最大似然估计学习总结(概率论大作业)_第1页
最大似然估计学习总结(概率论大作业)_第2页
最大似然估计学习总结(概率论大作业)_第3页
最大似然估计学习总结(概率论大作业)_第4页
最大似然估计学习总结(概率论大作业)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、最大似然估计学习总结航天学院 探测制导与控制技术 杨若眉 1110420123摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计 的系统发生树重建方法的代表。关键词:最大似然估计;离散;连续;概率密度最大似然估计 是一种统计方法 ,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪 爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来

2、说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。 最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计 的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。 最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿

3、出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和 T所在的序列之间的关系很有可能更接近。由于被研究序列的

4、共同祖先序列是未知的,概率的计算变得复杂;又由于可能在一个位点或多个位点发生多次替换,并且不是所有的位点都是相互独立,概率计算的复杂度进一步加大。尽管如此,还是能用客观标准来计算每个位点的概率,计算表示序列关系的每棵可能的树的概率。然后,根据定义,概率总和最大的那棵树最有可能是反映真实情况的系统发生树。最大似然估计的原理给定一个概率分布D ,假定其概率密度函数(连续分布)或概率聚集函数(离散分布)为f D ,以及一个分布参数 ,我们可以从这个分布中抽出一个具有n 个值的采样 ,通过利用f D ,我们就能计算出其概率: 但是,我们可能不知道 的值,尽管我们知道这些采样数据来自于分布D 。那么我们

5、如何才能估计出 呢?一个自然的想法是从这个分布中抽出一个具有n 个值的采样X 1 ,X 2 ,.,X n ,然后用这些采样数据来估计 . 一旦我们获得 ,我们就能从中找到一个关于 的估计。最大似然估计会寻找关于 的最可能的值(即,在所有可能的 取值中,寻找一个值使这个采样的“可能性”最大化)。这种方法正好同一些其他的估计方法不同,如 的非偏估计,非偏估计未必会输出一个最可能的值,而是会输出一个既不高估也不低估 的 值。 要在数学上实现最大似然估计法 ,我们首先要定义可能性 : 并且在 的所有取值上,使这个函数最大化。这个使可能性最大的值即被称为 的最大似然估计 。 注意这里的可能性是指不变时,

6、关于 的一个函数。 最大似然估计函数不一定是惟一的,甚至不一定存在。1. 作用在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计。2. 离散型设为离散型随机变量,为多维参数向量,如果随机变量相互独立且概率计算式为P,则可得概率函数为P=,在固定时,上式表示的概率;当已知的时候,它又变成的函数,可以把它记为,称此函数为似然函数。似然函数值的大小意味着该样本值出现的可能性的大小,既然已经得到了样本值,那么它出现的可能性应该是较大的,即似然函数的值也应该是比较大的,因而最大似然估计就是选择使达到最大值的那个作为真实的估计。3. 连续型设为连续

7、型随机变量,其概率密度函数为,为从该总体中抽出的样本,同样的如果相互独立且同分布,于是样本的联合概率密度为。大致过程同离散型一样。4. 关于概率密度(PDF)我们来考虑个简单的情况(m=k=1),即是参数和样本都为1的情况。假设进行一个实验,实验次数定为10次,每次实验成功率为0.2,那么不成功的概率为0.8,用y来表示成功的次数。由于前后的实验是相互独立的,所以可以计算得到成功的次数的概率密度为:= 其中y由于y的取值范围已定,而且也为已知,所以图1显示了y取不同值时的概率分布情况,而图2显示了当时的y值概率情况。图1 时概率分布图图2 时概率分布图那么在0,1之间变化而形成的概率密度函数的

8、集合就形成了一个模型。5. 最大似然估计的求法由上面的介绍可以知道,对于图1这种情况y=2是最有可能发生的事件。但是在现实中我们还会面临另外一种情况:我们已经知道了一系列的观察值和一个感兴趣的模型,现在需要找出是哪个PDF(具体来说参数为多少时)产生出来的这些观察值。要解决这个问题,就需要用到参数估计的方法,在最大似然估计法中,我们对调PDF中数据向量和参数向量的角色,于是可以得到似然函数的定义为:该函数可以理解为,在给定了样本值的情况下,关于参数向量取值情况的函数。还是以上面的简单实验情况为例,若此时给定y为7,那么可以得到关于的似然函数为:继续回顾前面所讲,图1,2是在给定的情况下,样本向

9、量y取值概率的分布情况;而图3是图1,2横纵坐标轴相交换而成,它所描述的似然函数图则指出在给定样本向量y的情况下,符合该取值样本分布的各种参数向量的可能性。若相比于,使得y=7出现的可能性要高,那么理所当然的要比更加接近于真正的估计参数。所以求的极大似然估计就归结为求似然函数的最大值点。那么取何值时似然函数最大,这就需要用到高等数学中求导的概念,如果是多维参数向量那么就是求偏导。图3 的似然函数分布图主要注意的是多数情况下,直接对变量进行求导反而会使得计算式子更加的复杂,此时可以借用对数函数。由于对数函数是单调增函数,所以与具有相同的最大值点,而在许多情况下,求的最大值点比较简单。于是,我们将

10、求的最大值点改为求的最大值点。若该似然函数的导数存在,那么对关于参数向量的各个参数求导数(当前情况向量维数为1),并命其等于零,得到方程组:可以求得时似然函数有极值,为了进一步判断该点位最大值而不是最小值,可以继续求二阶导来判断函数的凹凸性,如果的二阶导为负数那么即是最大值,这里再不细说。还要指出,若函数关于的导数不存在,我们就无法得到似然方程组,这时就必须用其它的方法来求最大似然估计值,例如用有界函数的增减性去求的最大值点6. 总结最大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论