英语原文.doc

6T履带式液压挖掘机的液压系统设计(全套含CAD图纸和说明书)

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图
编号:166715416    类型:共享资源    大小:2.22MB    格式:ZIP    上传时间:2021-11-21 上传人:机****料 IP属地:河南
50
积分
关 键 词:
履带式 液压 挖掘机 系统 设计 全套 CAD 图纸 说明书
资源描述:

资源目录里展示的全都有预览可以查看的噢,,下载就有,,请放心下载,原稿可自行编辑修改=【QQ:11970985 可咨询交流】====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=【QQ:197216396 可咨询交流】====================

内容简介:
COMPUTER AIDED MANUFACTURINGThe term Computer Aided Manufacturing (CAM) covers many areas from information processing and decision making to manufacturing and machining, which makes giving a single definition for CAM extremely difficult. D. Kochan gave a very fitting definition for CAM, with its diversity and wide range of use, in his book, “CAM can be defined as computer-aided preparation of manufacturing including decision-making, process and operational planning, software design techniques, and artificial intelligence, and manufacturing with different types of automation (NC machine, NC machine centers, NC machining cells, NC flexible manufacturing systems ), and different types of realization (CNC single unit technology, DNC group technology ).”Since CAM has such a wide range of uses, a better way to look at CAM is through CAM technologies. The CAM technologies covered are group technology, manufacturing database, automated and tolerancing. The essential role of the computer in the production function is to capture and process the data relating to a large number of transactions which continuously take place in different departments of the company. The initial research activity for CAM was Numerical Control (NC) for machine tools at the Massachusetts Institute of Technology in 1953. The first programming language was Automatically Programming Tools (APT) created at MIT, and it was the pattern for many further developments. Currently, many manufacturing functions have been addressed by CAM including the following :Numerical Control (NC)Computer numerical control (CNC)Direct numerical control (DNC)Computer controlled conveyor systems Computer controlled machining processComputer aided process monitoring Computer aided fixturing design Computer aided tooling design Computer aided tolerancing analysis Computer aided cost estimatingMaterial requirement planning Computer aided process planning Computerized machinability data systems Manufacturing resources planning Computer aided decision support systemsDevelopment of work standards Computer aided line balancing Production and inventory planning Computer aided scheduling Computer aided quality control Computer aided inspectionComputer Numerical Control. Numerical control (NC) is a form of programmable automation in which the processing equipment is controlled by means of numbers, letters , and other symbols. The numbers, letters, and symbols are coded in an appropriate format to define a program is of instructions for the particular workpiece or job. When the job changes, the program is what makes NC suitable for low-volume and medium-volume production, and it is much easier to write new programs than to make major alterations to the processing equipment.The principle of numerical control was first applied to the milling process, and then later to the turning process, flame cutting, drilling, and grinding. NC technology is now used more and more for other manufacturing processes, such as forming (fine forging, rolling, etc.) engraving, and laser cutting.The current NC equipment is relatively more mature. Many machines possess multiple processing functions, such as milling centers which can perform vertical and horizontal milling, drilling, boring, reaming, slotting, shaping, and turning processes. Of course, with a high capacity automated tooling library, CNC machinesfunctions can be considerably more abundant.Programmable Logic Controller . Programmable logic controller are widely used in computer aided manufacturing. Actually , PLCs are used in virtually every segment of industry where automation is required. PLCs represent one of the faster growing segments of the electronics industry. Since their inception, PLCs have proved to be the salvation of many manufacturing plans which previously relied on electro-mechanical control system. A PLC is a solid-state device designed to perform logic functions previously accomplished by electro-mechanical relays. The design of most PLCs is similar to that of a computer . Basically, the PLC is an assembly of solid-state digital logic elements designed to make logical decisions and provide outputs. Programmable logic controllers are used for the control and operation of manufacturing process equipment and machinery. Computer sided material handling. Material handling is a very important factor in how efficiently a workshop or company can be operated. An efficient MH system will help reduce waiting time, and it may even help increase safety or the effectiveness of the entire manufacturing process.Cabbert and Brown indicated that as much as 60% of the total production cost may be accounted for by material handling. It is also evidenced that most discrete manufacturing products spend 90% of their manufacturing lead time on the duration of material handling and storage. With MH accounting for such a large amount of the total production cost, it is obvious that reducing the amount of time a product is handled will dramatically reduce production costs. One way of helping reduce these costs is by using computers to do some material handling.There is a great variety of material handling equipment available commercially and there are many types of MH approaches used today. One of these approaches is to use a computer database to store listings of MH equipment and the users input of factor values. The computer takes the users required level of, and preferred importance for, each criterion, and the feasible MH equipment for the task at hand, and produces a category of equipment from which the user can choose the proper type or piece of MH equipment.Computer Monitoring and diagnostics for manufacturing process. In a computer monitoring and diagnostic system, the aim of monitoring is to detect failures, while the aim of diagnostics includes fault lacalization and indentification. Both monitoring and diagnostics should appear at all levels of the control-monitoring hierarchy.There are some essential requirements that almost every monitoring and diagnostic system should possess. Some of the requirements for a monitoring system are: (1) the ability to measure and process relatively numerous analogue and digital signals; (2)the capability of profound preprocessing of measured signals, including statistical and frequency based analysis; (3) the ability for complex, multi-parameter decisions; (4)modular, extendable, reconfigurable structure; (5) programmability in all functions; and (6) standardized bi-directional software/hardware interface to the CNC/DNC controllers. Some of the requirements for a diagnostic system are: (1) the system should easily provide knowledge about the causal interrelationship when faults arise, to enable even workers who are not well acquainted with the process to lacalize faults; (2) the consequences of faults should be readily available in the system so that the severity of a given fault for the further production process can be estimated; (3) the user should have the possibility of repairing the fault alone, i.e.repair instructions should be available to the users in a suitable form;(4) the operation of the expert system should be possible by employees who have no previous experience with computers; and (5) after a short training period , the system should be maintained by the employees running the facility so that the presence of expert engineers is no longer necessary.There are three major types of M/D systems that can be classified by their place and function in the manufacturing system. These M/D systems are : (1) autonomous subsystem monitoring, which gets only messages containing environment or condition descriptions from upper levels of control, and supplies all of the elements of the
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:6T履带式液压挖掘机的液压系统设计(全套含CAD图纸和说明书)
链接地址:https://www.renrendoc.com/paper/166715416.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!