资源目录
压缩包内文档预览:(预览前20页/共47页)
编号:168635176
类型:共享资源
大小:1.44MB
格式:ZIP
上传时间:2021-11-26
上传人:资料****站
认证信息
个人认证
冯**(实名认证)
河南
IP属地:河南
40
积分
- 关 键 词:
-
28
外舌止动
垫圈
冲孔
剪切
模具设计
- 资源描述:
-
Φ28外舌止动垫圈冲孔落料剪切级进模具设计,28,外舌止动,垫圈,冲孔,剪切,模具设计
- 内容简介:
-
本科毕业论文(设计)题 目28外舌止动垫圈冲孔落料剪切级进模具设计28 外舌止动垫圈冲孔落料剪切级进模具设计外舌止动垫圈冲孔落料剪切级进模具设计摘要:摘要:设计首先对冷冲压模具的基本成形机理及现状发展趋势做出简要阐释,指出冲模是一种低能耗高效率的产出方式,在综合分析产品工艺性指标及对比不同结构预案后,确定本次工件易采用连续模具的方案进行。模具设计之前进行了排样结构设计和工艺计算两部分内容。第一部分通过排样参数选用和工件各工位的合理分解排布确定了包含冲裁,冲孔弯曲落料在内的多工位的合理结构,并以此为基础进行了第二部分,主要涵盖材料利用率,基本冲裁力参数,刃口精度公差等几部分的计算与校核,为后续模具结构具体实施打下基础。模具结构设计是在确保总体原则的情况下针对凸模,凹模,以及凸模固定板,辅助部件这几大方向完成了本体参数的设计和选用,最终将他们合理的装配,完成了本次工件级进模结构的设计。最后选用合理的压力设备与模具适配,以满足后续试模的需要。关键词关键词:级进模; 冷冲压; 结构设计28 外舌止动垫圈冲孔落料剪切级进模具设计IIAbstractAbstract:The design firstly describes the basic forming mechanism and the current development trend of the die, and points out that the die is a kind of low-energy and high-efficiency output method. After a comprehensive analysis of product process indicators and comparison of different structural plans, this article is easy to determine. Use a continuous die program to complete the part design.Before the die design, the design of the layout structure and the process calculation were performed in two parts. The first part determines the reasonable structure of multiple stations including punching, punching and blanking, through the selection of the layout parameters and the rational decomposition of the work stations. The second part is based on this. Covers the calculation of the material utilization rate, the basic blanking force parameters, and the precision of the cutting edge, and lays the foundation for the subsequent implementation of the die structure. The die structure design is to ensure the general principle of the design of the body parameters and the selection of the punch, die, punch fixing plate, auxiliary components in these major directions, and finally they will be reasonable assembly, completed this time Design of work piece progressive die structure. Finally, a reasonable pressure device and die are selected to meet the needs of the subsequent test mode.Keywords:Progressive Die, Cold Stamping,Structural Design目目 录录28 外舌止动垫圈冲孔落料剪切级进模具设计外舌止动垫圈冲孔落料剪切级进模具设计.IABSTRACT.II1 绪论绪论 .11.1 课题研究目的及意义课题研究目的及意义.11.1.1 研究目的研究目的.11.1.2 研究意义研究意义.11.2 国内模具发展状况国内模具发展状况.11.3 主要研究内容主要研究内容.22 零件工艺性分析及冲压方案确定零件工艺性分析及冲压方案确定 .32.1 零件的工艺性分析零件的工艺性分析.32.2 确定工艺方案确定工艺方案.42.3 排样设计排样设计.52.3.1 排样参数确定排样参数确定.52.3.2 排样图的绘制排样图的绘制.62.3.3 材料利用率材料利用率 .63 模具主要工艺参数计算模具主要工艺参数计算 .93.1 冲压力参数的计算冲压力参数的计算.93.1.1 冲裁力计算冲裁力计算.93.1.2 卸料力、推料力、顶料力的计算卸料力、推料力、顶料力的计算.93.2 冲压压力中心冲压压力中心.114 凸凹模设计凸凹模设计.134.1 冲裁间隙冲裁间隙.134.2 凸模与凹模刃口尺寸计算凸模与凹模刃口尺寸计算.134.3 凹模的设计凹模的设计.164.4 凸模的设计凸模的设计.174.5 凹模凹模刃口类型刃口类型.185 模具总体设计模具总体设计 .195.1 定位零件的设计定位零件的设计.195.2 卸料板的设计卸料板的设计.195.3 模柄模柄.205.4 模架及其他零部件的选用模架及其他零部件的选用.205.5 冲压设备的选择冲压设备的选择.215.6 压力机相关参数的校核压力机相关参数的校核.216 总结总结 .23参考文献参考文献 .25附录附录 A 外文文献及翻译外文文献及翻译.2728 外舌止动垫圈冲孔落料剪切级进模具设计IV11 绪论绪论1.1课题研究目的及意义课题研究目的及意义1.1.1 研究目的研究目的通过本设计冷冲压模具的典型结构与计算工作,目的在于熟悉冷冲压模具的工作原理,并系统地运用所学过的知识处理冷冲压模具设计中的各种问题,提高对机械系统分析和模具设计的能力;另外,通过毕业设计培养阅读中外文科技文献、查阅并利用文献资料以及独立撰写科技论文的能力。1.1.2 研究意义研究意义冲压是一种压力加工的方法,就是在室温的情况下进行,压力机上安装模具对材料进行施加压力,使材料发生分离或者是发生塑性变形,进而得到所需要的零件。本设计中的级进模具结构简单,使用方便可靠,对类似工件的大批量生产具有一定参考作用。在传统的工业生产中,工人劳动强度大、生产量大,严重影响生产效率的提高。随着现如今科技的发展,在工业生产中模具的使用越来越引起人们的重视,并被大量应用到工业生产中去。冲压模具可以不仅提高劳动生产效率,减轻工人负担,而且具有重要的技术进步意义和经济价值。1.2 国内模具发展状况国内模具发展状况到了 21 世纪,随着计算机软件的发展和进步, CAD/CAECAM 技术日成熟,其现代模具中的应用越来越广泛。目前我国冲压模具无论在数量上,还是在质量技术和能力等方面都已有了很大发展,但与国民经济需求和世界先进水平相比,仍具有较大的差异,一些大型、精密、复杂、长寿命的高档模具每年仍大量进口,特别是中高档轿车的盖件模具,目前仍主要依靠进口。而一些低档次的简单冲模,则已供过于求,市场竟争非常激烈。我国模具工业虽然有了很大的发展,但总体看来,技术水平仍比工业发达国家要落后 1520 年,这与我国制造业发展的要求相比差距还很大。为了推进社会主义现代化連设,适应国民经济各部门发展的需要,模具工业需要进行进一步技术结构和加速国产化。因此,应立足国情,着重发展模具行业中的关継、共性技术,不断加大新技术的开发和推广应用力度,不断提高行业的自主创新能力.用信息技术帯动和提升模具工业的制造技术水平,积极采用高新技术和先进适用技术来提高行业的总体水平,使我国模具28 外舌止动垫圈冲孔落料剪切级进模具设计2行业向大型、精密、复杂高效、长寿命和多功能方向发展,推动我国模具工业技术进步再上新台阶,将是我国模具行业发展的一个重要任务1。1.3 主要研究内容主要研究内容本次设计的内容是利用 UG、CAD 等软件进行 28 外舌止动垫圈的剪切级进模具设计,主要设计内容包括:(1) 分析零件的工艺性,确定冲压方案及模具结构;(2) 进行模具零件的设计计算;(3) 绘制模具装配图。32 零件零件工艺性分析及工艺性分析及冲压方案确定冲压方案确定28 外舌止动垫圈结构图和三维结构图分别如图 2.1 和图 2.2 所示。图 2.1 28 外舌止动垫圈结构图图 2.2 28 外舌止动垫圈 3D 图2.1 零件的工艺性分析零件的工艺性分析模具整体设计首先以 28 外舌止动垫圈的课题任务要求与技术解析开始,在绘制28 外舌止动垫圈冲孔落料剪切级进模具设计4了结构图以及三维的渲染结构的基础上分析了以下几点要求:(1)材料:零件的材料选用 Q235-A,普通碳素结构钢,其抗拉强度b=375460Mpa,屈服强度为 s=210Mpa,此材料具有高的弹性和良好的耐磨性,冲裁加工性能好。(2)结构:内部有一个冲孔和一处 90的弯曲成形部分。料厚为 1.5mm,满足厚度要求,零件毛刺小,模具寿命高,孔的直径较小,适合冲裁加工。(3)尺寸精度:根据零件图上所注尺寸,工件尺寸精度要求较低,采用 IT14 级精度,普通冲裁完全可以满足要求。由于待冲压材料冲裁强度和刚度的使用要求,冲裁件上的孔不能太小,凸模冲孔的最小尺寸为料厚的 0.9 倍(280.9t) ,所以用来冲孔的凸模可以不使用凸模保护外套。整体来说,垫圈工件采用厚度为 1.5mm 的 Q235-A 料带冲压而成。整体形状为圆形结构,内孔部分和外周边缘的距离参数大于 3mm。工件精度为 IT14 级,可以实现断面较为光洁。从上述的分析可以确定,采用冷冲裁成形可以满足大批量生产要求。 2.2 确定工艺方案确定工艺方案该工件包括冲孔、落料 、折弯三个工序,有以下三种工艺方案:方案一:先冲孔,再剪切,最后落料,单工序生产;方案二:冲孔剪切落料复合模生产;方案三:冲孔剪切落料级进冲压,采用级进模生产。方案一用单工序模。该模具结构简单,单副模具成本低,使用、维修方便,但需要三道工序三副模具,重复定位差,成本高而生产效率低,难以满足大批量生产要求和制件精度。方案二用复合模。复合模是指在一次工作行程中完成多道冲压工序的模具,只需要一副模具,工件的精度及生产效率都很高,但模具强度比较差,且制造比较麻烦。冲压完成后零件会卡在模具上,需要自行清理,这样不仅会降低冲压速度,而且操作繁琐。方案三用级进模。整个制件的成形是在级进过程中逐步完成的。级进成形是属工序集中的工艺方法,可使切边、冲孔、打弯成形、落料等多种工序在一副模具上完成,生产效率较高。它的制件和废料无需人工清理,所以降低了工作量,而且操作安全、方便,能够实现自动化生产2。通过对上述三种方案的分析比较,从零件的生产批量和技术要求上看,该零件的冲压生产宜采用普通级进模。52.3 排样设计排样设计2.3.1 排样排样参数确定参数确定(1)搭边值的确定根据 GB856 本次冲裁零件采用厚度为 1.50mm 的 Q235-A 材料进行加工冲裁,故毛胚料为 1.50mm 厚(t=1.50mm) ,查表 2.1 得,侧边搭边值为 1.50mm(a=1.50mm) ,工件间搭边值为 1.20mm(a1=1.20mm)3。表 2.1 冲裁件合理搭边值料厚/mm搭边值/mmaa10.25-0.501.000.801.00-1.501.301.001.50-2.001.501.20(2)送料步距 S根据待加工零件图纸可知零件最大外形轮廓尺寸为 58.00mm,工件间搭边值为1.20mm,经公式 2-1 计算可得工件送料步距 S=59.20mm。S=A+M (2-1)式中:S工步长度,mm;M相邻工件的距离,mm;A最大轮廓长度,mm。(3)带料宽度 B (2-2)01)2(nbaDB式中:B条状料或带状料宽度; D冲件尺寸;a1工件间搭边值;n侧刃数;条状料或带状料单向偏差;b侧刃裁切的料边宽度,金属材料取 1.50mm2.50mm,非金属材料取2.00mm4.00mm,薄料取较小值,厚料取较大值。B(58+21.2+21.5) -00.463.40-0.428 外舌止动垫圈冲孔落料剪切级进模具设计62.3.2 排样图的绘制排样图的绘制结合上述的参数选用,绘制出如图 2-3 所示的排样方案:通过对工件的工艺性分析可以看出零件从大体上分为三个部分,包括中间内孔,外舌和最大外圆。所以对其冲裁的工序依次为冲孔,切开弯曲,落料。以此为依据对工件进行系统排样并绘制排样图。排样图的绘制遵从以下三点:(1)排样时要避免冲压过程中凸模与凸模之间距离太近,导致零件局部变形。(2)搭边值要合理,不能出现毛刺飞边等现象。(3)如果采用多排样式,应该预留空工位方便组装拆卸,防止发生因应力集中导致的模具损毁4。图 2.3 排样图2.3.3材料利用率材料利用率 材料利用率表示为零件实际使用面积所占大小与毛胚料整体的面积大小之间的比例,常用 表示:总=总 100% 式中: 总 材料利用率;n总 冲裁件的数目;A 冲裁件的实际面积/mm2;B 板料宽度/mm;L板料长度/mm;采用分块法近似计算冲压件的面积:A=3.142929-3.141414=2025.3(mm2)带料长度: L=58+1.2=59.2(mm)7带料宽度: B=61(mm)材料利用率:28 外舌止动垫圈冲孔落料剪切级进模具设计893 模具模具主要工艺参数计算主要工艺参数计算3.1 冲压力参数的计算冲压力参数的计算3.1.1 冲裁力计算冲裁力计算冲裁力指在上模座和下模座的相对位移中,将冲裁零件与毛胚料分离所需的力。它的大小与毛胚材料的高度,所要冲压毛胚料的物理特性及所需零件的最大外形尺寸有关联。在应用简易平刃口模具实现冲压的时候,实际冲裁力 F 表示为: (3-1)式中: F冲裁力/N;L 冲裁件最大外形轮廓尺寸,mm;t 毛胚料的厚度,mm;Q235 的抗剪切强度,MPa;Q235-A 的抗剪切强度如下表 3.1 所示。表 3.1 常用材料剪切强度表材料牌号b/MPaQ195255310Q215265330碳素结构钢Q235-A305375由表可得,Q235-A 最大抗剪切强度为 375Mpa。根据 GB856 可知冲压所需毛胚料的厚度为 1.50mm(t=1.50mm) ,单次最大冲压外形轮廓尺寸值为 182.12mm,计算得 F=182.121.5375102442.5N5。3.1.2 卸料力、推料力、顶料力的计算卸料力、推料力、顶料力的计算在冲压阶段中会发生冲压毛胚料的塑性形变以及毛胚料与冲压凸凹模间隙的剐蹭,会另冲压后的冲孔部分的边角料紧紧的固定在凸模刃口表面。所以将被紧压在刃口表面上的毛胚料取下的力称为卸料力;将在冲模方向上卡在凹模孔中的冲压废弃料推出的力称为推料力;将冲裁件或着废弃辅料至模具腔孔内的力与冲裁方向相反的力称作顶料力。28 外舌止动垫圈冲孔落料剪切级进模具设计10(1)卸料力的计算6F卸k卸F (3-2)式中:F 冲裁力,N;F卸 脱料力,N;k卸 卸料力系数,见表 3.2。由上式可得 F卸=0.05102442.5=5122.13(N)(2)推料力的计算F推nk推F (3-3) 式中:F 冲裁力,N;n 同时卡住的工件或废料,n=1;F推 推料力,N;k推 推料力系数,见表 3-2。由上式可得 F推0.055102442.5=5634.34(N)(3)顶料力的计算F顶k顶F (3-4) 式中:F 冲裁力,N;F顶 顶料力,N;k顶 顶料力系数,见表 3-2。由上式可得 F顶0.06102442.5=6146.55(N)表 3.2 为卸料力、推件力和顶件力系数表。表 3.2 卸料力、推件力和顶件力系数料厚/mmk卸k推k顶0.10.065-0.070.50.045-0.0550.0630.08钢4-0.050.0550.03-0.040.0450.056.50.02-0.030.0250.0311(4)总冲压力的计算卸卸卸卸FFFFF (3-5) =119345.51(N)3.2 冲压压力中心冲压压力中心多工位级进模具的压力中心是指同时完成不同工序时各个凸模组合力的作用几何中心。为了保证冲压设备的正常工作应该使得压力中心与模座中心重合,否则,会使冲模和冲压设备滑块产生偏心载荷,致使滑块与轨道之间产生较大的摩擦力,使得模具导向零件加快损坏,减少模具和冲压设备的使用年限。模具的压力中心可以根据以下原则确定: 1、全对称零件取其几何中心。2、轴对称图形零件,压力中心与零件中心轴线重叠。3、如果零件形状复杂、可以通过对多孔模具和级进模具压力中心的解析计算,得到模具的压力中心,计算公式如下。 (3-6) (3-7) 通过解析法计算压力中心时,首先绘制凹模形状图,如图 4-2 所示。在图中,XOY 坐标系建立在图对称的中心线上,根据几何图形将轮廓分解为 L1L3 三条基本线,并通过解析的方法得到模具压力中心坐标。有关计算如表 4-4 所示。 图 3.1 压力中心坐标分析 28 外舌止动垫圈冲孔落料剪切级进模具设计12表 3.3 压力中心的计算各工位压力中心的坐标值/mm冲压轮廓尺寸 L/mmXYL1=87.9200L2=2033.20L3=174.12118.40 合计 282.0475.45(取 75)0 得其压力中心坐标值为(75,0)7。134 凸凹模设计凸凹模设计4.1 冲裁间隙冲裁间隙凹凸模之间的距离大小叫做冲裁间隙。冲裁间隙设计的不合理,将会减少模具的耐疲劳性,耐磨损性等性能。所以,在设计模具时,计算冲裁间隙是必不可少的步骤。尺寸精度是由现实生产之中实际生产的长度去除基本尺寸所获取的数值,这个数值越接近零,那么就证明其可靠性越好,如果这个数值过大,那么则需要重新进行设计。这个数值是由凹凸模之间的相对位置误差及其自身的尺寸偏差所决定的。在现实生活中,一个模具的实际使用年限是受到各种方面因素干扰的,而在这其中,最影响最大的就是冲裁间隙。如果冲裁间隙过小凸凹模之间会产生摩擦,导致模具的不正常损耗。反之则会出现零件飞边,毛刺过多,发生塑性变形等现象,影响成品质量8。根据之前的讨论,在本次设计中要充分的考虑到间隙大小对实际使用过程中所造成的影响。选取合适的数值,确保合理的设计,这是本次设计之中的重点。结合材料特性在本次设计中将选用最小间隙距离。表 4.1 为金属材料冲裁间隙值。 表 4.1 金属材料冲裁间隙值据表可选用冲裁间隙值为 0.15mm。4.2 凸模与凹模刃口尺寸计算凸模与凹模刃口尺寸计算刃口尺寸计算原则有以下三点:(1)根据凸模尺寸可设计出落料模尺寸,同理冲孔模设计时要以凸模尺寸为基础。(2)经过长时间的使用凹模与凸模之间会有磨损产生,使得落料件的外形轮廓尺寸会越来越大,冲孔的直径逐渐的变小。所以凹模设计一般用下极限偏差尺寸而凸模设计用上极限偏差尺寸。(3)由于摩擦的因素,这将导致冲裁模在实际生产之中会不断的磨损,这导致配合精度的降低,所以在设计之初就要考虑好这个问题所带来的影响,提前设计出合理的数据,增加模具的使用年限9。刃口间隙表如表 4.2 所示。小间隙中间隙大间隙 高碳钢、T8A、T10A、65Mn(0.080.12)t(0.120.15)t(0.150.18)t28 外舌止动垫圈冲孔落料剪切级进模具设计14表 4.2 刃口间隙查表得刃口间隙值:凸模公差-0.02,凹模公差 0.03。根据经验公式计算凸模刃口尺寸如下:冲孔凸模刃口尺寸: (4-1)0()pddx 落料凸模刃口尺寸: (4-2)min0(D)dpDxZ 式中:dd 冲孔凹模的刃口尺寸,mm;Dp 落料凸模的刃口尺寸,mm;x 磨损系数,查表 4-3 得 =0.50; 零件的公差,mm,见表 4.3;Zmin 最小间隙,mm,见表 4.4;d 凹凸模生产偏差,mm。根据经验公式计算凹模刃口尺寸如下:冲孔凹模刃口尺寸: (4-3)min0()ddddxZ 落料凹模刃口尺寸: (4-4) 0(D)bdx D式中:dp冲孔凸模的刃口尺寸,mm;Dd落料凹模的刃口尺寸,mm;D落料轮廓大小,mm ; d冲孔轮廓大小,mm ; 磨损系数,查表 4.3 得 =0.50;工件公差,mm,见表 4.3;Zmin最小间隙,mm,见表 4.4;d凹凸模生产偏差,mm。基本尺寸凸模公差凹模公差3080-0.0200.03015根据经验公式计算凹模刃口尺寸如下:冲孔凹模刃口尺寸: (4-5)min0()ddddxZ 落料凹模刃口尺寸: (4-6)0(D)bdx D式中:dp冲孔凸模的刃口尺寸/mm;Dd落料凹模的刃口尺寸/mm;D落料轮廓大小/mm ; d冲孔轮廓大小/mm ; 磨损系数,查表 4.3 得 =0.50;工件公差/mm,见表 4.3;Zmin最小间隙/mm,见表 4.4;d凹凸模生产偏差/mm。冲 28.00mm 的中心孔时,由上式计算得:冲孔凸模刃口尺寸:;000.020.02(280.5 0.2)28.1pmdm冲孔凹模刃口尺寸:。0.030.0300(280.5 0.20.22)28.32dmmd 切开弯曲时(切口 8mm),由上式计算得:切口凹模刃口尺寸:;000.020.02(80.5 0.20.22)8.32dmmd切口凸模刃口尺寸:。0.030.0300(80.5 0.2)8.1pdmm冲 58.00mm 的落料孔时,由上式计算得:落料凸模刃口尺寸:;000.020.02(580.50.22)57.570.42pDmm落料凹模刃口尺寸:。0.030.03000.42(580.5)57.79dDmm表 4.3 为磨损系数表,表 4.4 为推荐用双面大间隙。表 4.3 磨损系数表 4.4 推荐用双面大间隙非圆形 x 值圆形 x 值磨损系数1.000.750.500.750.50厚度 t/mm工件公差1.050.361.02.010.422.04.090.504.00.300.310.590.601.03.00.220.283.06.00.240.3217图 4.1 凹模板4.4 凸模的设计凸模的设计28 外舌止动垫圈外形相对简单,根据材料特性及加工工艺要求,为了满足凸模刚度和韧性,所以本次将凸模设计成阶梯式,便于安装维修及后期更换。采用一体化成形铣、一体化成形磨削。凸模长度根据模具结构需要来确定,本次设计采用固定卸料板和导料板机构,其长度计算公式如下: (4-9) 12315 20Lhhhmm上式中,h1,h2,h3分别为凸模固定板,卸料板,导料板;15.0020.00mm 为附加长度,包括凸模的修模余量,模具闭合时的安全距离和凸模进入凹模的深度等。经计算凸模总长 L=80.00mm。对于圆形凸模承载能力的校核公式如下11:(4-10)式中: dmin 凸模最小直径,mm;t 材料厚度,t=1.50mm; 材料抗剪强度,Mpa; 凸模材料的许用压应力,Cr12MoV 的许用压应力为 1200Mpa; 故: 本次设计中凸模最小直径为 8.00mm3.00mm 所以满足强度要求。对圆形截面的凸模失稳弯曲强度校核公式如下: (4-11)式中:d 凸模最小直径,mm;F 凸模的冲裁力,N;Lmax不产生失稳的弯曲极限长度,mm。故: 4dmint3mm10005001.544dmintFdL2max270mmFdL59. 72702max28 外舌止动垫圈冲孔落料剪切级进模具设计18本次设计中凸模长度为 80.00mm7.59mm 所以满足长度要求。图 4.2、图 4.3、图 4.4 分别为冲孔凸模、切口打弯凸模、落料凸模的三维图。图 4.2 冲孔凸模 图 4.3 切口打弯凸模 图 4.4 落料凸模4.5 凹模凹模刃口刃口类型类型本次设计的模具工位较少不用单独对凹模进行设计,采用一体化的凹模板。凹模板上三个凹模口形状依次为小圆孔,不规则方孔,大圆孔。其中大小圆孔分别起到排料和落料的作用,所以在对凹模孔设计时采用阶梯孔,如下图 4.1 所示,这样的设计有利于剥落粘附在凸模刃口的工件和废料,使其自然脱落不粘带12。图 4-1 凹模刃口形式1928 外舌止动垫圈冲孔落料剪切级进模具设计5 模具总体设计模具总体设计5.1 定位零件的设计定位零件的设计控制带料的进料方面采用活动导料销和固定导料板来限制其自由度。带状毛胚料必须确保在进给方向和冲压过程中,能有两个自由度受到限制。一个限制在材料进给方向,这个限制是为了确保带料的步幅长度恰好是每次送进时的步距。另一个是用侧位导料板限制垂直材料的方向,使料板不会发生纵向的位移13。下图 5.1 为导料装置。图 5.1 导料装置带料横向定位装置:通常,级进模具中的材料侧向定位装置将使用导向板来引导材料,并且导向板更便于操作。带料纵向定位装置:活动挡料销和固定挡料销可以有效限制毛胚料的步距,达到定位的效果。外孔最初由固定挡料销定位,并通过设置在冲裁凸模上的两个导正销精确定位。导正销的目的是消除在进给过程中产生的误差,并确保工件相对位置的公差。因此,需要使用导正销来作精细的定距。5.2 卸料板的设计卸料板的设计此次冲压材料选用 Q235-A 材料,料厚 1.50mm,整体质量较轻,所需卸料力较小。所以选择固定卸料板。固定卸料板运行相对比较平稳,安装方便,便于拆卸。其厚度根据 JB/T 8066.1-2010 选取 10.00mm。外形尺寸与凹模板同。5.3 模柄模柄 根据此次冲裁零件冲裁力分析选取冲压设备的型号 J23-40T,查冲压设备型号可知模柄的半径为 25.00mm,模柄厚度为 70.00mm。模柄的高度比模柄的厚度小 5.0010.00mm,模柄孔的半径应该比模柄的直径略小。此次多工位级进模具设计中采用压入式模柄,如图 5.2 所示。 图 5.2 模柄5.4 模架及其他零部件的选用模架及其他零部件的选用 查国家标准 GB/T 2855-2008 和 G2861.1-2008 选用冲模滑动导向模座和滑动导向导柱。根据多工位级进模具设计中凹模周界尺寸 250.00mm125.00mm来进行标准上下模座尺寸的选择。整体结构使用对角导柱模架,对角导柱模架优点及主要作用就是减小上模座的下模座在冲裁过程中发生倾斜使得压力中心偏移所产生的位移误差。对角导柱模架的凹模周界选用范围为60.00mm50.00mm-500.00mm500.00mm。对角导柱模架:200125200-01 GB/T 23563.2-2009 :上模座尺寸标准:25012540-01 GB/T 2855.1-2008 ;下模座尺寸标准:25012545-02 GB/T 2855.2-2008 ;导柱尺寸标准:28150 G2861.1-2008 ;导套尺寸标准:2810038 G2861.1-2008 ;模架的最小闭合深度为 195mm 。其他零部件设计:凸模固定板,凹模板,卸料板,垫板,导料板尺寸根据毛胚料宽度与所选模架标准尺寸为参考。其中凸模与凸模固定板之间采用过度配合的方法,将凸28 外舌止动垫圈冲孔落料剪切级进模具设计模压入凸模固定板。凸模固定板与上模座之间使用垫板过度,防止凸模发生位移。其余零部件按照机械设计手册选用标准件螺栓和销钉。本次采用的卸料装置为固定卸料装置,卸料板用 10.00mm 厚的 45 钢制造。卸料板,导料板与凹模板三者之间用 6 个 GB/T 27-2012 M1260 的六角头铰制孔用螺栓链接。5.5 冲压设备的选择冲压设备的选择 为了避免在冲裁过程中冲裁力过小,致使无法完成零件的加工过程或加工出的零件达不到技术要求不能使用。在此采用公称压力 F 压 1.601.80 倍的冲裁力来选择冲压设备型号。综上所述考虑到待加工零件的精密度要求和冲裁时所需的最小冲裁力,最后选用的冲压设备型号为 J23-40T,该冲压设备的参数见表 5.1。表 5.1 压力机主要参数表5.6 压力机相关参数的校核压力机相关参数的校核 模具闭合后其高度不能小于最小安装尺寸,同理也不能大于最大安装高度。其关系式为: (5-1) min1max110)5HHmmHHHmm装模(式中: 压力机的最小安装尺寸,mm;minH 压力机的最大安装尺寸,mm;maxH型号J23-40T公称压力(N)400000最大倾斜角度()20滑块行程次数(次/分钟)40滑块中心线至床身距离200.00最大闭合高度300.00床身两立柱距离305.00工作台尺寸390.00630.00滑块行程90.00模柄孔尺寸50.0075.00 压力机工作垫板厚度,mm;1H 压力机最大装模高度,mm;max1HH 压力机最小装模高度,mm;min1HHH模具的闭合高度,mm。故:160.00mm195.00mm200.00mm(满足闭合高度要求) 。 28 外舌止动垫圈冲孔落料剪切级进模具设计6 总结总结(1)从整个设计过程来看,该 28 外舌止动垫圈工件采用级进模成形效率较高。(2)拉深采用冲裁弯曲落料连续冲裁,提高了制件的成形效率。(3)对模具工作部分尺寸及公差进行设计计算并绘制模具了零件图及装配图。(4)进行了压力机校核,确定了压力机型号。28 外舌止动垫圈冲孔落料剪切级进模具设计参考文献参考文献1 李焕芳.冷冲压模具发展现状J.中国高新技术企业.20102 周本凯.冷冲压模具制造技术M. 北京:化学工业出版社.20113 阎兵.冷冲压模具结构与设计实例M.北京:机械工业出版社.20124 汤酞则.冷冲压模具课程设计与毕业设计指导M. 北京:机械工业出版社.20155 孙传.冷冲压工艺与模具设计M. 杭州:浙江大学出版社.20156 王秀凤.冷冲压模具设计与制造M. 北京:北京航空航天大学出版社.20127 单春艳.冷冲压工艺与模具设计M. 北京:科学出版社.20158 于位灵.冷冲压模具设计及典型案例M. 上海:上海科学技术出版社.20169 刘洪贤.冷冲压工艺与模具设计M. 北京:北京大学出版社 201210 袁地军.冷冲压工艺与模具结构M. 北京:人民邮电出版社.201511 徐永礼. 基于 Pro/E 的冲压复合模具设计探析J. 中国高新技术企业.201312 Han Fei. Guidance and Examples of Course Design for Stamping Die and Plastics Injection MouldM. Harbin Institute of Technology Press.2015.13 Mahajan P V etal. Design for stampingM. New York ASME.2015.28 外舌止动垫圈冲孔落料剪切级进模具设计致致 谢谢历时几个月的时间,终于将此次毕业设计完成,过程中也遇到了不少的困难和障碍,都在同学和老师的帮助下度过了。在这里尤其要强烈感谢我的论文指导老师董老师,从选题指导、论文框架到细节修改,都做出了无私的指导,并提出建设性意见。感谢我们机械设计制造及其自动化专业的所有授业恩师,没有这么多知识的学习和沉淀,我也不会有基础和信心完成这次设计。另外,在校图书馆查找资料的时候,图书馆的老师也给我提供了很多方面的支持与帮助。在此向帮助和指导过我的各位老师表示最衷心的感谢! 感谢模具设计制造研究行业的各位前辈和学者们。本文引用了数位学者的研究文献,各位学者的研究成果,对我有莫大的帮助和启发, 感谢我的同学和朋友,在我写论文的过程中给我提供了很多素材,还在论文的撰写和排版过程中提供热情的帮助。谨以此致谢,最后,谢谢百忙之中抽时间对本文进行审阅的各位老师。由于学术水平有限,所写论文难免有不足之处,希望各位老师批评和指正。28 外舌止动垫圈冲孔落料剪切级进模具设计附录附录 A 外文文献及翻译外文文献及翻译Improving Performance of Progressive DiesProgressive die stamping is a cost-effective and safe method of producing components. Careful design and construction of dies will ensure optimum performance.A progressive die performs a series of fundamental sheet metal operations at two or more stations in the die during each press stroke. These simultaneous operations produce a part from a strip of material that moves through the die. Each working station performs one or more die operations, but the strip must move from the first station through each succeeding station to produce a complete part. Carriers, consisting of one or more strips of material left between the parts, provide movement of the parts from one die station to the next. These carrier strips are separated from the parts in the last die station.There are six elements that should be addressed when designing and building a progressive die to maximize its performance: Interpreting the part print, Starting material into the die, Part lifters and part feeding, Flexible part carriers, Upper pressure pads, and Drawn shells.Interpreting the Part PrintThe first step in the proper design of a progressive die is to correctly analyze the part print. The tool designer must interpret the print to determine the function of the part by looking for such things as the type of material, critical surfaces, hole size and location, burr location, grain direction requirements, surface finish and other factors.The die designer must understand the part well, particularly if it has irregular shapes and contours. However, modern computer-drawn prints make this more difficult because computer-drawn part data can be downloaded directly to the die-design computer. As a result, the designer may not become thoroughly familiar with important part features.Also, many computer-drawn parts are more difficult to understand, because often, only one surface is shown and it may be the inside or outside surface. Computer drawings often show all lines, including hidden features, as solid lines instead of dotted lines. This leads to interpretation errors, which in turn leads to errors in the building of the die.To better understand complex part shapes, it is helpful to build a sight model of the part using sheet wax, rubber skins or wood models. Dimensional accuracy is not critical for these models, as they are used primarily to visualize the part. Rubber skins and sheet wax also can be used to develop preform shapes and to develop the best positions for the part as it passes through each die operation in the progressive die.Starting Material in the DieCare must be taken to ensure that the strip is started correctly into the die. Improper location of the lead end of the strip will do more damage to the die in the first 10 strokes of the press than the next 100,000 strokes. Lead-in gauges must have large leads and a ledge to support the lead end of the coil strip when it is inserted into the die. Large leads on the gauges are important so that the die setup person does not have to reach into the die, as well as for minimizing the time required to start a new strip into the die. Also, one gauge should be adjustable to compensate for variation in strip width,.The position of the lead edge of the strip is critical for the first press stroke, and must be determined for every die station to ensure that piercing punches do not cut partial holes in the lead edge. This could cause punch deflection or result in a partial cut with trimming punches, which can result in an unbalanced side load as the strip passes through the die. Any of these conditions can result in a shift of the punch-to-die relationship that may cause shearing of the punches.Improper location of the lead edge of the strip also can result in an unbalanced forming or flanging condition that can shift the upper die in relation to the lower die. Heels should be required to absorb this side load, particularly when forming thick materials.A pitch notch and pitch stop can provide a physical point to locate and control the lead edge of the strip. Brass tags or marker grooves also can provide a visual location, but these are not as accurate or as effective as a pitch notch stop. The press can be prevented from operating with either a short feed or over feed by mounting the pitch stop on a pivot and monitoring it with a limit switch.Part Lifters and Part Feeding28 外舌止动垫圈冲孔落料剪切级进模具设计Progressive dies often require the strip to be lifted from the normal die work level to the feed level before strip feeding takes place. This can vary from a small amount-to clear trim and punching burrs-to several inches to allow part shapes to clear the die.Normally, all lifters should rise to the same height so that the strip is supported in a level plane during forward feed. The strip must not sag between lifters; otherwise parts will be pulled out of their correct station location spacing. Bar lifters provide good support and are better than spring pins or round lifters notched on one side of the strip.Often, a good bar lifter system allows higher press speeds because feed problems are eliminated. Although the initial cost is more than round lifters, performance is better and setup time is reduced.As the strip is started into the lead-in gauges, the strip should be able to feed automatically through all the following die stations without requiring manual alignment in each set of gauges and lifters. The strip also must be balanced on the lifters so that it does not fall to one side during feed. A retainer cap can be mounted on the top of the outside bar lifters. This produces a groove that captures the strip during feed and prevents strip buckling.Gauging and lifter conditions can be simulated during die design by cutting a piece of transparent paper to the width of the strip. The lead edge of the paper is placed over the plan view of the die design at the location the strip will be for the first press stroke. Then the paper is marked with all of the operations that will be performed at the first die station-for example, notching and punching. The paper strip then is moved to the second station on the drawing and the operations for both the first and second stations are marked. This process is repeated through all the die stations to illustrate what the real part strip will look like when it is started into the die and helps determine the adequacy of gauges and lifters.To transport the strip from one station to the next in a progressive die, some material must be left between the parts on the strip. This carrier material may be solid across the width of the strip, or may be one or more narrow ribbons of material, see part carriers sidebar.Many parts require the edge of the blank to flow inward during flanging, forming or drawing operations. This may require the carrier to move sideways or flex vertically, or both, during the die operation. A flexible loop must be provided in the carrier to allow flexing and movement of the blank without pulling the adjacent parts out of position, Fig. 2.Another concern is the vertical breathing of parts in die stations during the closing and opening of the die in the press stroke. For example, vertical breathing takes place between the draw stations of parts requiring more than one draw to complete the part, Fig. 3. Vertical breathing also occurs when a flange is formed up in a progressive die station that is adjacent to stations that use upper pressure pads to hold the adjacent parts down.It is important to consider the flexing of the carrier during the upstroke of the press as well as during the downstroke because the action may be different. This can be simulated in the design stage by making an outline of the cross-section of the part, the pressure pads and the stationary-mounted steels on separate sheets of paper and then placing these sheets on top of each other in layers over the die section views. This will show the relative position of the part as the die closes and during the reverse action as the die ram opensPart CarriersA common feature in all progressive stamping dies is the material that transports the parts from station-to-station as it passes through the die. This material is known by various terms, such as carrier, web, strip, tie, attachment, etc. In this instance, we will use the term carrier, of which there are five basic styles:Solid carrier-All required work can be accomplished on the part without preliminary trimming. The part is cut off or blanked in the final operation.Center carrier-The periphery of the part is trimmed; leaving only a narrow tie near the middle of the part. This permits work to be performed all around the part. A wide center carrier permits trimming only at the sides of the part.Lance and carry at the center-The strip is lanced between parts, leaving a narrow area near the center to carry the parts. This eliminates scrap material between parts.Outside carriers-The carriers are attached to the sides of the part so that work can be done to the center of the part.One side carrier-The part is carried all the way or part of the way through the die with the carrier on one side only. This permits work on three sides of the part.The type or shape of the carrier will vary depending on what the part requires as it progresses from station to station in the die. The stock width may be left solid if no part material motion is required during die closure or it can be notched to create one, two or even three carriers between the partsThe carriers can be straight, form a zig-zag pattern or have loops between the parts depending on where attachment points to the part are available or to accommodate 28 外舌止动垫圈冲孔落料剪切级进模具设计whatever clearance may be required by the die tooling. As the part is formed, flanged or drawn into a shell, the carrier may have to move sideways or up and down as the die closes and opens.When die operations cause the carrier to move, it usually will be required to flex or stretch. Regardless of carrier flexing, their key function is to move the parts close enough to the next station so that pilots, gauges and locators can put the parts into their precise location as the die closes.If the carrier acquires a permanent stretch, the parts may progress too far to fit on the next station, or in the case that the die has two carriers, one carrier may develop permanent stretch with no stretch in the other carrier. This will create edge camber in the strip, causing it to veer to one side. This results in poor part location.A stretched carrier can be shortened to its correct length by putting a dimple in the carrier. If a center carrier or one-sided carrier develops camber, the strip can be straightened by dimpling or scoring one side of the carrier. Construct the dimple and scoring punches so that they are easily adjusted sideways for position and vertically for depth.as it is delivered from the coil can cause the strip to bind in the running gauges that guide the material during the feed cycle. This binding may cause the carriers to buckle, which results in short feeds. It often helps to relieve the guide edge of the gauges in between stations and have tighter gauge control at the work station.Another option is to eliminate camber by trimming both sides of the material in the beginning of the die. By adding stops at the end of these trim notches they can be used as pitch control notches to prevent progression overfeed.Optimum Carrier ProfileThe optimum carrier profile is affected by some of the following conditions:Space available between parts: Try to keep the carriers within the stock width and pitch required for the blank. If this is not possible then the designer must add to the width and/or the progression of the material to provide adequate carrier room.Attachment points to the part: If two carriers are used, try to keep the profile and length of the carriers somewhat the same so that any effect of carrier flexing is close to being balanced. Clearance for punch and die blocks: Punch blocks that extend below the stock or die blocks that extend above the stock when the die closes will require clearance in relation to the parts and the carriers. If a loop of the carrier interferes with blocks it may be possible to form the loop vertical to provide clearance. Thickness of the material: Large parts with thin material may require stiffener beads to add strength to the carrier for stock feeding. Another stiffening and strip guiding method is to lance and flange the edge of the stock, which also can be used as a progression notch.The total of the strip: Heavy parts in long dies require more force to push the strip through the die. However, the weight is usually thick material, and thick material is stiffer than thin material. As a rule of thumb, flexible carriers for materials of 0.020 in. to 0.060 in. are about 3/16 in. to 5/16 in. wide. For stock thicknesses above and below this thickness range, carrier width is a best judgment call. Depending on all the die factors involved, under normal conditions the carriers should be a consistent width for their full length, but especially in the area of flexing. Since nearly every stock feeder pushes material through the die rather than pull the material, the carrier must be strong enough to push the parts all the way through the die.A detection switch actuated by a complete feed of the strip at the exit of the die can detect buckling. If action of the die during closure or opening of the press requires the carriers to flex, design the carrier with loops that are long enough to flex without breaking, but still strong enough to feed all the parts to their full progression. If two flex carriers are not strong enough to feed the strip, consider three carriers.Try to make the radii in flex loops as large as practical. Sharp corners or small radii will concentrate stress of flexing, making it the first point to fracture during flexing of the carrier. Also avoid any steps or nicks in the edges of the carrier.Upper Pressure PadsBecause of size or function, many progressive dies require two or more pressure pads in the upper die. Each may require a different travel distance to perform the work in the individual die station, such as trimming or forming or drawing.However, the upper pressure pads often are used to push the material lifters down by pressing against the strip, which pushes the lifters down. In this situation, all of the pressure pads that push material lifters down should have the same travel distance. If the upper pressure pads travel different distances, the strip will not be pushed down evenly. This can pull adjacent parts out of the progression, making it difficult to locate the parts in their proper station position after the feed cycle.If the part requires a flange to be formed up, the part carrier must have a flex loop to allow for vertical breathing of the part or provide a pressurized punch/pad with the same travel as the other pressure pads. The force required by the pressurized 28 外舌止动垫圈冲孔落料剪切级进模具设计punch/pad has to be adequate to form the flanges up during the downstroke while the punch/ pad is in the extended position. This keeps the strip from breathing vertically as it is pushed down from the feed level to the normal work level.When the strip reaches the work level, the pressurized punch/pad stops its downward motion while the upper die continues down for punching, trimming, down flanging and other operations. Springs or nitrogen cylinders can be used for pressure in these pressurized punch/ pad stations, but they must have enough preload force to form the flanges up and to collapse the lower gripper pad before the upper punch/ pad recedes.级进模稳态运行能力的提升级进模稳态运行能力的提升级进模是一种成本低廉且安全的零件制造方法,. 精心设计模具结构可确保最佳性能。一副级进模在一次冲压动作中可在模具不同工位进行不同的冲压操作。这些在通过模具的带料上同时进行的冲压动作制造出零件。每个工位可进行一个或多个操作,但要生产出完整的零件条料必须经过每一个工位。而零件依靠零件之间的载体输送到各个工位,并在最后一个工位进行切除。为了使模具性能最佳,在设计和制造级进模具时,必须考虑以下五个方面:研究零件送料方式零件顶出和送进设计零件载体压料装置零件排样零件排样设计级进模首先必须正确地理解零件图,必须考虑材料、重要表面、孔的尺寸和和位置、毛刺方向、材料纤维方向、表面粗糙度和其他因素。模具设计要求设计者必须对零件有透澈的了解,特别是对形状和轮廓不规则的零件。然而,现代计算机绘图使得零件数据可以直接下载到设计者的电脑上,使得设计者可能不熟悉零件重要特性。另外,因为计算机绘图经常出现这种情况,图上只显示一个面,可能是内表面也可能是外表面,使得很多计算机绘制的图形难以看懂。电脑绘图经常显示所有的线条,包括隐藏部分,为实线而非虚线,这导致错误,进而导致模具结构错误。为了更好地看懂复杂零件外形,可用蜡板,橡胶皮或者木板做成具有零件某个视图方向上的外形的模型。模型不要求精确的尺寸,其主要是用来形象地表示零件形状。也可以用这些模型来决定应该在级进模的哪个工位成形零件哪个部分的外形。材料送进材料送进必须确保条料准确地进入模具。如果条料导向错误,那么最初的 10 次冲压动作对模具造成的损伤可能比接下来的 100000 次冲裁还大。当卷料送进入模具时必须顺利导向且有限位装置。良好的导向能力时非常重要的,因为这样操作人员就不必将手伸入模具,而且可以缩短接上下一卷材料所需的时间。除此之28 外舌止动垫圈冲孔落料剪切级进模具设计外,导向装置必须时可调的以适应条料宽度的变化。对第一次冲裁而言条料送进位置非常重要,必须确定条料在每个工位的送进位置的以保证凸模不冲偏,会导致冲头变形或切不完整,可能造成条料不平衡送进时单侧受力。任一种可能都会造成凸凹模错位使得冲头受剪切损坏。条料送进不当成形时可能导致偏载或者边缘卷起,影响上下模之间的相对位置。垫块必须能够承受这些载荷,特别是成形较厚材料时更应如此。一个步距的凹口或止动销可作为定位点控制条料送进位置,黄铜标签或标记槽也提供了视觉定位 ,但是这些都不够准确,不够有效。通过在将步距限位销安装在支点上,并用限位开关监控以防止条料送进不到位或送进过多以保护压力机。零件顶出和送进零件顶出和送进级进模通常要求将条料抬高到距模具工作位置一定高度水平线上,使得条料送进到指定位置,而与清理废料和毛刺或者利用制件外形清理模具无关。正常情况下,所有抬高装置必须上升到同一高度使条料在送进过程中保持水平。条料不能由凹陷,否则零件会被从正确位置拔出。相对于安排在条料侧面的弹簧销和球头抬料销,杆式抬料装置效果更好。多数时候一旦材料
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。