资源目录
压缩包内文档预览:(预览前20页/共47页)
编号:171722763
类型:共享资源
大小:8.95MB
格式:ZIP
上传时间:2021-12-04
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
三维UG
风笼式选粉机
总体
及其
传动
设计
三维
UG
- 资源描述:
-
喜欢这套资料就充值下载吧。资源目录里展示的都可在线预览哦。下载后都有,请放心下载,文件全都包含在内,有疑问咨询QQ:414951605 或 1304139763
- 内容简介:
-
编 号 无锡太湖学院毕业设计(论文)相关资料题目: 风笼式选粉机总体及其传动设计 信机 系 机械工程及自动化专业学 号: 0923080 学生姓名: 王 标 指导教师: 林承德 (职称:教授 ) (职称: )2013年5月25日无锡太湖学院本科毕业设计(论文)诚 信 承 诺 书本人郑重声明:所呈交的毕业设计(论文) 风笼式选粉机的总体及其传动设计 是本人在导师的指导下独立进行研究所取得的成果,其内容除了在毕业设计(论文)中特别加以标注引用,表示致谢的内容外,本毕业设计(论文)不包含任何其他个人、集体已发表或撰写的成果作品。 班 级: 机械92 学 号: 0923080 作者姓名: 2013 年 5 月 25 日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表 无锡太湖学院毕业设计(论文)开题报告题目:风笼式选粉机总体及传动设计机电系 机械工程及其自动化专业学 号: 0923080 学生姓名: 王标 指导教师: 林承德 (职称:教授 ) (职称: ) 2013 年 5 月 25日 课题来源课题来源于生产实际。课题研究的主要内容是配套圈流系统水泥磨3.512m,Q70-90t/h的风笼式效选粉机,重点设计传动与壳体部件。选粉机是水泥工业闭路循环粉磨系统中的一个重要组成设备,是随干法闭路粉磨技术的进步而发展的。先后产生了第一代普通撒料式空气选粉机,第二代旋风式选粉机,第三代以OSepa选粉机为代表的笼式选粉机称为高效选粉机。在此基础上不少公司推出了类似的笼式选粉机。国外品牌有:Sturtvent公司的SD选粉机、Krupp polysius公司的sepol选粉机、KHD公司的SKS-Z选粉机、FLS公司的Sepax选粉机、Chr. pfeifer公司的QDK选粉机、O&D公司的横流选粉机等。国内产品有由天津院、南水院等引进的OSepa选粉机、合肥院的DS、HES选粉机、北京院的高效选粉机等。虽然笼式高效选粉机以其卓越的性能得到人们的肯定,但它结构复杂,加工制造费用较高,还要增加收集成品的高浓度袋式收尘器,并且操作要求及管理要求也相应较高。我国建材行业针对我国的国情,在选粉机的发展上进行了多次的改进,也发展了各种各样的高效选粉机,如高效涡流、NHX型高效转子式、HFS型和DS型组合式高效选粉机等,都取得了一些效果。还有的将第一、二代选粉机稍加改造,分别称为离心式高效选粉机和旋风式高效选粉机等。转子式选粉机也是其中一个杰出的代表。 转子式选粉机是在旋风式选粉机的基础上发展而来,投资较省,选粉效率较高。但随着我国节能降耗的不断深入,对于粉磨系统来说,粉磨效率要求更高,电耗更低,成本更低,这就要求组成粉磨系统的重要部分选粉机。优秀的选粉机要求具有良好的分散功能、最先进的分级机理、廉价而实用的收集装置。把我国目前使用较广泛的转子式选粉机和逐渐被大家认可的OSepa选粉机,以先进的悬浮分散技术、预分级技术、平面涡流分级技术以及内循环收集技术统一在一起,研制开发了一些应用于先进工艺流程中的新型组合式选粉机。与此同时出现其它高效节能技术,例如:KX型高效二次风转子选粉机,KXN型高效O-Sepa选粉机,KXZ型组合式选粉机,煤磨动态选粉机,新SZGX型选粉机,新型高效双转子选粉机,新型空气喷射型选粉机等。 科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)选粉机是粉体作业中的粉体分级设备,与粉磨设备组成圈流粉磨系统,因此选粉机的工作质量和工作效率对粉磨作业的效果有着直接的影响。本项设计是在国内现有的旋风式选粉机及O-SEPA选粉机的基础上进行改进设计,主要是为了提高选粉机的选粉效率和对不同细度要求的适应。以适应不同水泥细度的球磨机粉磨系统的配套要求,以提高粉磨系统的产量,实现增产、节能的效果。研究内容在国内现有的旋风式选粉机及O-SEPA选粉机的基础上进行改进设计,根据设计对象的工作原理分析进行结构及相关工作参数的分析,提出合理的设计方案、工作参数及结构形式,进行受力分析和强度计算等,能够熟练运用机械设计方面的手册和查阅相关资料,能运用二维和三维设计软件绘制工程图。拟采取的研究方法、技术路线、实验方案及可行性分析随着建筑业的发展,以及水泥颗粒方面的研究,人们对水泥颗粒的要求也来也科学,同时对相应的水泥工业的粉磨系统业提出了相应的要求。粉磨系统由高能耗的开路粉磨系统进化到闭路粉磨系统,而作为闭路粉磨系统的一个重要的配套设备选粉机也是经过了三代的改进。选粉机虽然本身并无粉碎物料的作用,但其性能好坏直接影响到系统的运行状态,即影响到系统的粉磨效率、产量及能耗。因此,高效选粉机技术的研究具有重要意义。高效选粉机综合性能好,但系统投资过大,而其他类型的选粉机性能又不很理想,特别是在生产比表面积3502/kg上水泥时效果比较差。本文重点研究的针对目前收尘设备投资较大,选粉室内涡流不稳等进行对高效选粉机的改进。研究计划及预期成果研究计划:2012年11月12日-2012年12月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2013年1月11日-2013年3月5日:填写毕业实习报告。2013年3月8日-2013年3月14日:按照要求修改毕业设计开题报告。2013年3月15日-2013年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2013年3月22日-2013年4月11日:MATLAB程序设计。2013年4月12日-2013年4月25日:GUI设计。2013年4月26日-2013年5月21日:毕业论文撰写和修改工作。预期成果:选粉室采用笼式转子结构,能有效地控制细度。笼式转子的导入,对粗颗粒能进行多次撞击,改善成品的颗粒级配。延长分级时间,选粉室的高度增加,增加了物料选粉的时间,又增加了旋风筒的高径比,增强了选粉机对十微米以下细粉的收集能力。物料在分级室内,在较强的旋流及径向剪切力的作用下,物料分散性好且强度高,分级效率高。分选物料都经过分级界面分明的选粉区,各部分的选粉条件稳定,故选粉机的分级精度高。细度调节方便可靠,且调节范围较宽,可通过调节主轴转速及风量灵活控制。可使开流磨增产40-60%,选粉效率可达85%以上。 在相同产量的情况下,与高效涡流式选粉机相比效率相当,但可降低系统投资20-30%;与旋风式及高效离心式选粉机相比,不但可减少设备规格,并可提高效率20-40%。特色或创新之处本设计收尘设备改为旋风筒收尘,并对旋风筒进行了改进以提高收尘效果。壳体设计中去掉了二次和三次风,并调整了一次风的位置以得到稳定的涡流。已具备的条件和尚需解决的问题 已具备的条件:电脑;相关开发软件;部分技术资料。 尚需解决的问题:学习UG软件;确定产品的结构尺寸和技术要求;逆向设计建立三维数模;总成运动仿真校核。指导教师意见 指导教师签名: 年 月 日 教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文译文 tape transport Among the methods of material conveying quantity, belt conveyors play a very important part in the reliable carrying of material over long distances at competitive cost. Conveyor systems have become larger and more complex and drive systems have a l so been going through a process of evolution and will continue to do so. Nowadays, bigger belts require more power and have brought the need for larger individual drives as well as multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine). The ability to control drive acceleration torque is critical to belt conveyors performance. A efficient drive system should be able to provide smooth, soft starts while maintaining belt tensions within the specified safe limits. For load sharing on multiple drives. torque and speed control are also considerations in the drive systems design. Due to the advances in conveyor drive control technology, at present many more reliable. Cost-effective and performance- driven conveyor drive systems covering a wide range of power are available for customers choices1.1 tape transport on conveyor drive technologies1. 1 The belt transmission modeFull-voltage starters. With a full-voltage starter design, the conveyorhead shaft is direct-coupled to the motor through the gear drive. Directfull-voltage starters are adequate for relatively low-power, simple- Profile conveyors. With direct full-voltage starters. no control is provided for various conveyor loads and. depending on the ratio between full- and no-load power requirements, empty starting times can be three or four times faster than full load. The maintenance-free starting system is simple, low-cost and very reliable. However, they cannot control starting torque and maximum stall torque; therefore. they are limited to the low-power, simple-profile conveyor belt drives. Reduced-voltage starters. As conveyor power requirements increase,controlling the applied motor torque during the acceleration period becomes increasingly important. Because motor torque is a function of voltage, motor voltage must be controlled. This can be achieved through reduced-voltage starters by employing a silicon controlled rectifier (SCR). A common starting method with SCR reduced-voltage starters is to apply low voltage initially to take up conveyor belt slack. and then to apply a timed linear ramp up to full voltage and belt speed. However, this starting method will not produce constant conveyor belt acceleration. When acceleration is complete. the SCRs, which control the applied voltage to the electric motor. are locked in full conduction, providing full-line voltage to the motor. Motors with higher torque and pull -vp torque, can provide better starting torque when combined with the SCR starters, which are available in sizes up to 750 KW. Wound rotor induction motors. Wound rotor induction motors areconnected directly to the drive system reducer and are a modified configuration of a standard AC induction motor. By inserting resistance in series with the motors rotor windings. the modified motor control System controls motor torque. For conveyor starting, resistance is placed in series with the rotor for low initial torque. As the conveyor accelerates,the resistance is reduced slowly to maintain a constant acceleration torque. On multiple-drive systems. an external slip resistor may be left in series with the rotor windings to aid in load sharing .the motor systems have a relatively simple a design.However,the control systems for these can be highly complex, because they are based on computer control of the resistance switching. Today, the majority of control systems are custom designed to meet a conveyor systems particular specifications. Wound rotor motors are appropriate for systems requiring more than 400KW. DC motor. DC motors. available from a fraction of thousands of KW,are designed to deliver constant torque below base speed and constant KW above base speed to the maximum allowable revolutions per minute (r/min). with the majority of conveyor drives, a .DC shunt wound motor is used. Wherein the motors rotating armature is connected externally. The most common technology for controlling DC drives is a SCR device. which allows for continual variable-speed operation. The DC drive system is mechanically simple, but can include complex custom-designed electronics to monitor and control the complete system. this system option is expensive in comparison to other soft-start systems. but it is a reliable, cost-effective drive in applications in which torque,load sharing and variable speed are primary considerations. DC motors generally are used with higher-power conveyors, including complex profile conveyors with multiple-drive systems, booster tripper systems needing belt tension control and conveyors requiring a wide variable-speed range.1. 2 Hydrokinetic coupling Hydrokinetic couplings, commonly referred to as fluid couplings. are composed of three basic elements; the driven impeller, which acts as acentrifugal pump; the driving hydraulic turbine known as the runner anda casing that encloses the two power components. Hydraulic fluid is pumped from the driven impeller to the driving runner, producing torque at the driven shaft. Because circulating hydraulic fluid produces the torque and speed, no mechanical connection is required between the driving and driver shafts.The power produced by this coupling is based on the circulated fluids amount and density and the torque in proportion to input speed. Because the pumping action within the fluid coupling depends on centrifugal forces. the output speed is less than the input speed. Referred to as slip. this normally is between 1% and 3%. Basic hydrokinetic couplings are available in configurations from fractional to several thousand KW. Fixed-fill fluid couplings. Fixed-fill fluid couplings are the most commonly used soft-start devices for conveyors with simpler belt profiles and limited convex/concave sections. They are relatively simple,low-cost,reliable,maintenance free devices that provide excellent soft starting results to the majority of belt conveyors in use today. Variable-fill drain couplings. Drainable-fluid couplings work on the same principle as fixed-fill couplings. The couplings impellers are mounted on the AC motor and the runners on the driven reducer high-speed shaft. Housing mounted to the drive base encloses the working circuit. The couplings rotating casing contains bleed-off orifices that continually allow fluid to exit the working circuit into a separate hydraulic reservoir. Oil from the reservoir is pumped through a heat exchanger to a solenoid-operated hydraulic valve that controls the filling of the fluid coupling. To control the starting torque of a single-drive conveyor system, the AC motor current must be monitored to provide feedback to the solenoid control valve. Variable fill drain couplings are used in medium to high-kw conveyor systems and are available in sizes up to thousands of kw.The drives can be mechanically complex and depending on the control parameters. the system can be electronically intricate. The drive system cost is medium to high,depending upon size specified. Hydrokinetic scoop control drive. The scoop control fluid coupling consists of the three standard fluid coupling components: a driven impeller, a driving runner and a casing that encloses the working circuit. The casing is fitted with fixed orifices that bleed a predetermined amount of fluid into a reservoir. When the scoop tube is fully extended into the reservoir, the coupling is 100 percent filled. The scoop tube, extending outside the fluid coupling, is positioned using an electric actuator to engage the tube from the fully retracted to the fully engaged position. This control provides reasonably smooth acceleration rates. to but the computer-based control system is very complex. Scoop control couplings are applied on conveyors requiring single or multiple drives from 150KWto 750KW.1. 3 Variable-frequency control(VFC) Variable frequency control is also one of the direct drive methods. the emphasizing discussion about it here is because that it has so unique characteristic and so good performance compared with other driving methods for belt conveyor. VFC devices Provide variable frequency and voltage to the induction motor, resulting in an excellent starting torque and acceleration rate for belt conveyor drives. VFC drives. available from fractional to several thousand (kW),are electronic controllers that rectify AC line power to DC and, through an inverter, convert DC back to AC with frequency and voltage control. VFC drives adopt vector control or direct torque control(DTC)technology, and can adopt different operating speeds according to different loads. VFC drives can make starting or stalling according to any given S-curves realizing the automatic track for starting or stalling curves. VFC drives provide excellent speed and torque control for starting conveyor belts. and can also be designed to provide load sharing for multiple drives. easily VFC controllers are frequently installed on lower-powered convey- or drives, but when used at the range of medium-high voltage in the past. the structure of VFC controllers becomes very complicated due to the limitation of voltage rating of power semiconductor devices, the combination of medium-high voltage drives and variable speed is often solved with low-voltage inverters using step-up transformer at the output, or with multiple low-voltage inverters connected in series. Three-level voltage-fed PWM converter systems are recently showing increasing popularity for multi-megawatt industrial drive applications because of easy voltage sharing between the series devices and i叩roved harmonic quality at the output compared to two-level converter systems With simple series connection of devices. This kind of VFC system with three 750 kW /2. AV inverters has been successfully installed in ChengZhuang Mine for one 2. 7-km long belt conveyor driving system in following the principle of three-level inverter will be discussed in detail.2 Neutral point clamped(NPC)three-level inverter using IGBTThree-level voltage-fed inverters have recently become more and more popular for higher power drive applications because of their easy voltage sharing features. lower dv / dt per switching for each of the devices, and super or harmonic quality at the output. The availability of NV-IGBT has led to the design of a new range of medium-high voltage inverter using three-level NPC topology. This kind of inverter can realize a whole range with a voltage rating from 2. 3 kV to 4. 1 6kV Series connection of IIV-IGBT modules is used in the 3. 3 kV and 4. 1 6kV devices. The 2. 3 kV inverters need only one HV-IGBT per switch2,3.2. 1 Power section To meet the demands for medium voltage applications. a three-levelneutral point clamped inverter realizes the power section. In comparisonto a two-level inverter. the NPC inverter offers the benefit that three voltage levels can be supplied to the output terminals, so for the same output current quality, only 1/4 of the switching frequency is necessary. Moreover the voltage ratings of the switches in NPC inverter topology will be reduced to 1/2. and the additional transient voltage stress on the motor can also be reduced to 1/2 compared to that of a two-level inverter. The switching states of a three-level inverter are summarized in Table 1. U. V and W denote each of the three phases respectively; P N and 0 are the do bus points. The phase U, for example, is in state P (positive bus voltage)when the switches S1uand S2u are closed, whereas it is in state N (negative bus voltage) when the switches S3u and S4u, are closed. At neutral point clamping, the phase is in 0 state when either S2u.or S3u, conducts depending on positive or negative phase current polarity, respectively. For neutral point voltage balancing, the average current injected at 0 should be zero.2. 2 Line side converter For standard applications. a 12-pulse diode rectifier feeds the divided DC-link capacitor. This topology introduces low harmonics on. the line side. For even higher requirements a 24-pulse diode rectifier can be used as an input converter. For more advanced applications where regeneration. capability is necessary, an active front. end converter can replace the diode rectifier, using the same structure as the inverter.2. 3 Inverter control Motor Control. Motor control of induction machines is realized byusing a rotor flux. oriented vector controller. Fig. 2 shows the block diagram of indirect vector controlled drive that incorporates both constant torque and high speed field-weakening regions where the PW M modulator was used. In this figure, the command flux.is generated as function of speed. The feedback speed is added with the feed forward slip command signal,the resulting frequency signal is integrated and then the unit vector signals(cose and sin e)are generated. The vector rotator generates the voltage Vs and Angle e commands for the PW M as shown. PWM Modulator. The demanded voltage vector is generated using an elaborate PWM modulator. The modulator extends the concepts of space-vector modulation to the three-level inverter. The operation can beexplained by starting from a regularly sampled sine-triangle comparisonfrom two-level inverter. Instead of using one set of reference waveformsand one triangle defining the switching frequency, three-level Modulator uses two sets of reference waveforms U and U and just one triangle. Thus, each switching transition is used in an optimal way so that several objectives are reached at the same time. Very low harmonics are generated. The switching frequency is low and thus switching losses are minimized. As in a two-level inverter, a zero-sequence component can be added to each set of reference waveform s in order to maximize the fundamental voltage component. As an additional degree of freedom, the position of the reference waveform s within the triangle can be changed. This can be used for current balance in the two halves of the DC-link.3 Testing results After Successful installation of three 750 kW /2. 3 kV three-levelinverters for one 2. 7 km long belt conveyor driving system in Cheng zhuang Mine. The performance of the whole VFC system was tested. Fig. 3 is taken from the test, which shows the excellent characteristic of the belt conveyor driving system with VFC controller.Fig. 3 includes four curves. The curve 1 shows the belt tension . From the curve it can be find that the fluctuation range of the belt tension is very small. Curve 2 and curve 3 indicate current and torque separately. Curve 4 shows the velocity of the controlled belt. The belt velocity have the s shape characteristic. All the results of the test show a very satisfied characteristic for belt driving system.4 Conclusions Advances in conveyor drive control technology in recent years haveresulted in many more reliable. Cost-effective and performance-driven conveyor drive system choices for users.Among these choices,the Variable frequency control (VFC) method shows promising use in the future for long distance belt conveyor drives due to its excellent performances. The NPC three-level inverter using high voltage TGBT make the Variable frequency control in medium voltage applications become much more simple because the inverter itself can provide the medium voltage needed at the motor terminals, thus eliminating the step-up transformer in most applications in the past. The testing results taken from the VFC control system with NTC three. level inverters used in a 2. 7 km long belt conveyor drives in Chengzhuang Mine indicates that the performance of NPC three-level inverter using HV-TGBT together with the control strategy of rotor field-oriented vector control for induction motor drive is excellent for belt conveyor driving system.中文原文: 带传动设计 在机械传动中传动有多种多样,V带式输送机在长距离的传动中起到了非常重要的竞争作用。传动系统将会变得更大、更复杂,而驱动系统也己经历了一个演变过程,并将继续这样下去。如今,带传动和多驱动系统需耍更大的功率,比如3驱动系统需耍给输送带750KW(成庄煤矿输送机驱动系统的要求)。控制驱动力和加速度扭矩是输送机的关键。一个高效的驱动系统应该能顺利的运行,同时保持输送带张紧力在指定的安全极限负荷内。为了负载分配在多个驱动上,扭矩和速度控制在驱动系统的设计中也是很重要的因素。由于输送机驱动系统控制技术的进步,目前更多可靠的低成本和高效驱动的驱动系统可供顾客选择11带式传动机驱动1. 1带式传动驱动方式 全电压启动 在全电压启动设计中,带式输送机驱动轴通过齿轮传动直接连接到电机。直接全压驱动没有为变化的传送负载提供任何控制,根据满载和空载功率需求的比率,空载启动时比满载可能快3-4倍。此种方式的优点是:免维护,启动系统简单,低成本,可靠性高。但是,不能控制启动扭矩和最大停止扭矩。因此,这种方式只用于低功率,结构简单的传送驱动中。降压启动 随着传送驱动功率的增加,在加速期间控制使用的电机扭矩变得越来越重要。由于电机扭矩是电压的函数,电机电压必须得到控制,一般用可控硅整流器(SCR构成的降压启动装置,先施加低电压拉紧输送带,然后线性的增加供电电压直到全电压和最大带速。但是,这种启动方式不会产生稳定的加速度,当加速完成时,控制电机电压的SCR锁定在全导通,为电机提供全压。此种控制方式功率可达到750kW。绕线转子感应电机 绕线转子感应电机直接连接到驱动系统减速机上,通过在电机转子绕组中串联电阻控制电机转矩。在传送装置启动时,把电阻串联进转子产生较低的转矩,当传送带加速时,电阻逐渐减少保持稳定增加转矩。在多驱动系统中,一个外加的滑差电阻可能将总是串联在转子绕组回路中以帮助均分负载。该方式的电机系统设计相对简单,但控制系统可能很复杂,因为它们是基于计算机控制的电阻切换。当今,控制系统的大多数是定制设计来满足传送系统的特殊规格绕线转子电机适合于需要400kVV以上的系统。直流(DC)电机 大多数传送驱动使用DC并励电机,电机的电枢在外部连接。控制DC驱动技术一般应用SCR装置,它允许连续的变速操作。DC驱动系统在机械上是简单的,但设计的电子电路,监测和控制整个系统,相比于其他软启动系统的选择是昂贵的,但在转矩、负载均分和变速为主要考虑的场合,它又是一个可靠的,节约成本的方式。DC电机一般使用在功率较大的输送装置上,包括需耍输送带张力控制的多驱动系统和需要宽变速范围的输送装置上。1.2液力偶合器流体动力偶合器通常被称为液力偶合器,由三个基本单元组成:充当离心泵的叶轮,推进水压的涡轮和装进两个动力部件的外壳。流体从叶轮到涡轮,在从动轴产生扭矩。由于循环流体产生扭矩和速度,在驱动轴和从动轴之间不需要任何机械连接。这种连接产生的动力决定于液力偶合器的充液量,扭矩正比于输入速度。因在流体偶合中输出速度小于输入速度,其间的差值称为滑差,一般为1%-3%。传递功率可达几千千瓦。固定充液液力偶合器 固定充液液力偶合器是在结构较简单和仅具有有限的弯曲部分的输送装置中最常用的软启动装置,其结构相对比较简单,成本又低,对现在使用的大多数输送机能提供优良的软启动效果。可变充液液力偶合器 也称为限矩型液力偶合器。偶合器的叶轮装在AC电机上,涡轮装在从动减速器高速轴上,包含操作部件的轴箱安装在驱动基座。偶合器的旋转外壳有溢出口,允许液体不断地从工作腔中流出进入一个分离的辅助腔,油从辅助腔通过一个热交换器泵到控制偶合器充液量的电磁阀。为了控制单机传动系统的启动转矩,必须监测AC电机电流给电磁阀的控制提供反馈。可变充液液力偶合器可使用在中大功率输送系统中,功率可达到数千千瓦口这种驱动无论在机械,或在电气上都是很复杂的,其驱动系统成本中等。勺管控制液力偶合器 也称为调速型液力偶合
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。