下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、在这里,没有考不上的研究生。考研高端辅导新导君跨考魔鬼集训营1高数中的重要定理与公式及其证明(一)考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上 种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都 是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。 而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又 费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。现将高数中需要掌握证明过程的公式定理总结如下。这些证明过程,或是直接的 考点,或是蕴含了重要的解题思想方法, 在复习的初期,先掌握这些证明过程是 必要的。1)常
2、用的极限.ln(1 x)lim 1 , limx 0 xx 0lna,limUx 0 x1 cosx a , lim3x 0x2【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想1过它们的由来呢?事实上,这几个公式都是两个重要极限lim(1 x),e与sin xlim叫/1的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技x 0 x巧。证明:则蛇T 1:由极限M1 是无关的,因此我们可以吧式中的t换成x,再取倒数即得lim 10 X 0 xxe两边同时取对数即得*) 1lim e一1 1 :在等式lim 必1-)- 1中,令ln(1 x) t ,则x et 1。由
3、于极限x 0 xx 0 xx.a 1 limx 0 xln a :利用对数恒等式得xlim xim0xln ae 1再利用第二个极限可xln a exln ae 1ln a lim ln ax 0 xln a因此有xa 1lim ln a 。x 0 x过程是x 0 ,此时也有t 0 ,因此有lim 4 1。极限的值与取极限的符号 t 0et 1在这里,没有考不上的研究生。帆a:利用对数恒等式得moHx一 am。Hx a1 n ae一 am。Hx amo ix跨考魔鬼集训营o2上式中同时用到了第一个和第二个极限1 cosx lim x 0 x1利用倍角公式得21 cosx2 x2sin 二lim
4、-2x 0x2llim2x02.X sin2x2)导数与微分的四则运算法则(u v) u v,(uv) u v uv ,vvu uv2vd( u v) du dvd(uv) vdu udvu、 vdu udv, d(-)2 (v 0)v v【点评】:这几个求导公式大家用得也很多,它们的证明需要用到导数的定义。而导数的证明也恰恰是很多考生的薄弱点,通过这几个公式可以强化相关的概念, 避免到复习后期成为自己的知识漏洞。 具体的证明过程教材上有,这里就不赘述3)链式法则设 y f(u),u(x),如果(x)在x处可导,且f(u)在对应的u(x)处可导,则复合函数y f( (x)在x处可导可导,且有:
5、f( (x) ' f'(u) '(x)或 dy 乎乎dx du dx【点评】:同上。4)反函数求导法则设函数y f(x)在点x的某领域内连续,在点xo处可导且f'(x) 0,并令其反函g (yo)1_ f (xo)数为x g(y),且xo所对应的y的值为yo ,则有:17 dx 1T-一丁 或丁 丁f (g(yo) dy dydx【点评】:同上在这里,没有考不上的研究生。5)常见函数的导数sin xcosx , cosx sin x,ln x11I lOgax 而exIn a的x跨考魔鬼集训营4【点评】:这些求导公式大家都很熟悉,但很少有人想过它们的由来。实际上
6、,掌握这几个公式的证明过程,不但可以帮助我们强化导数的定义这个薄弱点,对 极限的计算也是很好的练习。现选取其中典型予以证明。证明:x 1 :导数的定义是f (x) lim x Ifx) f(x),代入该公式得.(x x) x limx 0 x(1 -)xx(11 lim 一x 0-) xx1。最后一步用到了极限lim 9© x 0 xa。注意,这里的推导过程仅适用于0的情形。sinx cosx:利用导数定义 sinxsin(x x) sin x由和差化积公式得limx 0似。sin(x x) sinxx、. x 2cos(x -)sin xcosx。 cosxsin x的证明类In xx:利用导数定义lnx'lim。啦lOgax1,、一,的证明类似 xln a(利用换底公式lO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东大学晶体材料研究院(晶体材料全国重点实验室)非事业编制人员招聘备考题库及一套答案详解
- 2026年挖掘机发动机尾气处理合同
- 2025年香格里拉市自然资源局自然资源巡查临聘人员招聘备考题库及参考答案详解一套
- 2025年招商银行广州分行社会招聘备考题库及1套参考答案详解
- 中国铁路局河北地区2026年招聘934人备考题库及一套答案详解
- 中药药理学试题及答案2025年
- 物业园区春节安全通知
- 2025年扬州市江都妇幼保健院公开招聘编外合同制专业技术人员备考题库带答案详解
- 2026年建筑立体车库运营合同
- 2026年医疗先进开发合同
- 内分泌科糖尿病足管理指南
- 辅导班合伙合同范本
- 2026年江西枫林涉外经贸职业学院单招综合素质考试题库及答案详解一套
- 西藏吊桥施工方案(3篇)
- 2025中智信通第三批社会招聘(公共基础知识)综合能力测试题附答案解析
- 原发性骨质疏松症与肌少症营养运动管理专家共识解读指南课件
- 全国人大机关直属事业单位2026年度公开招聘工作人员备考题库附答案解析
- 2026年内蒙古自治区招收事业编制行政执法人员1991人考试历年真题汇编及答案解析(夺冠)
- 雨课堂在线学堂《医学科研设计》作业单元考核答案
- 四川佰思格新材料科技有限公司钠离子电池硬碳负极材料生产项目环评报告
- 宋小宝小品《碰瓷》完整台词
评论
0/150
提交评论