2015届高考数学二轮解题方法篇:专题2 临场必备答题模板 第3讲_第1页
2015届高考数学二轮解题方法篇:专题2 临场必备答题模板 第3讲_第2页
2015届高考数学二轮解题方法篇:专题2 临场必备答题模板 第3讲_第3页
2015届高考数学二轮解题方法篇:专题2 临场必备答题模板 第3讲_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第3讲空间中的平行与垂直问题例4如图所示,在四棱锥PABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面PAD底面ABCD,且PAPDAD.(1)求证:EF平面PAD;(2)求证:平面PAB平面PCD.审题破题(1)根据中位线找线线平行关系,再利用线面平行的判定定理(2)先利用线面垂直的判定定理,再利用性质定理证明(1)连接AC,则F是AC的中点,又E为PC的中点,在CPA中,EFPA,又PA平面PAD,EF平面PAD,EF平面PAD.(2)平面PAD平面ABCD,平面PAD平面ABCDAD,又CDAD,CD平面PAD,CDPA.又PAPDAD,PAD是等腰直角三角形

2、,且APD90°,即PAPD.又CDPDD,PA平面PCD,又PA平面PAB,平面PAB平面PCD.第一步:将题目条件和图形结合起来;第二步:根据条件寻找图形中的平行、垂直关系;第三步:和要证结论相结合,寻找已知的垂直、平行关系和要证关系的联系;第四步:严格按照定理条件书写解题步骤.跟踪训练4(2013·山东)如图,四棱锥PABCD中,ABAC,ABPA,ABCD,AB2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点- 2 - / 4(1)求证:CE平面PAD;(2)求证:平面EFG平面EMN.证明(1)方法一取PA的中点H,连接EH,DH.又E为PB的中

3、点,所以EH綊AB.又CD綊AB,所以EH綊CD.所以四边形DCEH是平行四边形,所以CEDH.又DH平面PAD,CE平面PAD.所以CE平面PAD.方法二连接CF.因为F为AB的中点,所以AFAB.又CDAB,所以AFCD.又AFCD,所以四边形AFCD为平行四边形因此CFAD,又AD平面PAD,CF平面PAD,所以CF平面PAD.因为E,F分别为PB,AB的中点,所以EFPA.又PA平面PAD,EF平面PAD,所以EF平面PAD.因为CFEFF,故平面CEF平面PAD.又CE平面CEF,所以CE平面PAD.(2)因为E、F分别为PB、AB的中点,所以EFPA.又因为ABPA,所以EFAB,同理可证ABFG.又因为EFFGF,EF平面EFG,FG平面EFG.所以AB平面EFG.又因为M,N分别为PD,PC的中点,所以MNCD,又ABCD,所以MNAB,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论