oabcdoabcdfeea_, ec=_。fdfboabcd:_ ac=bd.oa=oboabcd:_ ac=bd.oc=od 如图,p为 o的弦ba延长线上一点,paab2,po5,求 o的半径。mapbo关于弦的问题,常常需关于弦的问题,常常需要要过圆心作弦的垂线段过圆心作弦的垂线段,这是一条非常重要的这是一条非常重要的辅辅助线助线。圆心到弦的距离、半径、圆心到弦的距离、半径、弦长弦长构成构成直角三角形直角三角形,便将问题转化为直角三便将问题转化为直角三角形的问题。角形的问题。画图叙述垂径定理,并说出画
8、图叙述垂径定理,并说出定理的题设和结论。定理的题设和结论。题设题设结论结论直线直线cd经过圆心经过圆心o直线直线cd垂直弦垂直弦ab直线直线cd平分弦平分弦ab直线直线cd平分弧平分弧acb直线直线cd平分弧平分弧ab想一想:如果将题设和想一想:如果将题设和结论中的结论中的5 5个条件适当互个条件适当互换,情况会怎样?换,情况会怎样?obcdae (1)平分弦平分弦(不是直径)(不是直径)的直径的直径垂直垂直于弦于弦,并且,并且平分弦所对的两条弧平分弦所对的两条弧;(2 2)弦的垂直平分线弦的垂直平分线经过圆心经过圆心,并且,并且平分弦所对的两条弧平分弦所对的两条弧;(3 3)平分弦所对的一条
9、弧的直径平分弦所对的一条弧的直径,垂垂直平分弦直平分弦并且并且平分弦所对的另一条弧平分弦所对的另一条弧。obcdae如图如图,cd为为 o的直径的直径,abcd,efcd,你能得到什么结论?你能得到什么结论?圆的两条圆的两条平行弦平行弦所夹的弧相等所夹的弧相等。fobaecd圆心角、弧、弦、弦心距之间的关系圆的性质 圆是轴对称图形,每一条直径所在的直线都是对称轴。 圆是以圆心为对称中心的中心对称图形。 圆还具有旋转不变性,即圆绕圆心旋转任意一个角度,都能与原来的图形重合。:顶点在圆心的角。:顶点在圆心的角。(如:(如:aob)c:从圆心到弦的距离。:从圆心到弦的距离。(如:(如:oc)oab如
10、图如图,aobaob,ocab,ocab。猜想:猜想:弧弧ab与弧与弧ab,ab与与ab,oc与oc之间的关系,并证明你的猜想。之间的关系,并证明你的猜想。定理定理 相等的圆心角相等的圆心角所对的所对的弧弧相等,相等,所对的所对的弦弦相等,所对的弦的相等,所对的弦的弦心距弦心距相等。相等。在同圆或等圆中,在同圆或等圆中,oabcabc圆心角所对的弧相等,圆心角所对的弧相等, 圆心角圆心角所对的弦相等,所对的弦相等, 圆心角圆心角所对弦的弦心距相等。所对弦的弦心距相等。在同圆或等圆中,在同圆或等圆中,如果两个圆心角、两条弧、如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有两条弦或两条弦的弦心距
11、中有一组量相等,那么它们所对应一组量相等,那么它们所对应的其余各组量都分别相等的其余各组量都分别相等。在同圆或等圆中在同圆或等圆中( (前提前提) )圆心角相等圆心角相等(条件)(条件)1圆心角圆心角1弧弧oabcdn圆心角圆心角n弧弧圆心角的度数和它所对的弧的度数相等。圆周角圆周角obacdf圆心角:如圆心角:如boa圆内角:如圆内角:如bca圆周角:如圆周角:如bda圆外角:如圆外角:如bfa角的顶点角的顶点在圆心在圆心角的顶点在圆周上角的顶点在圆周上是否顶点在圆周上是否顶点在圆周上的角就是圆周角呢的角就是圆周角呢? ?obacobcaocab画图:同一条弧所对的圆周角和圆心角之间可能出现
12、哪几种不同的位置关系?ocabocabocab回顾:圆周角等于它所对的弧的度数的一半。回顾:圆周角等于它所对的弧的度数的一半。猜想:圆周角和圆心角都是与圆有关的角,猜想:圆周角和圆心角都是与圆有关的角,它们之间有什么关系?它们之间有什么关系?ocabocabocab化化归归化化归归分类讨论分类讨论完全归纳法完全归纳法ocab1、已知已知aob75,求求: acbocab2、已知已知aob120,求求: acbodbac3、已知已知acd30,求求: aobobac4、已知已知aob110,求求: acb推论 定理:一条弧所对的圆周角等于它所对的圆心角的一半。 也可以理解为:一条弧所对的圆心角是
13、它所对的圆周角的二倍;圆周角的度数等于它所对的弧的度数的一半。 弧相等,圆周角是否相等?反过来呢? 什么时候圆周角是直角?反过来呢? 直角三角形斜边中线有什么性质?反过来呢?obadec如图,比较如图,比较acbacb、adbadb、aebaeb的大小的大小同弧所对的圆周角相等如图,如果弧如图,如果弧abab弧弧cdcd,那么,那么e e和和f f是什么关系?反过来呢?是什么关系?反过来呢?dcebfao等弧所对的圆周角相等;在同圆中,相等的圆周角所对的弧也相等dceo1bfao2如图,如图,o o1 1和和o o2 2是等圆,是等圆,如果弧如果弧abab弧弧cdcd,那么,那么e e和和f
14、f是什么关系?反过来是什么关系?反过来呢?呢?等圆也成立推论推论1 1同弧或等弧所对的圆周角相等;同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧相等。同圆或等圆中,相等的圆周角所对的弧相等。思考:思考:1 1、“同圆或等圆同圆或等圆”的条件能否去掉?的条件能否去掉?2 2、判断正误:在同圆或等圆中,如果两个、判断正误:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦心距、两个圆心角、两条弧、两条弦、两条弦心距、两个圆周角中有一组量相等,那么它们所对应的圆周角中有一组量相等,那么它们所对应的其余各组量也相等。其余各组量也相等。obacdocbafed关于等积式的证明 如图
15、,已知如图,已知abab是是o o的弦,半径的弦,半径opabopab,弦,弦pdpd交交abab于于c c,求证:,求证:papa2 2pcpcpdpdcdpbao经验:经验:证明等积式,通常利证明等积式,通常利用相似;用相似;找角相等,要有找同找角相等,要有找同弧或等弧所对的圆周角弧或等弧所对的圆周角的意识;的意识;obadec推论推论2 2半圆(或直径)所对的圆周角是半圆(或直径)所对的圆周角是9090;9090的圆周角所对的弦是直径。的圆周角所对的弦是直径。推论推论3 3如果三角形一边上的中线等于这条边如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。的一半,那么这个
16、三角形是直角三角形。 什么时候圆周角是直角?什么时候圆周角是直角?反过来呢?反过来呢? 直角三角形斜边中线有什直角三角形斜边中线有什么性质?反过来呢?么性质?反过来呢?oacboacb直线和圆的位置关系重点内容直线和圆的位置关系及其性质位置关系相交相切相离公共点个数d与r的关系公共点名称直线名称2个1个无drdrdr交点切点割线切线有且仅有有且仅有注意:注意:“”,即即“等价于等价于”熟记直线和圆的位置关系的判定d与r的关系 位置关系 交点个数图形lolo2个1个无drdrdr相交相离相切熟记lo切线的判定重点内容 判断一条直线是不是圆的切线 使用定义:直线和圆有唯一的公共点 圆心到直线的距离
17、d等于半径r时,直线和圆相切说说看:以上两种判断办法是否方便应用呢? 操作:画操作:画o o,在,在o o上上任取一点任取一点a a,连结,连结oaoa,过过a a点作直线点作直线loaloa 直线l l是否与 o o相切呢? 从作图过程看,这条切线l l满足哪些条件? l l 经过半径外端 l l垂直于这条半径穷则思变切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线。 已知:直线ab经过 o上的点c,并且oaob,cacb。求证:直线ab是 o的切线。ocba 已知: oaob5厘米,ab8厘米, o的直径6厘米。求证:ab与 o相切。以上两题辅助线的作法是否相同?你分析出
18、了什么结论?辅助线技巧 证明一条直线是圆的切线,常常需要作辅助线。 若直线过圆上某一点,则连结圆心和公共点,再证明直线与半径垂直。(即连半径,正垂直) 若直线与圆的公共点没有确定,则过圆心向直线作垂线,再证明圆心到直线的距离等于半径。(即作垂线,正半径)相切。直线证:小圆与厘米为半径作小圆,求为圆心,以厘米,厘米,圆内弦的半径为如图,ab4o38ab8ooba练兵切线判定的方法 利用切线定义 利用圆心到直线的距离等于半径 利用切线判断定理 辅助线技巧:若直线过圆上某一点,则连结圆心和公共点,再证明直线与半径垂直若直线与圆的公共点没有确定,则过圆心向直线作垂线,再证明圆心到直线的距离等于半径。r
19、eview切线的性质重点内容 切线判定:直线l l:过半径外端垂直于半径 切线性质:切线l l,a为切点:oal l理解记忆类比猜想切线的性质定理:圆的切线垂直于经过切点的半径。切线判定与性质典型例题 已知:ab是 o的直径,bc是 o的切线,切点为b,oc平行于弦ad。求证:dc是 o的切线。体会规律 如图,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e,求证:cd与小圆相切。dcobafdcbaeo切线的判定和性质 判定切线的三种方法: 和圆只有一个公共点的直线是圆的切线 和圆心的距离等于半径的直线是圆的切线 过半径外端且和半径垂直的直线是圆的切线review定
20、义定义本质一样本质一样表达不同表达不同定理定理过圆心过圆心过切点过切点垂直于切线,随便知垂直于切线,随便知两个就可推出第三个两个就可推出第三个 切线的主要性质: 切线和圆只有一个公共点 切线和圆心的距离等于半径 切线垂直于过切点的半径 经过圆心垂直于切线的直线必过切点 经过切点垂直于切线的直线必过圆心 主要辅助线: 利用切线性质时,常作过切点的半径 证明直线是圆的切线时,分清什么时候“连结”,什么时候“作垂线”三角形的内切圆重点内容oabc如何在一个三角形中剪下一个圆,使得该如何在一个三角形中剪下一个圆,使得该圆的面积尽可能的大?圆的面积尽可能的大?思考oabc和三角形各边都相切的圆叫做和三角
21、形各边都相切的圆叫做三角形的内三角形的内切圆切圆;内切圆的圆心叫做;内切圆的圆心叫做三角形的内心三角形的内心;这个三角形叫做这个三角形叫做圆的外切三角形圆的外切三角形。三角形的内心是三角形内角平分线的交点。三角形的内心是三角形的内心是否也有在三角形否也有在三角形内、三角形外或内、三角形外或三角形上三种不三角形上三种不同情况。同情况。记忆 在abc中,abc50,acb75,求boc的度数。(1)点o是三角形的内心(2)点o是三角形的外心 abc中,e是内心,a的平分线和abc的外接圆相交于点d。求证:dedb。abcodabce练习关于三角形内心的辅助线:关于三角形内心的辅助线: 连结内心和三
22、角形的顶点,连结内心和三角形的顶点,该线平分三角形的这一内角。该线平分三角形的这一内角。 垂心(了解)重心(了解)外心(掌握)内心(掌握)交点性质位置三条高线三条高线的交点的交点三条角平三条角平分线的交分线的交点点三边垂直三边垂直平分线的平分线的交点交点三条中线三条中线的交点的交点在形内、在形内、形外或直形外或直角顶点角顶点在形内、在形内、形外或斜形外或斜边中点边中点在形内在形内在形内在形内到三角形到三角形各顶点距各顶点距离相等离相等到三角形到三角形三边距离三边距离相等相等把中线分把中线分成了成了2:12:1两部分两部分已知abc的内切圆半径为r,求证: abc的面积sabcsr。(s为abc
23、的半周长)圆的内接四边形定理:圆的内接四边形的对角互补。cbadodb180ac180对角又一种重要的辅助线fedcbao2o1如图, o1和 o2都经过a、b两点,经过a点的直线cd与 o1交于点c,与 o2交于点d,经过b点的直线ef与 o1交于点e,与 o2交于点f。求证:cedf有两个圆的题目常用的一种辅助线:作公共弦。此图形是一个考试热门图形。思考:若此题条件和结论不变,只是不给出图形,此题还能这样证明吗?ecbao2o1fd切线长定理切线长的定义以及定理切线与切线长的区别: 切线是直线,不能度量。 切线长是线段的长,这条线段的两个端点分别是圆外的一点和切点,可以度量。papa、pb
24、pb分别切分别切o o于于a a、b bpa = pbpa = pbopa=opbopa=opb切线长定理: 题设:从圆外一点引圆 的两条切线 结论:切线长相等, 圆心和这一点的连线平分两条切线的夹角 几何表述:pbaodcpbao 如图,pa、pb是 o的两条切线,a、b是切点,直线op交 o于点d,交ab于点c。 写出图中所有的垂直关系 写出图中所有的全等三角形 写出图中所有的相似三角形 写出图中所有的等腰三角形 若pa4cm,pd2cm,求半径oa的长 若 o的半径为3cm,点p和圆心o的距离为6cm,求切线长及这两条切线的夹角度数pabocpo平分平分aobpo垂直平分垂直平分abpo
25、平分弧平分弧abpapbpo平分平分apb切线长定理的推广(议一议) 四边形abcd的边ab、bc、cd、da和 o分别相交相切于点l、m、n、p。观察图并结合切线长定理,你发现了什么结论?并证明之。cbadplmno圆的外切四边形的两组对边的和相等圆的外切四边形的两组对边的和相等abcdadbc 等腰梯形各边都与 o相切, o的直径为6cm,等腰梯形的腰等于8cm,则梯形的面积为_。圆的外切四边形的两组对边的和相等圆的外切四边形的两组对边的和相等abcdadbc应用举例应用举例868cbadplmno圆和圆的位置关系两个圆没有公共点,两个圆没有公共点,并且每个圆上的点都并且每个圆上的点都在另
26、一个圆的外部。在另一个圆的外部。两个圆没有公共点,两个圆没有公共点,并且每个圆上的点都并且每个圆上的点都在另一个圆的内部。在另一个圆的内部。dr+rdr-rdrro1o2drro1o2两个圆有唯一公共点,两个圆有唯一公共点,并且除这公共点外,并且除这公共点外,每个圆上的点都在另每个圆上的点都在另一个圆的外部。一个圆的外部。两个圆有唯一公共点,两个圆有唯一公共点,并且除这公共点外,每并且除这公共点外,每个圆上的点都在另一个个圆上的点都在另一个圆的内部。圆的内部。d=r+rd=r-rdrro1o2drro1o2两个圆有两两个圆有两个公共点。个公共点。r-rdr)内含内含相交相交外离外离rr外切外切
27、rr内切内切相切两圆、相交两圆的性质 对称性 单一个圆是轴对称图象,那么由两个圆组成的图形是否有轴对称性质呢?有若,说出对称轴,若没有,说明理由 由上述性质,你可以推导出相切两圆、相交两圆分别有什么性质吗?说明理由。apbapb如果两圆相切,那么如果两圆相切,那么切点在连心线上切点在连心线上。相切两圆的性质o1ao2b相交两圆的相交两圆的连心线连心线垂直平分垂直平分公共弦公共弦。相交两圆的性质 o1、 o2的半径分别为4cm、3cm。两圆交于a、b两点,ab4.8cm,求o1o2的长。1 1、在圆和圆、在圆和圆的位置关系中的位置关系中经常要解直角经常要解直角三角形。三角形。2 2、注意几何、注
28、意几何的分类讨论题的分类讨论题cbao1o2cbao2o1正多边形和圆正多边形和圆圆的内接正n边形正多边形:正多边形:各边相等各边相等,各角也相等各角也相等的多边形叫做正多边形。的多边形叫做正多边形。正正n n边形:边形:如果一个正多边形有如果一个正多边形有n n条边,那么这个正多边形叫条边,那么这个正多边形叫做正做正n n边形。边形。三条边相等,三个角三条边相等,三个角也相等(也相等(6060度)度)四条边都相等,四个四条边都相等,四个角也相等(角也相等(9090度)度)想一想: 怎样找圆的内接正三角怎样找圆的内接正三角形?形?怎样找圆的内接正方怎样找圆的内接正方形?形?怎样找圆的内接正怎样
29、找圆的内接正n n边边形?形?efgh abcd把圆分成n(n3)等份: 依次连结各分点所得的多边形是这个圆的内接正多边形;这个圆叫正多边形的外接圆。 正多边形和圆正多边形和圆的有关概念的有关概念定理定理任何正多边形都有一个外接圆 。正多边形的外接圆 的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距。正多边形各边所对的外接圆的圆心角叫做正多边形的中心角。正n边形的每个中心角都等于360/n。正多边形的性质edcboafedcboa正多边形是轴对称图形,正n边形有n条对称轴。若n为偶数,则其为中心对称图形。正多边形的性质 各边相等,各角相等 圆的内接正n
30、边形的各个顶点把圆分成n等分 每个正多边形都有一个外接圆。 外接圆的圆心就是正多边形的中心。 正多边形都是轴对称图形,如果边数是偶数那么它还是中心对称图形 正n边形的中心角和它的每个外角都等于360/n,每个内角都等于(n-2)180/n 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形求证:各边相等的圆内接多边形是正多边形。思考:各角相等的圆内接多边形是否是正多边形?正多边形的有关计算 什么是正多边形的中心、半径、边心距、中心角? 正n边形的内角和、外角和分别是多少?它的每一个内角、外角、中心角分别是多少? 作一个正五边形,作出它的半径、中心角、边心距,观察它们之间有何关系? 若正
31、多边形的边数为n时,它的边长、半径、中心角、边心距之间的关系如何?怎样做有关的计算?关于正多边形的计算要记牢以下关于正多边形的计算要记牢以下关系:关系:正多边形的边长正多边形的边长a、边心距、边心距r、半径、半径r之之 间的关系:间的关系:22221rrara221) (正多边形的周长正多边形的周长=边长边长x边数边数21正多边形的面积正多边形的面积= x周长周长x边心距边心距2121正多边形的中心角正多边形的中心角=360/n=每一个外角每一个外角210正多边形的每个内角正多边形的每个内角=(n-2)x180/n021在在a、r、r中已知两个中已知两个就可求出第就可求出第三个。三个。已知正六
32、边形已知正六边形abcdef的半径为的半径为r,求这个正六边形的边长求这个正六边形的边长a6、周长、周长p6和和面积面积s6。已知圆的半径为已知圆的半径为r,求它的内接正三角形、,求它的内接正三角形、内接正方形的边长、边心距和面积。内接正方形的边长、边心距和面积。rar2ar3a643画正多边形 思想:画半径为r的正n边形,只要把半径为r的圆n等分。 用尺规等分圆(保留痕迹):正四边形正八边形正六边形正三角形正十二边形圆周长、弧长圆周长、弧长圆周长圆周长c与半径r之间的关系:c2r弧长计算公式180rnl 公式中公式中n n和和180180都不要带单位都不要带单位“度度” 圆心角的单位必须化为圆心角的单位必须化为“度度” 题中没有标明精确度,结果用题中没有标明精确度,结果用表示表示皮带轮模型 如图,两个皮带轮的中心的距离为2.1m,直径分别为0.65m和0.24m。(1)求皮带长(保留三个有效数字);(2)如果小轮每分钟750转,求大轮每分钟约多少转?如果两个轮是等圆呢?如果两个轮是等圆呢?圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人客户开户管理办法
- 上市企业合同管理办法
- 规范煤炭交易管理办法
- 财务印章安全管理办法
- 车商渠道网点管理办法
- 许可与备案管理办法
- 规范建设与管理办法
- 产品客户退库管理办法
- 装修垃圾管理办法潍坊
- 路桥流动摊贩管理办法
- 手机短拍摄制作培训
- 《电气安全之接地保护》课件
- 护理交接班缺陷
- 2025年湖南省中考英语试卷真题(含答案解析)
- 赛事承办、体育比赛组织策划投标方案
- 日间化疗相关管理制度
- 骨折的急救处理与操作
- 食源性疾病培训课件完整版
- 2025年智能仓储物流机器人的多机器人协作与任务分配优化策略的实践探索可行性研究报告
- 派驻国外员工管理制度
- 2025-2030中国车身控制器行业市场现状分析及竞争格局与投资发展研究报告
评论
0/150
提交评论