初中所有函数知识点归纳2_第1页
初中所有函数知识点归纳2_第2页
初中所有函数知识点归纳2_第3页
初中所有函数知识点归纳2_第4页
初中所有函数知识点归纳2_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、函数学问点总结 把握函数的定义、性质和图像(一)平面直角坐标系1、定义:平面上相互垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特点:第一象限: ( +,+) 点 p( x,y ),就 x 0,y 0; 其次象限: ( - ,+) 点 p( x,y ),就 x 0,y 0; 第三象限: ( - ,- ) 点 p( x,y ),就 x 0,y 0; 第四象限: ( +,- ) 点 p( x,y ),就 x 0,y 0;3、坐标轴上点的坐标特点:x轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0);两坐标轴的点不属于任何象限;4、点的对称特

2、点:已知点pm,n,关于 x 轴的对称点坐标是m,-n,横坐标相同,纵坐标反号关于 y 轴的对称点坐标是-m,n纵坐标相同,横坐标反号关于原点的对称点坐标是-m,-n横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特点:平行于 x 轴的直线上的任意两点:纵坐标相等;平行于 y 轴的直线上的任意两点:横坐标相等;6、各象限角平分线上的点的坐标特点:第一、三象限角平分线上的点横、纵坐标相等;其次、四象限角平分线上的点横、纵坐标互为相反数;7、点 p( x,y )的几何意义:点 p(x,y)到 x轴的距离为|y|,点 p(x,y)到 y轴的距离为|x|;点 p(x,y )到坐标原点的距离为x2y

3、28、两点之间的距离:x 轴上两点为a x1 ,0 、b x2 ,0|ab| x2x1 |y 轴上两点为c0,y1 、d0,y2 |cd|y 2y 1 |已知 a x1 , y1 、b x2 , y2 ab|=x2x 2 y2y 2119、中点坐标公式:已知ax1,y1 、bx2 , y2 m 为 ab的中点x2x1就: m=,2y2y1 210、点的平移特点:在平面直角坐标系中,将点( x,y )向右平移 a 个单位长度,可以得到对应点( x+a ,y ); 将点( x,y )向左平移 a 个单位长度,可以得到对应点( x-a ,y ); 将点( x,y )向上平移 b 个单位长度,可以得到

4、对应点( x , yb);将点( x,y )向下平移 b 个单位长度,可以得到对应点( x , yb);留意:对一个图形进行平移,这个图形上全部点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移;(二)函数的基本学问:基本概念1、变量: 在一个变化过程中可以取不同数值的量;常量: 在一个变化过程中只能取同一数值的量;2、函数: 一般的,在一个变化过程中,假如有两个变量x 和 y ,并且对于x 的每一个确定的值,y 都有唯独确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是 x 的函数;*判定 a是否为 b 的函数,只要看

5、b 取值确定的时候,a 是否有唯独确定的值与之对应3、确定函数自变量取值范畴的方法:( 1)关系式为整式时,函数自变量取值范畴为全体实数;( 2)关系式含有分式时,分式的分母不等于零;( 3)关系式含有二次根式时,被开放方数大于等于零;( 4)关系式中含有指数为零的式子时,底数不等于零;( 5)实际问题中,函数自变量取值范畴仍要和实际情形相符合,使之有意义; 4、函数的图像一般来说,对于一个函数,假如把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象5、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式;6、描点法画函数图形

6、的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);其次步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点) ;第三步:连线(依据横坐标由小到大的次序把所描出的各点用平滑曲线连接起来);7、函数的表示方法列表法:一目了然,使用起来便利,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律;解析式法:简洁明白,能够精确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示;图象法:形象直观,但只能近似地表达两个变量之间的函数关系;(三)正比例函数和一次函数1、正比例函数及性质一般地,形如y=kx

7、k是常数, k0 的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx k不为零 k不为零 x 指数为 1 b取零当 k>0 时,直线 y=kx 经过三、 一象限, 从左向右上升, 即随 x 的增大 y 也增大; 当 k<0 时,.直线 y=kx经过二、四象限,从左向右下降,即随x 增大 y 反而减小1解析式 : y=kx ( k 是常数, k 0)2必过点 :( 0,0)、( 1,k )(3) 走向: k>0 时,图像经过一、三象限;k<0 时, .图像经过二、四象限(4) 增减性 : k>0, y 随 x 的增大而增大;k<0, y

8、 随 x 增大而减小(5) 倾斜度 : |k| 越大,越接近y 轴; |k|越小,越接近x 轴2、一次函数及性质一般地,形如y=kx bk,b是常数, k0 ,那么y 叫做 x 的一次函数 . 当 b=0 时, y=kx b 即 y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b k不为零 k 不为零 x 指数为 1 b 取任意实数一次函数y=kx+b 的图象是经过( 0,b)和( -b ,0)两点的一条直线,我们称它为直线y=kx+b, 它可k以看作由直线y=kx 平移 |b| 个单位长度得到. (当 b>0 时,向上平移;当b<0 时,向下平移)

9、( 1)解析式 :y=kx+bk 、b 是常数, k0( 2)必过点 :(0, b)和( -b, 0)k( 3)走向:k>0 ,图象经过第一、三象限;k<0 ,图象经过其次、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限k0直线经过第一、二、三象限b0k0直线经过第一、三、四象限b0k0直线经过第一、二、四象限b0k0直线经过其次、三、四象限b0注: y kx+b 中的 k, b 的作用: 1、k 打算着直线的变化趋势 k>0直线从左向右是向上的 k<0直线从左向右是向下的2、b 打算着直线与y 轴的交点位置 b>0直线与 y 轴的

10、正半轴相交 b<0直线与 y 轴的负半轴相交( 4)增减性 : k>0 , y 随 x 的增大而增大;k<0, y 随 x 增大而减小 .( 5)倾斜度 :|k|越大,图象越接近于y 轴; |k| 越小,图象越接近于x 轴.( 6)图像的平移: 当 b>0 时,将直线y=kx 的图象向上平移b 个单位;当 b<0 时,将直线y=kx 的图象向下平移b 个单位 .3、一次函数y=kx b 的图象的画法.依据几何学问:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可. 一般情形下: 是先选取它与两

11、坐标轴的交点:( 0,b),. 即横坐标或纵坐标为0 的点 .注:对于y kx+b 而言,图象共有以下四种情形:1、k>0, b>02、k>0, b<03、k<0, b<04、 k<0, b>04、直线 y=kx bk 0 与坐标轴的交点(1) 直线 y=kx 与 x 轴、 y 轴的交点都是0 , 0 ;(2) 直线 y=kx b 与 x 轴交点坐标为与 y轴交点坐标为0 , b 5、用待定系数法确定函数解析式的一般步骤:( 1)依据已知条件写出含有待定系数的函数关系式;( 2)将 x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到

12、以待定系数为未知数的方程;( 3)解方程得出未知系数的值;( 4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.6、两条直线交点坐标的求法: 方法:联立方程组求x 、y例题:已知两直线y x+6与 y 2x-4 交于点 p,求 p 点的坐标?7、直线 y=k1x+b1 与 y=k2x+b2 的位置关系( 1)两条直线平行:k1=k2 且 b1b2( 2)两直线相交:k1k 2( 3)两直线重合:k1=k2 且 b1=b2平行于轴(或重合)的直线记作. 特殊地,轴记作直线8、正比例函数与一次函数图象之间的关系一次函数y=kx b 的图象是一条直线,它可以看作是由直线y=kx 平移

13、|b| 个单位长度而得到(当b>0时,向上平移;当b<0 时,向下平移). 9、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a, b 为常数, a 0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0 时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b 确定它与 x 轴的交点的横坐标的值.10、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0 或 ax+b<0( a, b 为常数, a0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0 时,求自变量的取值范畴.11、一次函数与二

14、元一次方程组( 1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=a xcbb的图象相同 .( 2)二元一次方程组的图象交点 .a1 x a2 xb1 y b2 yc1的解可以看作是两个一次函数y=c2a1 x b1c1和 y=b1a2 xc2b2b212、函数应用问题(理论应用实际应用)( 1)利用图象解题通过函数图象猎取信息,并利用所猎取的信息解决简洁的实际问题.( 2)经营决策问题函数建模的关键是将实际问题数学化,从而解决正确方案,正确策略等问题. 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学

15、知题. 四 反比例函数一般地,假如两个变量x、y 之间的关系可以表示成y k x k为常数, k0 的形式,那么称y 是 x的反比例函数;取值范畴: k 0;在一般的情形下,自变量x的取值范畴可以是不等于0 的任意实数;函数y的取值范畴也是任意非零实数;反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近x 轴 y 轴但不会与坐标轴相交(k0);反比例函数的性质:1. 当 k>0 时,图象分别位于第一、三象限,同一个象限内,y 随 x 的增大而减小;不同象限 内, y 随 x 的增大而增大;当k<0 时,图象分别位于二、四象限,同一个

16、象限内,y随 x 的增大而增大;不同象限内,y 随 x 的增大而减小2. 自变量取值范畴为x0;3. 由于在y=k/xk 0 中,x 不能为0 , y 也不能为0,所以反比例函数的图象不行能与x 轴相交,也不行能与y 轴相交;4. 在一个反比例函数图象上任取两点p, q,过点p, q 分别作x 轴, y 轴的平行线,与坐标轴围成的矩形面积为s1, s2,就 s1 s2=|k|5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x (即第一三,二四象限角平分线),对称中心是坐标原点;6. 如设正比例函数y=mx 与反比例函数y=n/x交于 a、b 两点( m、 n

17、同号),那么a b 两点关于原点对称;7. 反比例函数关于正比例函数y=x,y=-x轴对称 , 并且关于原点中心对称.8. 反比例上一点m 向 x 、y 轴分别做垂线,交于q 、w,就矩形mwqo( o 为原点)的面积为|k|9.|k|越大,反比例函数的图象离坐标轴的距离越远;(五)二次函数二次函数是指未知数的最高次数为二次的多项式函数;二次函数可以表示为fx=ax2+bx+ca 不为 0 ;其图像是一条对称轴平行于y 轴的抛物线;一般式 已知图像上三点或三对、的值,通常挑选一般式.y=ax22+bx+ca 0,a 、b、 c 为常数 ,顶点坐标为-b/2a, 4ac-b/4a;顶点式 已知图

18、像的顶点或对称轴,通常挑选顶点式. 2y=ax-h+ka 0,a 、h、k 为常数 ,顶点坐标为(h,k )对称轴直线x=h ,有时题目会指出让你用配方法把一般式化成顶点式;交点式 已知图像与轴的交点坐标、,通常选用交点式y=ax-x1x-x2 仅限于与x 轴有交点a( x 1, 0)和 b ( x 2, 0)的抛物线;抛物线的三要素:开口方向、对称轴、顶点顶点抛物线有一个顶点p,坐标为p -b/2a,4ac-b 2/4a,当 -b/2a=0时,p 在 y 轴上; 当 = b2-4ac=0时, p 在 x 轴上;开口二次项系数a 打算抛物线的开口方向和大小;当 a 0 时,抛物线向上 开口;当a 0 时,抛物线向下 开口;|a|越大 ,就抛物线的开口越小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论