下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1231等腰三角形(一) 教学目标 1等腰三角形的概念 2等腰三角形的性质 3等腰三角形的概念及性质的应用 教学重点: 1等腰三角形的概念及性质 2等腰三角形性质的应用 教学难点:等腰三角形三线合一的性质的理解及其应用 教学过程 提出问题,创设情境 在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形? 有的三角形是轴对称图形,有的三角形不是 问题:那什么样的三角形是轴对称图形? 我们
2、这节课就来认识一种成轴对称图形的三角形等腰三角形导入新课: 同学们拿出一张纸,要求是长方形的。首先将纸对折,然后取相等的两边,用剪刀剪下来!得到了一个ABC,观察下,它有什么特点?我们可以发现,由于用剪刀剪过的两条边是相等的,即AB=AC,这种有两条边相等的三角形,我们给它一个名称叫做等腰三角形 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角 思考: 1等腰三角形是轴对称图形吗?请找出它的对称轴 2等腰三角形的两底角有什么关系? 3顶角的平分线所在的直线
3、是等腰三角形的对称轴吗?4底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?下面我们就一一来研究这些问题。 结论:等腰三角形是轴对称图形它的对称轴是顶角的平分线所在的直线因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线 要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系 沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高 由此可以得到等腰三角形的性质: 1等腰三角形的两个底
4、角相等(简写成“等边对等角”) 2等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”) 由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质同学们现在就动手来写出这些证明过程) 如右图,在ABC中,AB=AC,作底边BC的中线AD,因为 所以BADCAD(SSS) 所以B=C 如右图,在ABC中,AB=AC,作顶角BAC的角平分线AD,因为 所以BADCAD 所以BD=CD,BDA=CDA=BDC=90° 例1如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度
5、数 分析:根据等边对等角的性质,我们可以得到A=ABD,ABC=C=BDC,再由BDC=A+ABD,就可得到ABC=C=BDC=2A再由三角形内角和为180°,就可求出ABC的三个内角 把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷 解:因为AB=AC,BD=BC=AD, 所以ABC=C=BDC A=ABD(等边对等角) 设A=x,则 BDC=A+ABD=2x, 从而ABC=C=BDC=2x 于是在ABC中,有 A+ABC+C=x+2x+2x=180°, 解得x=36° 在ABC中,A=35°,ABC=C=72° 师下面我们通
6、过练习来巩固这节课所学的知识 随堂练习:1.课本P51练习 1、2、3 2阅读课本P49P51,然后小结 课时小结 这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高 我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们 作业: 课本P56习题12.3第1、2、3、4题 板书设计1231 等腰三角形 一、设计方案作出一个等腰三角形 二、等腰三角形性质: 1等边对等角 2三线合一参考练习 一、选择题 1如果ABC是轴对称图形,则它的对称轴一定是( ) A某一条边上的高; B某一条边上的中线 C平分一角和这个角对边的直线; D某一个角的平分线 2等腰三角形的一个外角是100°,它的顶角的度数是( ) A80° B20° C80°和20° D80°或50° 答案:1C 2C 二、已知等腰三角形的腰长比底边多2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GBT 4513.6-2017 不定形耐火材料 第 6 部分:物理性能的测定》专题研究报告
- 《GB-T 25838-2010核电厂安全级电阻温度探测器的质量鉴定》专题研究报告
- 林权抵押融资担保合同
- 中药材行业中药材供应链管理专员岗位招聘考试试卷及答案
- 2026年检验科工作计划(4篇)
- 2025年70岁换领驾照三力测试题及答案
- 2025年“十八项医疗核心制度”培训考试试题及答案
- 2026年度教师培训计划
- 2025年高强4号玻璃纤维合作协议书
- 2025年生物农药及微生物农药项目建议书
- T/CECS 10227-2022绿色建材评价屋面绿化材料
- 区域医学检验中心项目建设方案
- 小学四年级安全教育上册教学计划小学四年级安全教育教案
- 个人优势与劣势分析
- VCR接头锁紧工作程序
- 2025阀门装配工艺规程
- 非计划拔管风险评估及护理
- 求数列的通项公式2-累加累乘法构造法1课件-2024-2025学年高二上学期数学人教A版(2019)选择性必修第二册
- 小学数学教学中融入中国传统文化的实践研究
- 2020-2025年中国激光测量仪行业投资研究分析及发展前景预测报告
- 企业安全生产法律法规知识培训课件
评论
0/150
提交评论