新人教版七年级下册数学平方根教案_第1页
新人教版七年级下册数学平方根教案_第2页
新人教版七年级下册数学平方根教案_第3页
新人教版七年级下册数学平方根教案_第4页
新人教版七年级下册数学平方根教案_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、如皋市江安镇滨江初级中学七年级数学备课组主备人:张剑峰课题6.1平方根(第1课时)【教学目标】1.通过实际生活中的例子理解算术平方根的概念;2.会求非负数的算术平方根并会用符号表示.【教学重点】算术平方根的概念和求法【教学难点】算术平方根的求法集体智慧【活动方案】个性调整情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想小,一一一一一一 2裁出一块卸积为25dm的止万形回布,回上自己得意的作品参加比赛,这块止方形回布的边长应取多少?活动一认识算术平方根1 .探索:学生能根据已有的知识即止方形的面积公式:边长的平方等方面积,求出止方形回布的边长为5dm。接下来教师可以再深入地引导此问题:如

2、果止方形的面积分别是 1、9、16、36、-4 ,25那么止方形的边长分别是多少呢?2学生会求出边长分别是 1、3、4、6、工,接卜5来教师可以引导性地提问:上面的问题它们有关同点 吗?它们的本质是什么呢?这个问题学生可能总结 不出来,教师需加以引导。上面的问题,实际上是已知一个正数的平方,求这个正数的问题。2 .归纳:算术平方根的概念:一般地,如果一个正数 x的平方等于a,即x2=a 那么这个正数x叫做a的算术平方根。算术平方根的表示方法:a的算术平方根记为 后,读作“根号a”或“二 次很号a”,a叫做被开方数。活动二求非负数的算术平方根例1、求下列各数的算术平方根:497 100(3)1-

3、 0.0001 0649解:因为102 100,所以100的算术平方根是10,即加0 10;7 2 4949 , 一、,7因为(7)2 型,所以竺 的算术平方根是 7 ,864648即隹76 648因为1' ,()2,所以1的算术平方根99 399因为0.0120.0001 ,所以0.0001的算术平方根是 0.01 ,即0.00010.01 ;因为020 ,所以0的算术平方根是0 ,即 40 0。注:根据算术平方根的定义解题,明确平方与开平方互为逆运算;求带分数的算术平方根,需要先把带分数化成 假分数,然后根据定义去求解;0的算术平方根是0.由此例题教师可以引导学生思考如下问题:你能

4、求出一1,-36, - 100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有 1个;0的算术平方根是0;负数没有算术平方根.即:只有非负数有算术平方根,如果x ja有意义,那么a 0,x 0.注:a 0且Ji 0这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。例2、求下列各式的值:(1) 414(2)棉 3 3) J( 11)2 (4) V62分析:此题本质还是求几个非负数的算术平方根。解:(1) <42产7 ,819(3) 7( 11)2<11211(4) V62 6例3、求下列各数的算术平方根: 32 43(3)( 10)2解:

5、(1)因为329,所以V32(4)1106V93;因为 43 64 82,所以 v143 V64 8;因为(10)2100 102,所以 J( 10)2痴0 10;根据学生的学习能力和理解能力可进行如下总结:1、由 V32 3,府 6,可得 J丁 a(a 0)2、由 « 11)2 11, J( 10)2 10,可得、a2 a(a 0)教师需强调a 0时对两种情况都成立.课堂小结:1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根?【课堂检测】1 .算术平方根等于本身的数有.2 .求下列各式的值.行,磺,右,(7:3 .求下列各数的算术平方根.2

6、1 290.0025, 121,42,( 一) , 12164.已知Ja 1 vb 10,求a 2b的值.课题6.1平方根(第2课时)【教学目标】1.了解无限不循环小数的特点;会用算术平方根的知识解决实际问题;2.通过探究22的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想.【教学重点】 认识无限不循环小数的特点,会估算一些数的算术平方根。【教学难点】 认识无限不循环小数的特点,会估算一些数的算术平方根。集体智慧【活动方案】个性调整39活动一讨论22的大小怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?如图,把两个小正方形沿对角圆剪开,将所得前4个直角三角形拼在一起,就得到一

7、个面积为2的大正方形。你知道这个大正方形的边长是多少吗?设大正方形的边长为x ,则x22 ,由算术平方根的意义可知x 亚, 所以大正方形的边长为 22。由上面的实验我们认识了 J2 ,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论22的大小。因为 121,224, 12 <2 <22,所以 1<“'2 <2.因为 1.42 1.96, 1.522.25 ,所以 1.4v J2 V1.5。因为 1.4121.9881, 1.4222.0164 ,所以 1.41 v<2 v 1.422 2因为 1.4141.999396, 1.4152.002225

8、 ,所以 1.414 v 盘 v 1.415如此进行下去,我们发现它的小数位数无限,且 小数部分不循环,像这样的数我们成为无限/、循环小数。%泛=1.41421356注:这种估算体现了两个方向向中间无限逼近的 数学思想,学生 A次接触,不好理解,教师在讲解 时速度要放慢,可能需要讲两遍。0=1.41421356,是个无限/、循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还启很多,比如J3,J5,J7等,圆周率兀也是一个无限/、循环小数。活动二探索规律大多数计算器都有“键,用它可以求出一 个有理数的算术平方根或近似值。例1、用计算器求下列各式的值:(1)y;3136 ; (2)

9、2 (精确到 0.001)解:(1)依次按键年厂3136 ,显示:56.所以痴36 56 依次按键,2=,显示:1.414213562,这是一个近似值。所以 J2 1.414.注:不同品牌的计算器,按键的顺序可能有所不同。例2用计算器计算 近, 而正,J300 ,J30000的近似值.写出你发现的规律.你能利用发现的规律写出痴的值吗?学生通过计算器可求出(1)的答案,依次是:0.25,0.791,2.5,7.91,25,79.1,250。从运算结果可以发现,被开方数扩大或缩小100倍时,它的算术平方根就扩大或缩小10倍。由J3 1.732可得J0.03 0.1732,300 17.32, J3

10、0000173.2,由J3的值不能求出J30的值,因为规律是被开方数扩大或缩小100倍时,它的算术平方根才扩大或缩小 10倍,而3到30扩大的是10倍,所以不能由此规律 求出。此题学生可独立完成。活动三实际应用:例1小丽想用一块面积为 400cm2的止方形纸片,沿着边的方向裁出一块面积为 300cm2的长方形纸片,使它的长与宽之比为 3:2,不知道能否裁出来, 正在发愁,小明见了说:“别发愁,一定能用一块面 积大的纸片裁出一块面积小的纸片。”你同意小明的 说法吗?小丽能否用这块纸片裁出符合要求的纸片 吗?分析:学生一般认为一定能用一块面积大的纸片 裁出一块面积小的纸片。通过计算和讲解纠正这种错

11、 误的认识。解:设长方形纸片的长为 3xcm,宽为2xcm。根据边长与面积的关系可得:3x 2x 300,6x2 300, x2 50, x 痴长方形纸片的长为 3,50cm。因为50 > 49 ,所以 <50 > 7 ,从而 3V50 > 21即长方形纸片的长应该大于 21cm,而已知正方 形纸片的边长只有 20cm,这样长方形纸片的长将大 于止方形纸片的边长。答:不能同意小明的说法。小丽不能用这块正方 形纸片裁出符合要求的长方形纸片。课堂小结:1 .被开方数增大或缩小时,其相应的算术平方根也 相应地增大或缩小,因此我们可以利用夹值的方法来 求出算术平方根的近似值;2

12、 .利用计算器可以求出任意正数的算术平方根的近 似值;3 .被开方数扩大(或缩小)与它的算术平方根扩大 (或缩小)的规律是怎样的呢?4 .怎样的数是无限不循环小数?课堂检测1.估计大小:(1)、140 与 12 21_2与0.522.已知 J21.414求 J002 , <,0.0002 , Vf200 ,V 20000 的值。课题6.1平方根(第3课时)【教学目标】1.了解平方根的概念,会用根号表示正数的平方根;2. 了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根【教学重点】 了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系【教学难点】 平方根与算术平方根的区

13、别和联系集体智慧【活动方案】个性调整活动一思考归纳,引入概念如果一个数的平方等于 9,这个数是多少?学生思考阱讨论,使学生明白这样的数有两个,它们是3和一3。受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数。注意(一3) 2=9中括号的作用。又如:x2=A,则x等于多少呢?25使学生完成课本165页的填表练习。填表:2 x1163649425x给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果 x2=a,那么x叫做a的平方根。求一个数的平方根的运算,叫做开平方。例如:土 3的平方等于9, 9的平方根是土 3,所以平方与开平 方互为逆

14、运算。观察:课本45页中的图6. 1 2。图6. 12中的两个图描述了平方与开平方互为逆运算的运算 过程,揭示了开平方运算的本质。让学生体验平方和开平方的互逆关系,并根据这个关系说出 1,4, 9的平方根。注意:这阶段主要是让学生建立平方根的概念,先不引入平方 根的符号,给出的数是完全平方数。例1 (课本45页的例4)求卜列各数的平方根:2(1) 100; ( 2) 16 ; (3) 0. 25.建议:教师要规范书写格式。活动二讨论归纳,深化概念按照平方根的概念,请同学们思考并讨论下列问题:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?建议:可引导学生通过观察 x2 = a中的a和

15、x的取值范围和取 值个数得出。注:学生刚开始接触平方根时,有两点可能不太习惯,一个是正 数有两个平方根,即正数进行开平方运算有两个结果,这与学生过 去遇到的运算结果惟一的情况有所不同,另一个是负数没有平方 根,即负数不能进行开平方运算,这种某数不能进行某种运算的情 况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外)。教学时,可以通过较多实例说明这两点,并 在本节以后的教学中继续强化这两点。引入符号:正数a的算术平方根可用表示;正数a的负的平方根可用 ja表示。例如思考:人表示什么意思,这里的 x可取什么样的数呢?而对于一又该怎样理解呢?这里的 x又可取什么样的数呢?活

16、动三应用知识例2 下列各式是否有意义,为什么?(1) J3 ;(2)1 3 ;(3)q(3)2;(4)J2.10例3下列各数有平方根吗?如果有,求出它的平方根;如果没有,说明理由。 64, 0, ( 4) 2, 10 2 如果有要用平方根的符号来表示。 例4 求下列各式的值:(1)736;(2) 而81 ;(3) 产.v 9建议:要让学生明白各式所表示的意义;根据平方关系和平方根概 念的格式书写解题格式.平方根和算术平方根的概念是本章重点内 容,两者既有区别又有联系。区别在于正数的平方根有两个,而它 的算术平方根只有一个;联系在于正数的负平方根是它的算术平方 根的相反数,根据它的算术平方根可以

17、立即写出它的负平方根,因 此我们可以利用算术平方根来研究平方根。小结:什么叫做一个数的平方根?正数,0,负数的平方根有什么规律?怎样求出一个数的平方根?数a的平方根怎样表示?【课堂反馈】(1) 断下列说法是否正确:0的平方根是0;(2) 1的平方根是1;(3) -1的平方根是-1 ;(4) 0.01的平方根是 0.1的一个平方根2.填表:x8-835352 x160.363.计算下列各式的值:4.平方根概念的起源与几何中的正方形有关.如果一个正方形的面积为A,那么这个正方形的边长是多少?课题6.2立方根【教学目标】1.了解立方根的概念和表示方法;2 .会求一个数的立方根;3 .通过探讨一个数的

18、立方根与它的相反数的立方根的关系,可以将求负数的立方根转化为求正数的立方根的问题,培养学生的转化思想【教学重点】立方根的概念和求法【教学难点】 立方根的求法。集体智慧【活动方案】个性调整情景引入:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少?活动一探索归纳认识立方根1 .探索:设这种包装箱的边长为 xm,则x327 ,这就是要求一个数,使它的立方等于27.因为33 27,所以x 3,即这种包装箱的边长应为 3m。2 .归纳:立方根的概念:一般地,如果一个数的立方等于 a,那么这个数叫 做a的立方根或二次方根。立方根的表示方法:如果x3 a ,那么x叫做a的立方根。

19、记作x Va , Va读作三次根号a。其中a是被开方数,3是根指数,3'a中的根指数3不能省略。开立方的概宓:求一个数的立方根的运算,叫做开立方。开立方与立方互为逆运算,可以根据这种关系求一个数的立方根。3 .探索立方根的特点:根据立方根的意义填空,并思考正数、0、负数的立方根各有什么特点?(1)因为23 8 ,所以8的立方根是;(2)因为()3 0.125 ,所以0.125的立方根是;(3)因为()3 0 ,所以0的立方根是;(4)因为()38,所以 8的立方根是 ;(5)因为()3-8-,所以-8的立方根是2727学生独立完成后,教师要引导学生从正、负数和零三方面去归纳总结立方根的

20、特点。归纳:正数的立方根是正数;负数的立方根是负数;0的立方根是0.4 .探究互为相反数的两个数的立方根的关系:填空:因为3/8, V8 ,所以厂8 配;因为 3727 , V27 ,所以 厂27 3'27由上面两个例子可归纳出:一般地,va3/a o注:这个关系对于正数、负数、零都成立。求负数的立方根时,可以先求出这个负数的绝对值的立方根,然后再确它的相反数。活动二应用新知解题例1求下列各式的值:(1) V64(2) V 125分析:根据立方根的意义求解。解:(1)幅 4(2) 3; 125(3)2764例2求下列各式中x的值:(1)x30.008(2)x33(3)(x 1)3分析:

21、此题的本质还是求立方根。解:(1) x30.0083 0.0080.2(2) x327(3) (x1)3例3用计算器计算Vw3310 3 , 310 6 的值,你发现了什么?并总结出来。利用你前面发现的规律填空:已知为216 6,则处0.0002163 216000解:R10r 10 , v106 102, 3/109 103, 31P 103 1010由此发现:一个数扩大或缩小1000倍时,它的立方根扩大或缩小10倍。*0.0002160.06, 3/21600060。课堂小结1 .立方根和开立方的定义.2 .正数、0、负数的立方根的特征.3 .立方根与平方根的异同.1 .立方根等于本身白数

22、是 ;2 .如果 3/1 a 1 a,则 a .3 . J64的立方根是,(4)3的立方根是 - .4 .已知3x 16的立方根是4,求2x 4的算术平方根5 .已知 xy3 4 ,求 V(x 10)3 的值.6 .比较大小:(1)矽.2 立一"2.1 ,课题6.3实数(第1课时)【教学目标】1.了解无理数和实数的概念以及实数的分类;2.知道实数与数轴上的点具有一一对应的关系【教学重点】了解无理数和实数的概念【教学难点】对无理数的认识集体智慧【活动方案】个性调整活动一引入无理数3 47 9 5利用计算器把下列有理数 3, 3,上,上_,5写成小数的形式,它5 8 11 9们有什么特征

23、?发现上面的有理数都可以写成有限小数或无限循环小数的形式即:3479533.0, 0.6,5,875 ,0.81,058119归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无 限循环小数的形式.反过来,任何有限小数或者无限循环小数也都是有理数。通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,把无限不循环小数叫做无理数 .比如J2, J5,3/3等都是无理数。3.14159265也是无理数。活动二认识实数1 .实数的概念:有理数和无理数统称为实数。2 .实数的分类:按照定义分类如下:整数有理数 八皿(有限小数或无限循环 小数)实数分数无理数(无限/、循环小数)按照正

24、负分类如下:丁物止后理数正实数负无理数实数零行+册负有理数久“数负无理数3 .实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点表示出来吗?,5活动1:直径为1个单位长度的圆其周长为兀, 把这个圆放在数轴上, 圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点, 这个点的坐标就是兀,由此我们把无理数兀用数轴上的点表示了出 来。活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是 22以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示 J2,与负半轴的交点就是J2。事实上通过这种做法,我们可以把每一个无理数都在数轴上

25、表示出来,即数轴上有些点表示无理数。归纳:实数与数轴上的点是一一对应的。即没一个实数都可以用 数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。对于数轴上的任意两个点,右边的点所表示的实数总比左边 的点表示的实数大。活动三应用新知例1 下列实数中,无理数有哪些?22 , ,0.73, 3.14, V5 , 0, 10.12112111211112 ,17兀,(4)2解:无理数有:J2, 3/5,兀注:带根号的数不一定是无理数,比如乳 4)2 ,它其实是有理数4;无限小数不一定是无理数,无限不循环小数一定是无理数。 比如 10.12112111211112。例2把无理数芯在数轴上表示出来

26、。分析:类比J2的表示方法,我们需要构造出长度为J5的线段,从而以它为半径画弧,与数轴正半轴的交点就表示J5。解:如图所示由勾股定理可知:OB 5 ,以原点。为圆心,以OB长度为半径画弧,与数轴的正半轴交于点C ,则点C就表示近。课堂小结【课堂检测】1 .判断下列说法是否正确:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数;所有的有理数都可以用数轴上的点来表示,反过来,数轴上 所有的点都表示有理数;反过来,数轴上的所所有实数都可以用数轴上的点来表示, 有的点都表示实数。2 .把下列各数分别填在相应的集合里:有理数集合8,3 .比较下列各组实数的大小:(1)4,屈(2)兀,3.1416石2, I3手I3课题6.3实数(第2课时)【教学目标】1.掌握实数的相反数和绝对值;2 .掌握实数的运算律和运算性质 .3 .通过建立有理数的一些概念和运算在实数范围里也成立的意识,让学生了解在这种数的扩充中所体现的一致性,让学生充分感

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论