外文翻译-注射模设计的三维模型发展.doc

齿轮链轮套注塑模具设计【含CAD图纸和说明书】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共21页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:166715418    类型:共享资源    大小:2.56MB    格式:ZIP    上传时间:2021-11-21 上传人:机****料 IP属地:河南
50
积分
关 键 词:
含CAD图纸和说明书 齿轮 链轮 注塑 模具设计 CAD 图纸 说明书
资源描述:

资源目录里展示的全都有预览可以查看的噢,,下载就有,,请放心下载,原稿可自行编辑修改=【QQ:11970985 可咨询交流】====================喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改=【QQ:197216396 可咨询交流】====================

内容简介:
Three-Dimensional Kernel Development for Injection Mould DesignToday, many software “plug-ins” have been developed on high-level 3D modelling platforms to facilitate processes such as FEM analysis, CAM, injection mould design, simulation and visualisation. Such an arrangement is advantageous in many ways. However, it is not without shortcomings. Ideally, these “plug-ins” could also be developed using low-level 3D kernels for higher flexibility and better portability. This paper examines the various issues and methodologies related to the development of such 3D-based applications. The emphasis is placed on the software aspect. First, a methodology for the development of 3D-based applications is proposed. The idea is then implemented by developing an injection mould design application using a low-level 3D kernel called Parasolid. Based on design concepts used in an established mould design application, IMOLD, the development of a mould base design module is illustrated. An object-oriented programming language has been chosen for the development of the software on a Windows NT platform.1.IntroductionThree-dimensional CAD systems have increasingly been used to speed up the product realisation process. One of the first steps involved in the automation of the product design process is the creation of the component parts in a 3D modelling application. The 3D model, upon creation, is called the digital master copy. This 3D digital model forms the key to a wide spectrum of process automation.Creating the 3D digital model of component parts is only the very first step. There are several other secondary tasks that must to be done before the part can be manufactured. Such tasks include finite-element analysis, jigs and fixtures design, injection mould design, computer-aided manufacturing, simulCorrespondence and ofprint requests to: K.-S. Lee, Department of Mechanical and Production Engineering, National University of Singapore, 119260 Singapore. E-mail: mpeleeksK.sgation, and visualisation. Today, many application Plug-ins have been developed on high-level 3D modelling platforms to facilitate these secondary tasks. The 3D-modelling platform provides the plug-in software with a library of functions as well as an established user interface and style of programming. As a result, the development times for these plug-ins are significantly reduced.Such an arrangement is advantageous in many ways. However, it has its shortcomings, especially in the long run. In order to develop a plug-in for established software, the developers must adhere to the many constraints imposed. There is a need to be consistent with the style of the parent software. The developers must be able to achieve any functionality they need with only the set of library functions provided. Most end-users need both the parent software and the plug-in. In many cases, however, they may be more interested in using only the plug-in software. An example of such a situation is in injection mould design. These users, however, must purchase the entire software package which includes many features and functions that they do not need. Such a large program is often very demanding on the hardware, which also means higher cost. The plug-in software is also very dependent on developments in the parent software. Whenever a new version is updated for the parent software, the plug-in developers have to follow-up on the changes. These shortcomings may not exist if these applications were developed on a low-level platform. Ideally, these plug-ins could be developed using low-level 3D kernels for higher flexibility and better portability. In many instances, such a move is both feasible and advantageous.Traditionally, injection mould design is carried out directly on a CAD system. The entire injection mould, consisting of perhaps hundreds of components, is modelled and assembled on CAD systems such as AutoCAD, Pro/Engineer, and Unigraphics. As the injection mould design process is recursive, it is very time-consuming to re-model and re-assemble the design. In this aspect, 3D CAD systems such as Pro/Engineer and Unigraphics, which are feature-based, have a significant advantage over 2D CAD systems such as AutoCAD. To further speed up the injection mould design process, plug-ins were developed on these 3D systems to automate certain stages of the design process. Examples of such add-on applications include IMOLD (Intelligent Mold Design and Assembly Sys-Mold Designer (based on CADKEY) and Moldmaker (based on EUCLID). As each is based on a specific CAD system, there is no plug compatibility.In 1994, Mok and Cheung 1 presented work on the development of an injection mould design application based on Unigraphics. In 1997, Shah 2 proposed a 3-tier architecture for standardising communications between geometric modelling kernels and applications that require geometric modelling services. His objective is to achieve plug compatibility between 3D applications that are based on Parasolid 3 (a 3D kernel, developed at the University of Cambridge) and ACIS. This, however, involved an extensively developed 3-tier modelling husk. In this paper, the author attempts to develop a lightweight injection mould design application using a low-level 3D kernel directly. The focus is on the flexibility and speed of the software development. Design concepts and procedures were taken from IMOLD 4,5, a complete mould design and assembly 3D application. Although the discussion is limited to injection mould design only, the methodology applied can easily be applied in other 3D-based applications that are of a similar nature.A combination of developer tools was chosen for this purpose. Before the methodology is discussed, brief introductions to some of these tools are first presented. They are, IMOLD, Parasolid version 10.1, Visual Cversion 6.0, and the Microsoft Foundation Classes.2. IMOLD as a Mould Design ApplicationIMOLD (Intelligent Mold Design and Assembly) is an established 3D-based application that is dedicated to injection mould design. It is developed on top of an advanced CAD system called Unigraphics. The development is carried out using the applications programming interface (API) provided. The software enables mould designers to create a design rapidly by providing the tools that are commonly needed. Standard components parts, that are often required in the design, have been pre-created in the software and can be readily used by the designer. This reduces the design time significantly. The mould design process is divided into several stages, providing the designer with a consistent method of creating the mould design. They are, namely:1. Data preparation.2. Filling system design.3. Mould base design.4. Inserts and parting design.5. Cooling system design.6. Slider and lifter design.7. Ejection system design.8. Standard parts library.Each stage can be considered as an independent module of the program. The 3D-based requirements for each module vary only slightly. The success in developing the mould base module implies feasibility in developing all the other modules.3. Parasolid as a 3D KernelParasolid is designed to be the centre or “kernel” of any system that is based on 3D model data. It is essentially a solid modeller, which can be used to:1. Build and manipulate solid objects.2. Calculate mass and moments of inertia, and perform clash detection.3. Output the objects in various ways, including pictorially.4. Store the objects in some sort of database or archive, and retrieve them later.Parasolid is one of the most advanced 3D kernels among CAD applications. It is the 3D kernel of Unigraphics and Solid-Works. Its unique tolerant modelling functionality enables it to accept data stored in other modeller formats. Parasolid model files are thus very potable. It is, therefore, a superior platform for the development of stand-alone applications.The 3D-based application interacts with Parasolid through one of its three interfaces (see Fig. 1). These are called the Parasolid kernel (PK) interface, the kernel interface (KI) and the downward interface. The PK interface and the kernel interface sit “on top” of the modeller (side-by-side), and are the means by which the application models and manipulates the objects, as well as controls the functioning of the modeller. The downward interface lies “beneath” the modeller, and is called by the modeller when it needs to perform data-intensive or system type operations. It consists of three parts: frustrum; graphical output (GO); and foreign geometry. These are briefly explained below.3.1 The KI and PK InterfaceThe KI and the PK are interfaces for the programmer to access the modelling capabilities in the Parasolid kernel. They are standard libraries of modelling functions. The programmer calls these modelling functions in their programs. As the KI is to be phased out soon, we chose to use the PK interface.3.2 The FrustrumThe frustrum is a set of functions, which must be written by the applications programmer. The kernel calls them when data must be saved or retrieved. When using Parasolid, the applications programmer must first decide how to manage the storage of data, which Parasolid outputs through the frustrum. Transferring data through the frustrum usually involves writing to, or reading from, files. The format and location of the files is determined when writing the frustrum functions.3.3 The Graphical Output (GO)The graphical output is another set of functions, which is to be written by the applications programmer. When a call is made to the PK rendering functions, the graphical data generated are output through the GO interface. The graphical data are then passed to a 3D rendering package. OpenGL, a software interface to graphic cards, is a rendering package that is used for our purpose.3.4 The Foreign GeometryThe foreign geometry provides functionality for the development of customised geometrical types such as in-house curves and surfaces. These are used together with the standard geometrical types for modelling within Parasolid.4. Object-Oriented Programming Using Visual Cand the Microsoft Foundation ClassesObject-oriented programming (OOP) has been the undisputed option for software developers. It is among the most advanced developmental tools available. The Microsoft Visual Studio is such a software package. It features several developmental tools that are meant for Internet-based and Windows-based programming. Among these tools are the Visual C(VC) and the Microsoft Foundation Classes (MFC). The VCis a powerful development tool for object-oriented programming, whereas the MFC is a framework of Cclasses that are dedicated to Windows-based programming. Together, these provided the applications programmer with powerful development features and functionalities such as auto-code generation, and wizard-based operations. These greatly improved productivity. The entire user-interface for our program is developed using the VCand the MFC.5. ImplementationsApplying the system design, a 3D-based injection mould design application is developed. This is achieved using the developmental tools mentioned in the earlier sections. The mould base module is chosen for illustration, as it requires the widest range of 3D functionality, including the generation of assemblies.5.1 Framework of Application and the Requirements of Each ModuleA framework for the application is designed with reference to the developmental work identified. Figure 3 illustrates the framework for the Mold Base design application. The details of the requirements in each module are discussed as follows:5.1.1 Windows NT User-Interface (A)Mould base design is an iterative process. The Mould designer first selects a standard mould base from the catalogue, and then repeatedly makes modifications to the dimensions of the mould base until all the design requirements are met. It is, therefore, necessary to consider an interactive user-interface for such purpose. Using the Visual Cand the MFC, a Windows-based interface is developed. These include:1. Creation, display and management of menu bar items, context menuitems and toolbar buttons for easy access to functionality of the application.2. Creation, display and management of dialogue boxes to guide the user or to obtain user input.3.Creation, display, and management of various views in the display area, for illustration.4.Mouse driven interaction.5.The design of the sequence of operation (including user interaction) for each function.The resulting application, as shown in Fig. 4, is a typical Windows-based application with a user-friendly interface.5.1.2 3D Developer Layer (B)The 3D-based requirements of mould base design is analysed and the modules to be developed are identified. The modelling requirements for 3D-based mould base design are:1. Creation of primitives such as blocks, cylinders, cones, prisms, and toruses.2. Creation of blends and chamfers.3. Boolean operations: unite and subtract.4. Transformation operations: translation and rotation.5. Management of object attributes such as name and colour.6. Creation of instances.7. Creation of assemblies and subassemblies.As these are not too extensive, it is possible to develop a basic modelling set. With the detailed development of the individual modules, more functions are then added to the 3D developer layer. The overall requirements in each module are illustrated in the following sections.I. 3D Modelling and Assembly.A mould base is essentially an assembly of many components such as plates, bushes, pins, and screws. To facilitate mould base design, the designer must be provided with a library of ready-made mould base components. By selecting a particular dimension, a standard mould base will be generated. To facilitate these, a library of 3D-based functions, corresponding to the requirements mentioned in Section 5.1.2, are identified and developed. As the codes are object-oriented, they can easily be expanded to accommodate other mould design modules when required.II. 3D Visualisation.Using the functions provided in the graphical output, together with OpenGL as the graphical interface, several functions are developed for 3D rendering, view projections and view transformations. These include:1. Rendering 3D parts with selected colours.2. Rendering 3D assemblies with selected colours.3. Rendering other 3D entities on screen with selected colours.4. Rendering individual components with a different colour in a mould base assembly.5.Interactive view transformation such as rotation, translation, and zoom.6.Assembly tree display and manipulation.III. 3D Data Management.Portability is one of the benefits of developing a stand-alone application. It is thus important to adopt an open format for maximum portability. The native Parasolid file format (.xmtFtxt) is thus used instead of a new file format. Data management requirements of a mould base module include the following:1. Open, Save, Save As and Close Parasolid part files.2. Open, Save, Save As and Close Parasolid assembly files.3. Import and Export part files.5.1.3 Mould Base Modules (C)In order to facilitate the automatic generation of standard mould base assemblies, the application must provide a library of mould base components, whose dimensions depend on standard values found in catalogues. To facilitate design, subsequent modifications to these dimensions have been enabled. The details of this module will be discussed in Section .4 Database Support (D)A standard mould base requires almost a hundred parameters to completely represent the dimensions and positions of the individual components. Many of these parameters are interrelated and can be derived from others. A database file is thus required to store the catalogue-based parameters of standard mould bases. Microsoft Access database format is used, as there are facilities in the MFC for direct access to Access Database files. Using the Data Access Objects (DAO) in the MFC, a set of functions is developed for the extraction and management of these relevant parameters from the database.5.2 Development of the Mould Base Design Module base assembly generator, and the mould base selection and customisation module. A fourth section, called the mould base.The mould base module consists of three major sections,parameters manager, is also developed to provide database namely, the mould base component library generator, the mould support for the application. Thedetails of each section are discussed in the following.I. Component Library Generator.With support from the 3D developer layer, standard components for mould bases are created and stored in the component library. By specifying the appropriate dimensions, these components can be generated and used by the mould base assembly generator when required. Figure 6 illustrates a cavity plate created by the components library generator.II. Assembly Generator.Using the 3D developer layer and the component library generator, standard mould bases are assembled and stored in the assembly library. When supplied with a particular parameter set from the database support, specific standard mould base assembly can be automatically generated. Figure 7 shows a “HOPPT” two-plate mould base created by the assembly generator.III. Parameters Manager.The parameters manager acts as a link between the mould base application module and the database support. When a specific standard mould base is selected, the corresponding parameter set for the mould base assembly is extracted from the database file and sent to the component library generator and the assembly generator. Besides this, the parameters manager also allows the parameters to be modified by the users for design purposes. Figure 8 illustrates the modifications of bottom screw dimensions through the interactive user-interface.IV. Mould Base Designer.The mould base designer serves two main purposes. First, to allow the user to select standard mould bases from the assembly generator. Secondly, to facilitate mould base design, by allowing the mould designer to modify dimensions of the selected mould base. The sample code for the function call to generate the mould base in this module is illustrated in Fig. 9. It was noted that the function uses a large number of variables that represent the parameters of the mould base. These are fed into the component generator for the creation of the various mould base components. The assembly generator then uses the components and the parameter set, for the creation of the mould base assembly. As this is outside the 3D developer layer, no direct Parasolid function calls are seen in the sample program.The current mould base design application is capable of realising all the functionality of the injection mould base designrequirement in a mould design shop. As the mould base is the most 3D-intensive of the IMOLD modules, its successful development implies the feasibility of developing a complete 3D-based injection mould design and assembly application.6. ConclusionAdvancement in high-level programming languages has allowed programmers to re-use programming codes that are embodied in objects such as the Microsoft Foundation Classes. These powerful features have freed the programmer from the more mundane routines of programming standard functions and creating user-interfaces. They are now able to focus on the core components of the software, thus increasing productivity. This led to the increasing feasibility of developing stand-alone versions of add-in software such as those for CAE, CAD and CAM. Currently, however, such an approach is both timeconsuming and technically demanding. It is nevertheless, feasible and very promising. By integrating the capabilities of several advanced developer tools, we have managed to increase the power of these tools to develop successfully a stand-alone application for injection mould design. So far, only the first three stages of the mould design process have been coded. These form the foundation for the development of the subsequent mould design modules. The methodology applied can also be easily implemented on other software that involves designing with standard components. These include jigs and fixtures design, die casting, and manufacturing line-automation.注射模设计的三维模型发展如今,为了使注塑工艺变得更简单,很多嵌入式软件都在高级3D 注塑平台的基础上开发出来的,诸如有限元分析,计算机辅助制造,注射模设计,模拟以及形象化设计。这些软件都是很有利的。然而,它关非没有缺点。事实上,这些嵌入式软件也可以通过低级的3D更灵活和更轻便性开发出来。这篇文章查阅了各种各样基于3D应用发展的期刊和方法,主要是关于软件方面。首先,提出了一种基于3D的应用发展的方法,这种观点通过使用Parasolid模型的注射模实现的。基于在已建立的模具设计中的模具设计概念,文中说明了一种被叫做IMOLD的模件。在一个Windows NT 平台上,面向对象的编程语言被用来开发这种软件。1. 介绍三维计算机辅助设计系统已经越来越被用来加速产品的实现过程。涉及产品自动化设计过程的第一步是3D建模应用中的组件部件的建立,在建模过程中,这种3D 模型的建立称为数字化建模,这种数字化建模得到的3D的关键一步是生产过程自动化。组件部件的3D数字化建模仅仅是第一步。还有许多的其他辅助任务必须在零件被生产之前完成。这些任务包括有限元分析、夹具和固定装置的设计、注射模设计、计算机辅助制造、模拟和形象化设计。当今很多在高级3D建模平台上发展起来的嵌入式软件来促进这些辅助任务。这种3D建模站台提供了一个具有编程的用户界面和风格的嵌入式软件。结果,这种嵌入式软件的开发时间大幅度地减少。这种方法在很多方面都是有利的,但是,它也有它的缺点,特别是从长远的角度考虑。为了为现有的软件开发另外一种嵌入式软件,那些开发者必须兼顾很多现有的限制条件,必需与源软件的风格一致。那些开发者必须利用系统所提供的各种库函数来实现各种功能性操作, 大多数的终端用户需要源软件和嵌入式软件。不过,在很多情况,他们可能对使用只有嵌入式的软件更感兴趣。 在注射模设计过程中就有这种情况的例子,不过,这些用户必须购买包括很多他们不需要的特征和功能的整个软件包, 这么大的程序通常是硬件上所必需的,同时这也意味着会费用更高。这嵌入式软件也很大程度上依赖源软件的发展。一旦源软件版本被更新,那些嵌入式软件的开发者必须采取相应的行动, 如果这些应用在一个低级的平台上发展,这些缺点可能会不存在。事实上,这些嵌入式软件可以使用低级的3D 模型更灵活和更轻便性发展。在很多情况下,这样的操作既可行又有利。传统上,注射模设计可以直接在计算机辅助设计系统执行,整个注射模,可能由数百个组件部件组成,在计算机辅助设计系统(例如 AutoCAD,PRO/工程师和Unigraphics)上建模和装配,因为注射 模设计过程是反复的,所以重新建模和装配是相当费时,在这个方面,像这些基于特征的PRO/工程师以及Unigraphics那样的3D. 计算机辅助设计系统比像AutoCAD那样的2D 计算机辅助设计系统的更有优势, 为加速注射模设计工艺的发展,这种嵌入式软件在3D系统上自动发展一些注射工艺 ,这种附加应用的例子包括在国立新加坡大学发展,基于Unigraphics上发展的IMOLD(智能模型设计和装配系统)、专家模具设计者(基于CADKEY)及模型制作者(基于EUCLID) . 因为以上每一个都基于特定的计算机辅助设计系统,所以都没有嵌入兼容性。在1994年,Mok和张 1基于Unigraphics的注射模设计应用上做了研究。在1997年,Shah 2 在几何建模之间的联系标准化之间提出了互访结构模型,他的目标是在基于Parasolid的3D 应用以及ACIS之间获得嵌入兼容性,只不过它包括三维建模 。 在这篇文章里,作者试图直接发展一种质量轻的使用低级的3D模型注射模设计应用,并把重点放在软件开发的灵活性和速度上。设计概念和程序来自IMOLD 4,5 、模具设计和3D 装配中应用。尽管这些讨论仅仅局限于注射模设计,这种方法学能很容易地被应用在其他基于3D的应用中,并且有相似的作用,开发者工具的结合就是为了这个目的而选择的。在方法学被讨论之前,对于其中的一些先提出的工具作一个简短的介绍,他们分别是IMOLD、Parasolid 10.1 版本、VC6.0 版本和微软公司基础种类。2.IMOLD 用作模具设计应用IMOLD(智能模型设计和装配) 是在基于3D的应用致力发展的注射模设计。它在一个叫做Unigraphics的高级计算机辅助设计系统之上发展起来的。该发展正在通过使用系统所提供的编程接口(API)来实现。该软件通过提供常用的设计工具促使模具设计者能够迅速进行设计。在设计中所需的常用的标准组件部件,可以在软件里预先创建并且可能被容易被设计者调用。这很大程度上降低了设计时间。模具设计过程可分成几个阶段,以一种固定的方式给设计者们提供模具设计方法。它们便是:1. 数据准备。2. 填充系统设计。3. 模具基础设计。4. 插件与零件设计。5. 冷却系统设计。6. 滑板和提升设计。7. 注射系统设计。8. 标准零件库。每个阶段都可以被认为是一个独立的模件设计过程。基于3D的每个模件的要求变化甚微。成功地建立模型基础模件意味着在发展其它模件过程中也是可行的。3用作3D模型设计的ParasolidParasolid被用设计为基于3D 模型数据系统的核心。实体建模有必要被用作:1建造并且操作实体。2. 计算质量和惯性矩,并且进行干涉检测。3. 以多种方式输出实体。4. 在特定的数据库或者档案内储存实体并且可以稍后提取出来。在计算机辅助设计中,Parasolid是最先进的3D 模型设计软件。它是Unigraphics和Solid- Works的3D核心。它独特的公差模拟运作功能使得它能以其它格式接收和存储数据。因此Parasolid模型文件是十分方便的而且它也是独立应用发展的高级平台。基于3D的应用与Parasolid之间通过它的3个界面中的一个相连接。这些被称这之为Parasolid 核心界面、模型界面以及底端界面。PK界面和模型界面位于建模系统的顶部,通过这些方法来建模和对实体进行操作以及控制建模的功能。底端界面位于建模窗口的底部。当需要执行集中数据或系统类型操作时建模者便需要它。它由3个部分组成:函数、图形输出和外形几何 ,以下分别对其作出简短的介绍。3.1 KI 和PK界面KI 和PK是供程序员进入Parasolid模型里进行建模的接口。他们是建模功能的标准库。程序员在他们的程序里称之为建模功能。因为KI不久将被淘汰,所以我们选择使用PK界面。3.2 函数函数是一必须由应用程序员编写的功能,当数据必须被存储或者提取时需要使用该功能。当使用Parasolid时,应用程序员必须首先决定怎样管理数据的存储,通过该功能Parasolid输出该数据。通过该功能转存数据通常与写入文件或导出文件有关。文件的形式和及存储位置在写该功能时被确定。3.3图形的输出对图形输出功能是由应用程序员所编写的另一种功能。对需要PK给予功能的设计者来说,图形数据是由GO界面输出的,然后3D数据被传给3D图像包。OpenGL,是图形卡片的一个软件接口可以为我们提供我们所需的数据包。3.4 外形几何外形几何学可以为用户几何类型的发展(例如机构内部及表面的曲线)提供功能操作。它通常与在Parasolid内的建模标准几何类型一起使用。4. 使用VC以及微软公司基金类型的面向对象的程序设计面向对象的程序设计(OOP)已无可争议地成为软件开发者的选择。它是在目前所存在的软件中最高级的开发软件。微软公司Visual Studio就是这样的一个软件包。它刻划了许多基于因特网和基于Windows编程用的开发工具。在这些工具中包含有VC以及微软公司基金种类(MFC)。VC是面向对象的程序设计的强有力的开发工具,而MFC是一种基于Windows编程的框架。它以强大的开发特性和功能性,例如自动编码基于wizard操作,为应用程序员提供开发工具。这大大改进了生产效率。我们使用的程序的整个用户界面是使用VC以及MFC开发出来的。5. 实施情况应用系统设计,开发了基于3D的注射模设计。这被通过使用前面章节所述的开发者工具获得的。因为模型基础需要更大范围的3D功能性操作,包括装配的生成,所以选用它来加以说明。5.1每个模块的要求应用框架和所需要的条件对于识别开发工作,专门设定了了一个应用框
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:齿轮链轮套注塑模具设计【含CAD图纸和说明书】
链接地址:https://www.renrendoc.com/paper/166715418.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!