北航数值分析大作业第二题(fortran)_第1页
北航数值分析大作业第二题(fortran)_第2页
北航数值分析大作业第二题(fortran)_第3页
北航数值分析大作业第二题(fortran)_第4页
北航数值分析大作业第二题(fortran)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、“数值分析“计算实习大作业第二题SY1415215孔维鹏一、计算说明本程序采用带双步位移的QR方法求解矩阵A的所有特征值,然后采用反幂法求解矩阵A的实特征值对应的特征向量。在采用带双步位移的QR方法求解特征值时,对教材上所提供的具体算法作稍微的改动,以简化程序,具体算法如下所示:1、计算出A拟上三角化后的矩阵A(n-1),给定精度水平=10-12和最大迭代次数L;2、记A1=A(n-1)=aij(1)n×n,令k=1,m=n;3、如果m2,则可直接计算出最后1或2个特征值,转8,否则转4;4、如果am,m-1(k),则可得一个特征值,置m=m-1;转3,否则转5;5、如果am-1,m

2、-2(k),则可得两个特征值,置m=m-2;转3,否则转6;6、记Ak=aij1m×m(1i,jm),计算s=am-1,m-1(k)+am,m(k)t=am-1,m-1(k)am,m(k)-am,m-1(k)am-1,m(k)Mk=Ak2-sAk+tI (I是m阶单位矩阵)Mk=QkRk (对Mk作QR分解)Ak+1=QkTAkQk7、k=k+1,转38、A的全部特征值已经求出,停止计算。推荐精选二、计算源程序(FORTRAN)PROGRAM SY1415215_2PARAMETER (N=10)DIMENSION A(N,N),A1(N,N),A2(N,N),C(2,N),Q(N,

3、N),R(N,N),CR(N),CM(N)!C为存储特征值的数组,1为实部,为虚部REAL(8) A,A1,A2,C,Q,R,CME=1E-12 !精度水平L=1000 !迭代最大次数OPEN(1,FILE='数值分析大作业第二题计算结果.TXT')DO I=1,N DO J=1,N IF(I=J) THEN A(I,J)=1.52*COS(I+1.2*J) ELSE A(I,J)=SIN(0.5*I+0.2*J) ENDIF ENDDOENDDOA1=AWRITE(*,"('矩阵A为:')")WRITE(1,"('矩阵A为

4、:')")DO I=1,N DO J=1,N WRITE(*,"(2X,E20.13,2X,)") A(I,J) WRITE(1,"(2X,E20.13,2X,)") A(I,J) ENDDO WRITE(*,"(' ')") WRITE(1,"(' ')")ENDDO!使用矩阵的拟上三角化的算法将矩阵A化为拟上三角矩阵A(n-1)CALL HESSENBERG(A,N)WRITE(*,"('拟上三角化后矩阵A(n-1)为:')"

5、)WRITE(1,"('拟上三角化后矩阵A(n-1)为:')")DO I=1,N DO J=1,N WRITE(*,"(2X,E20.13,2X,)") A(I,J) WRITE(1,"(2X,E20.13,2X,)") A(I,J) ENDDO WRITE(*,"('')") WRITE(1,"('')")推荐精选ENDDO!计算对矩阵A(n-1)实行QR方法迭代结束后所得矩阵A2=ACALL QRD(A2,N,Q,R)WRITE(*,"

6、;('对矩阵A(n-1)实行QR方法迭代结束后所得Q为:')")WRITE(1,"('对矩阵A(n-1)实行QR方法迭代结束后所得Q为:')")DO I=1,N DO J=1,N WRITE(*,"(2X,E20.13,2X,)") Q(I,J) WRITE(1,"(2X,E20.13,2X,)") Q(I,J) ENDDO WRITE(*,"('')") WRITE(1,"('')")ENDDOWRITE(*,"

7、;('对矩阵A(n-1)实行QR方法迭代结束后所得R为:')")WRITE(1,"('对矩阵A(n-1)实行QR方法迭代结束后所得R为:')")DO I=1,N DO J=1,N WRITE(*,"(2X,E20.13,2X,)") R(I,J) WRITE(1,"(2X,E20.13,2X,)") R(I,J) ENDDO WRITE(*,"('')") WRITE(1,"('')")ENDDO!使用带双步位移的QR方法

8、求解矩阵A(n-1)的特征值K=1M=NDO WHILE(K<=L) IF(M<=2) THEN IF(M=1) THEN C(1,M)=A(M,M) ELSE IF(M=2) THEN CALL CALCUS(A,N,M,C) ENDIF EXIT ELSE IF(ABS(A(M,M-1)<E) THEN C(1,M)=A(M,M) M=M-1 ELSE IF(ABS(A(M-1,M-2)<E) THEN CALL CALCUS(A,N,M,C) M=M-2 ELSE CALL CALM(A,M,N)推荐精选 ENDIF K=K+1ENDDO WRITE(*,&quo

9、t;('矩阵A的全部特征值为:')")WRITE(1,"('矩阵A的全部特征值为:')")DO J=1,N WRITE(*,"(E20.13,'+',E20.13,'i')") C(1,J),C(2,J) WRITE(1,"(E20.13,'+',E20.13,'i')") C(1,J),C(2,J)ENDDO !使用反幂法求解A的相应于实特征值的特征向量J=1DO I=1,N IF(C(2,I)=0)THEN CR(J)=C(1

10、,I) J=J+1 ENDIFENDDOJC=J-1WRITE(*,"('矩阵A的实特征值为:')")WRITE(1,"('矩阵A的实特征值为:')")DO I=1,JC WRITE(*,"(E20.13)") CR(I) WRITE(1,"(E20.13)") CR(I)ENDDODO II=1,JC DO I=1,N DO J=1,N IF(I=J) THEN A(I,J)=A1(I,J)-CR(II) ELSE A(I,J)=A1(I,J) ENDIF ENDDO ENDDO

11、CALL INPOVERMETHOD(A,N,CM) WRITE(*,"('与实特征值',E20.13,'对应的特征向量为:')") CR(II) WRITE(1,"('与实特征值',E20.13,'对应的特征向量为:')") CR(II) DO I=1,N WRITE(*,"(2X,E20.13,2X,)") CM(I) WRITE(1,"(2X,E20.13,2X,)") CM(I) ENDDO推荐精选 WRITE(*,"('&#

12、39;)") WRITE(1,"('')")ENDDO CLOSE(1) END!*拟上三角化子函数*!SUBROUTINE HESSENBERG(A,N)DIMENSION A(N,N),P(N),Q(N),W(N),U(N),AT(N,N)REAL(8) A,P,Q,W,U,ATREAL(8) S0,S1,S2,S3,S4,TDO L=1,N-2 JUDGE=0 DO I=L+2,N IF(A(I,L)/=0) THEN JUDGE=1 EXIT ENDIF ENDDO IF(JUDGE=0) THEN A=A CYCLE ELSE IF(JU

13、DGE/=0) THEN !计算DR S0=0 DO I=L+1,N S0=S0+A(I,L)*2 ENDDO DR=SQRT(S0) !计算CR IF(A(L+1,L)=0)THEN CR=DR ELSE CR=-SGN(A(L+1,L)*DR ENDIF !计算HR推荐精选 HR=CR*2-CR*A(L+1,L) !给u赋值 DO I=1,N IF(I<L+1) THEN U(I)=0 ELSE IF(I=L+1) THEN U(I)=A(I,L)-CR ELSE IF(I>L+1) THEN U(I)=A(I,L) ENDIF ENDDO !计算P DO I=1,N DO J

14、=1,N AT(I,J)=A(J,I) ENDDO ENDDO DO I=1,N S1=0 DO J=1,N S1=S1+AT(I,J)*U(J) ENDDO P(I)=S1/HR ENDDO !计算Q DO I=1,N S2=0 DO J=1,N S2=S2+A(I,J)*U(J) ENDDO Q(I)=S2/HR ENDDO !计算T S3=0 DO I=1,N S3=S3+P(I)*U(I) ENDDO T=S3/HR推荐精选 !计算W DO I=1,N W(I)=Q(I)-T*U(I) ENDDO !计算A(r+1) DO I=1,N DO J=1,N A(I,J)=A(I,J)-W(

15、I)*U(J)-U(I)*P(J) ENDDO ENDDO ENDIFENDDO RETURN END!*符号函数子程序*!FUNCTION SGN(X)REAL(8) XIF(X>0) THENSGN=1ELSE IF(X<0) THENSGN=-1ELSE IF(X=0) THENSGN=0ENDIFEND!*计算二阶子阵特征值s1,s2子函数*!SUBROUTINE CALCUS(X,N,M,Y)DIMENSION X(N,N),Y(2,N)REAL(8) A,B,C,D,X,YA=1C=X(M-1,M-1)*X(M,M)-X(M-1,M)*X(M,M-1)B=-(X(M-1

16、,M-1)+X(M,M)D=B*2-4*CIF(D>=0) THEN Y(1,M)=(-B-SQRT(D)/2 Y(1,M-1)=(-B+SQRT(D)/2ELSEIF(D<0) THEN推荐精选 Y(1,M)=-B/2 Y(1,M-1)=-B/2 Y(2,M)=-SQRT(-D)/2 Y(2,M-1)=-SQRT(-D)/2ENDIFRETURNEND!*计算Mk,Ak+1子函数*!SUBROUTINE CALM(A,M,N)DIMENSION A(N,N),MK(M,M),X(M,M),QK(M,M),RK(M,M),S1(M,M),S2(M,M),QKT(M,M)REAL(8

17、) A,MK,X,QK,RK,QKTREAL(8) S0,S1,S2DO I=1,M DO J=1,M IF(I=J) THEN X(I,J)=1 ELSE X(I,J)=0 ENDIF ENDDOENDDO S=A(M-1,M-1)+A(M,M)T=A(M-1,M-1)*A(M,M)-A(M,M-1)*A(M-1,M)DO I=1,M DO J=1,M S0=0 DO K=1,M S0=S0+A(I,K)*A(K,J) ENDDO MK(I,J)=S0-S*A(I,J)+T*X(I,J) ENDDOENDDO!对Mk做QR分解CALL QRD(MK,M,QK,RK) DO I=1,M DO

18、J=1,M QKT(I,J)=QK(J,I) ENDDOENDDO推荐精选DO I=1,M DO J=1,M S1(I,J)=0 DO K=1,M S1(I,J)=S1(I,J)+QKT(I,K)*A(K,J) ENDDO ENDDOENDDOA=S1DO I=1,M DO J=1,M S2(I,J)=0 DO K=1,M S2(I,J)=S2(I,J)+A(I,K)*QK(K,J) ENDDO ENDDOENDDOA=S2RETURNEND !*QR分解子程序*!SUBROUTINE QRD(A,N,Q,R)DIMENSION A(N,N),AT(N,N),Q(N,N),U(N),W(N),

19、P(N),R(N,N)REAL(8) A,AT,Q,U,W,P,RREAL(8) DR,S0,CR,HR,S1,S2DO I=1,N DO J=1,N IF(I=J) THEN Q(I,J)=1 ELSE Q(I,J)=0 ENDIF ENDDOENDDODO L=1,N-1 JUDGE=0推荐精选 DO I=L+1,N IF(A(I,L)/=0) THEN JUDGE=1 EXIT ENDIF !A(I,L)中有一个不为零,判断条件为真,跳出循环转 ENDDO IF(JUDGE=0) THEN Q=Q A=A CYCLE !A(I,L)全为零,结束本循环,进入下一个 ELSE IF(JUDG

20、E/=0) THEN !计算DR S0=0 DO I=L,N S0=S0+A(I,L)*2 ENDDO DR=SQRT(S0) !计算CR IF(A(L,L)=0)THEN CR=DR ELSE CR=-SGN(A(L,L)*DR ENDIF !计算HR HR=CR*2-CR*A(L,L) !给u赋值 DO I=1,N IF(I<L) THEN U(I)=0 ELSE IF(I=L) THEN U(I)=A(I,L)-CR ELSE IF(I>L) THEN U(I)=A(I,L) ENDIF ENDDO !计算W DO I=1,N S1=0 DO J=1,N S1=S1+Q(I,

21、J)*U(J)推荐精选 ENDDO W(I)=S1 ENDDO !计算Q(r+1) DO I=1,N DO J=1,N Q(I,J)=Q(I,J)-W(I)*U(J)/HR ENDDO ENDDO !计算P DO I=1,N DO J=1,N AT(I,J)=A(J,I) ENDDO ENDDO DO I=1,N S2=0 DO J=1,N S2=S2+AT(I,J)*U(J) ENDDO P(I)=S2/HR ENDDO !计算A(r+1) DO I=1,N DO J=1,N A(I,J)=A(I,J)-U(I)*P(J) ENDDO ENDDO ENDIFENDDOQ=QR=ARETURN

22、 END !*运用反幂法求解矩阵A实特征值的特征向量*! SUBROUTINE INPOVERMETHOD(A,N,Y)DIMENSION A(N,N),U(N),Y(N),U1(N,N),L1(N,N)推荐精选REAL(8) E,Z,Z1,Z2,S1,S2,BREAL(8) A,U,Y,U1,L1DO I=1,N U(I)=1ENDDO !任取非零向量UCALL DETA(A,N,U1,L1)Z2=EIZ1=1.0E=1K=1DO WHILE (E>1E-12) S1=0 DO I=1,N S1=S1+U(I)*2 ENDDO B=SQRT(S1) !1 DO I=1,N Y(I)=U

23、(I)/B ENDDO !2 CALL DOOLITTLE(U1,L1,Y,N,U) !3利用DOOLITTLE分解法法求解Au=y S2=0 DO I=1,N S2=S2+Y(I)*U(I) ENDDO Z1=Z2 Z2=S2 !4 E=ABS(1/Z2-1/Z1)/ABS(1/Z2) !判断是否满足精度 K=K+1ENDDORETURN ENDSUBROUTINE DOOLITTLE(U,L,B1,N,X)DIMENSION B(N),U(N,N),X(N),Y(N),B1(N)REAL(8) L(N,N)REAL(8) B,U,X,Y,B1REAL(8) S1,S2,S3,S4推荐精选B

24、=B1Y(1)=B(1)DO I=2,NS3=0DO M=1,I-1S3=S3+L(I,M)*Y(M)ENDDOY(I)=B(I)-S3ENDDOX(N)=Y(N)/U(N,N)DO I=N-1,1,-1S4=0DO M=I+1,NS4=S4+U(I,M)*X(M)ENDDOX(I)=(Y(I)-S4)/U(I,I)ENDDORETURNENDSUBROUTINE DETA(A1,N,U,L)DIMENSION A(N,N),U(N,N),A1(N,N)REAL(8) L(N,N)REAL(8) X,S1,S2REAL(8) A,U,A1X=1A=A1!对矩阵A进行Doolittle分解DO

25、K=1,NDO J=K,NS1=0DO M=1,K-1S1=S1+L(K,M)*U(M,J)ENDDOU(K,J)=A(K,J)-S1A(K,J)=U(K,J)ENDDOIF (K=N) THENEXITELSEDO I=K+1,NS2=0DO M=1,K-1推荐精选S2=S2+L(I,M)*U(M,K)ENDDOL(I,K)=(A(I,K)-S2)/U(K,K)A(I,K)=L(I,K)ENDDOENDIFENDDORETURNEND三、计算结果矩阵A为:-0.8945217728615E+00 0.7833269238472E+00 0.8912073969841E+00 0.963558

26、1970215E+00 0.9974949955940E+00 0.9916648268700E+00 0.9463000893593E+00 0.8632094264030E+00 0.7457050681114E+00 0.5984721183777E+00 0.9320390820503E+00 -0.4671458303928E+00 0.9995735883713E+00 0.9738476276398E+00 0.9092974066734E+00 0.8084963560104E+00 0.6754630804062E+00 0.5155014395714E+00 0.33498

27、79682064E+00 0.1411200016737E+00 0.9916648268700E+00 0.9463000893593E+00 0.1444353342056E+01 0.7457052469254E+00 0.5984721183777E+00 0.4273798465729E+00 0.2392492294312E+00 0.4158075898886E-01 -0.1577458828688E+00 -0.3507832288742E+00 0.8084963560104E+00 0.6754630804062E+00 0.5155014395714E+00 -0.12

28、32861518860E+01 0.1411200016737E+00 -0.5837419256568E-01 -0.2555412054062E+00 -0.4425203502178E+00 -0.6118580698967E+00 -0.7568024992943E+00 0.4273798465729E+00 0.2392492294312E+00 0.4158075898886E-01 -0.1577456444502E+00 0.6727060768753E-02 -0.5298361778259E+00 -0.6877662539482E+00 -0.8182770609856

29、E+00 -0.9161660075188E+00 -0.9775301218033E+00 推荐精选-0.5837419256568E-01 -0.2555412054062E+00 -0.4425203502178E+00 -0.6118578314781E+00 -0.7568024992943E+00 0.1224942922592E+01 -0.9516021013260E+00 -0.9936909675598E+00 -0.9961646199226E+00 -0.9589242935181E+00 -0.5298361778259E+00 -0.6877662539482E+0

30、0 -0.8182770609856E+00 -0.9161660075188E+00 -0.9775301218033E+00 -0.9999232292175E+00 -0.1448488712311E+01 -0.9258147478104E+00 -0.8322673439980E+00 -0.7055402994156E+00 -0.8715756535530E+00 -0.9516021013260E+00 -0.9936909675598E+00 -0.9961646199226E+00 -0.9589242935181E+00 -0.8834547400475E+00 -0.7

31、727644443512E+00 0.4799310266972E+00 -0.4646020233631E+00 -0.2794154882431E+00 -0.9999232292175E+00 -0.9824525713921E+00 -0.9258147478104E+00 -0.8322673439980E+00 -0.7055402994156E+00 -0.5506857037544E+00 -0.3738765716553E+00 -0.1821625977755E+00 0.8836100697517E+00 0.2151199877262E+00 -0.8834547400

32、475E+00 -0.7727644443512E+00 -0.6312667131424E+00 -0.4646020233631E+00 -0.2794154882431E+00 -0.8308959007263E-01 0.1165492981672E+00 0.3115412592888E+00 0.4941135048866E+00 -0.1519940495491E+01 拟上三角化后矩阵A(n-1)为:-0.8945217728615E+00 -0.9933137953325E-01 -0.1099831636616E+01 -0.7665050102665E+00 0.1707

33、594469998E+00 -0.1934882894244E+01 -0.8390134390705E-01 0.9132556516637E+00 -0.6407974994717E+00 0.1946715019429E+00-0.2347878320167E+01 0.2372058080829E+01 0.1827998576666E+01 0.3266566437117E+00 0.2082368675377E+00 0.2088987417740E+01 0.1847851643235E+00 -0.1263014392786E+01 0.6790698873535E+00 -0

34、.4672130067887E+000.3226931170760E-07 0.1735954535701E+01 -0.1165022873713E+01 -0.1246745323208E+01 -0.6298232266879E+00 -0.1984820078643E+01 0.2975743603486E+00 0.6339292078743E+00 -0.1308509012927E+00 0.3040284203485E+00推荐精选0.1423586330828E-07 0.9209743857214E-09 -0.1292937522755E+01 -0.1126240301

35、657E+01 0.1190782136896E+01 -0.1308773854722E+01 0.1860152393829E+00 0.4236729462899E+00 -0.1019591572985E+00 0.1943652598126E+00-0.1604833588908E-08 -0.2121194294804E-07 0.8533227584783E-09 0.1577711603212E+01 0.8169354953886E+00 0.4461530106988E+00 -0.4365089732955E-01 -0.4665975603472E+00 0.29412

36、30066159E+00 -0.1034409078751E+00-0.3477340203987E-07 0.4951800147030E-08 -0.1163098578700E-08 0.6139091525187E-08 -0.7728980255203E+00 -0.1601026529821E+01 -0.2912710054588E+00 -0.2434335314476E+00 0.6736293096855E+00 0.2624776772240E+00-0.3470636131521E-07 0.5153701712282E-07 0.5466085271163E-09 0

37、.4042739259524E-07 -0.2172883892180E-08 -0.7296784988040E+00 -0.7963940110270E-02 0.9710720841706E+00 -0.1298962616680E+00 0.2780184160906E-010.2824279413454E-07 0.1552714184100E-07 -0.1493776248626E-08 0.5462159606108E-08 -0.6804315955054E-09 -0.2605399790245E-07 0.7945528832850E+00 -0.452515506652

38、8E+00 0.5048915772314E+00 -0.1211208421619E+00-0.8560265006517E-08 -0.1746383679003E-07 0.1238687231355E-08 0.2479480585694E-07 -0.9877219097781E-09 -0.1138665066640E-07 0.1651955742740E-07 0.7039926664890E+00 0.1267533554989E+00 -0.3714708484034E+00-0.1181033699336E-08 0.3402393384483E-07 0.2721445

39、674400E-09 0.9979965496699E-07 -0.4011949378052E-08 -0.7236569816358E-08 -0.1149301577382E-07 -0.5885757992097E-09 -0.4919593043220E+00 0.4081502835024E+00推荐精选对矩阵A(n-1)实行QR方法迭代结束后所得Q为:-0.3560272815910E+00 0.4439874197723E+00 -0.6935938843844E+00 0.6597508877265E-01 0.3701042113892E+00 0.187367953484

40、0E+00 -0.1616901005278E-01 0.1142210689327E+00 0.4846176222781E-01 -0.5435299347356E-01-0.9344755613513E+00 -0.1691554621234E+00 0.2642533921785E+00 -0.2513595147466E-01 -0.1410065819368E+00 -0.7138558660925E-01 0.6160244663687E-02 -0.4351726812555E-01 -0.1846352196332E-01 0.2070803053804E-010.12843

41、46080176E-07 -0.8799213605304E+00 -0.4007708824585E+00 0.3812159427358E-01 0.2138528122276E+00 0.1082645332603E+00 -0.9342714756167E-02 0.6599896425979E-01 0.2800204178411E-01 -0.3140612519156E-010.5665994801374E-08 -0.6731378914494E-08 -0.5371036846272E+00 -0.1260095704391E+00 -0.7068830118277E+00

42、-0.3578646320818E+00 0.3088206840900E-01 -0.2181572935865E+00 -0.9255984012850E-01 0.1038118582492E+00-0.6387374319990E-09 0.1145813249974E-07 -0.1078228631015E-08 0.9887789458786E+00 -0.1266091196147E+00 -0.6409675331588E-01 0.5531265008227E-02 -0.3907396459740E-01 -0.1657835486362E-01 0.1859359513

43、712E-01-0.1384011007393E-07 0.1279221992471E-07 -0.9262558908976E-08 0.7942414467386E-08 0.5307480849561E+00 -0.6851608956975E+00 0.5912622247311E-01 -0.4176799031642E+00 -0.1772133811242E+00 0.1987561902979E+00-0.1381342729472E-07 -0.1085041551280E-07 -0.6302351300011E-08 0.3663011930258E-07 0.1752

44、482576120E-07 -0.5886044488414E+00 -0.9581624758180E-01 0.6768661964240E+00 0.2871810369554E+00 -0.3220919956398E+00推荐精选0.1124087252576E-07 -0.2029877134119E-07 0.7446927387208E-08 0.4535651412684E-08 -0.1010647131559E-07 -0.3402353082044E-07 -0.9929513420376E+00 -0.9993987729170E-01 -0.424024970302

45、9E-01 0.4755713950966E-01-0.3407058355014E-08 0.1261905948222E-07 -0.2542051664776E-08 0.1266690552996E-07 0.1278109511219E-07 -0.1144195534285E-09 -0.3032310997717E-07 0.5375799694997E+00 -0.5611567807748E+00 0.6293733739071E+00-0.4700614677014E-09 -0.1672634638944E-07 0.1437403000058E-08 0.6833811

46、586949E-07 0.2558255838771E-07 0.6874219112542E-08 0.8036560338531E-08 0.1656475356181E-07 0.7463992503745E+00 0.6654984290293E+00对矩阵A(n-1)实行QR方法迭代结束后所得R为:0.2512509066339E+01 -0.2181265603313E+01 -0.1316649950576E+01 -0.3235597877207E-01 -0.2553872765746E+00 -0.1263236593769E+01 -0.1428060347911E+00

47、 0.8551121499445E+00 -0.4064328268943E+00 0.3672907719171E+00-0.2109953755478E-15 -0.1972851940621E+01 0.2276011662676E+00 0.7014635294177E+00 0.5947855446945E+00 0.5340582895718E+00 -0.3303506185987E+00 0.6131194880252E-01 -0.2842358922417E+00 -0.1020577798422E+000.3296154263567E-15 0.0000000000000

48、E+00 0.2407240074437E+01 0.1722530351127E+01 -0.4505690662010E+00 0.3392450326905E+01 -0.1121450352289E+00 -0.1448801049644E+01 0.7311036152624E+00 -0.4847256225157E+00-0.3135322751998E-16 0.0000000000000E+00 0.0000000000000E+00 0.1595616091532E+01 0.6397404386507E+00 0.3502374325905E+00 -0.65436928

49、16387E-01 -0.3985830660960E+00 0.2393364523032E+00 -0.9059468782884E-01-0.1758839859323E-15 0.0000000000000E+00 0.0000000000000E+00 0.3763787648836E-15 -0.1456242740813E+01 -0.1416207451897E+01 推荐精选 -0.2740269988274E+00 0.2820470970623E+00 0.3146397887171E-01 0.2179587784814E+00-0.8904254938570E-16

50、0.0000000000000E+00 0.0000000000000E+00 0.1905444662310E-15 -0.1795055574840E-15 0.1239675436578E+01 0.1437900209104E+00 -0.1965884558516E+00 -0.5501589478330E+00 -0.1563869764441E+000.7683972019840E-17 0.0000000000000E+00 0.0000000000000E+00 -0.1644310936739E-16 0.1549050548437E-16 0.0000000000000E+00 -0.8001931693942E+00 0.323

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论