版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 随机信号分析 实验报告目录随机信号分析1实验报告1理想白噪声和带限白噪声的产生与测试3一、摘要3二、实验的背景与目的3Ø背景:3Ø实验目的:3三、实验原理4四、实验的设计与结果5Ø实验设计:5Ø实验结果:6五、实验结论13六、参考文献14七、附件14理想白噪声和带限白噪声的产生与测试一、 摘要本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相
2、关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。关键词:理想白噪声 带限白噪声 均值 均方值 方差 功率谱密度 自相关函数、频谱以及概率密度二、实验的背景与目的Ø 背景:在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。定义2:不同频率、不同强度无规则地组合在一起的声音。如电噪声、机械噪声,可引伸为任何不希望有的干扰。第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。而第二种定义则相对抽象一些,大部分应用于机械工程当中。在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一
3、个很热门的话题。为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。Ø 实验目的:了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB或c/c+软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。三、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。然而白噪声在数学处理上比较方便,所以它在通信系统的分析中有十分重要的作用。一般地说,只要噪声的功率谱
4、密度的宽度远大于它所作用的系统的带宽,并且在系统的带内,它的功率谱密度基本上是常数,就可以作为白噪声处理了。理想白噪声(高斯白噪声)的服从均值,方差一维正态分布,其概率密度函数为: 白噪声的功率谱密度为: 其中为单边功率谱密度。白噪声的自相关函数:白噪声的自相关函数是位于处,强度为的冲击函数。这表明白噪声在任何两个不同的瞬间的取值是不相关的。同时也意味着白噪声能随时间无限快的变化,因为它含一切频率分量而无限宽的带宽。 若一个具有零均值的平稳随机过程,其功率谱密度在某一个有限频率范围内均匀分布,而在此范围外为零,则称这个过程为带限白噪声。理想白噪声通过现行滤波器后便成为带限白噪声。设滤波器的单位
5、冲击响应为,其对应的傅里叶变换为 ,则带限白噪声的各个参量如下带限白噪声的均值:带限白噪声的自相关函数为:带限白噪声的功率谱密度为:四、实验的设计与结果Ø 实验设计:(1) 用MATLAB或C/C+软件编写仿真程序,框图如下:(2) 产生一个高斯白噪声作为输入信号。(3) 设计一个低通滤波器和一个带通滤波器。要求低通滤波器的通带为0KHz-2KHz、通带衰减小于1dB、阻带衰减大于35dB。带通滤波器的通带为10KHz-20KHz、通带衰减小于1dB、阻带衰减大于35dB。(4) 首先计算白噪声的均值、均方值、方差、概率密度、频谱及功率谱密度、自相关函数。然后分别经低通滤波、带通滤波
6、器后,计算它们的均值、均方值、方差、概率密度、频谱及功率谱密度。 (5) 用图形来表示计算结果。(6) 思考:什么时候白噪声变为带限白噪声?Ø 实验结果:(1) 利用MATLAB自带的函数产生的高斯白噪声图像如下图3 高斯白噪声波形(2) 所设计的滤波器的图形如下:图4 低通滤波器幅频响应图5 带通滤波器幅频响应(3) 实验结果:v 高斯白噪声的概率密度、频谱及功率谱密度、自相关函数的图形:均值均方值方差0.00591.03191.0318u 高斯白噪声自相关函数图形为:图6 白噪声自相关函数u 高斯白噪声功率谱密度图形为:图7 白噪声功率谱u 高斯白噪声的概率密度图形为:图8 白噪
7、声的一维概率密度u 高斯白噪声的频谱图形为:图9 白噪声频谱v 低通带限白噪声通过低通滤波器后分析均值均方值方差0.05150.43930.4420u 低通带限白噪声自相关函数图形为:图10 白噪声通过低通滤波器的自相关函数u 低通带限白噪声功率谱密度图形为:图11 白噪声通过低通滤波器后的功率谱u 低通带限白噪声概率密度函数图形为:图12 白噪声通过低通滤波器后的概率密度u 低通带限白噪声频谱图形为:图13 白噪声通过低通滤波器后的频谱v 带通带限白噪声通过低通滤波器后分析均值均方值方差0.00000.15740.1574u 帯通带限白噪声的自相关函数图形:图14 白噪声通过带通滤波器后的自
8、相关函数u 帯通带限白噪声的功率谱图形:图15 白噪声通过带通滤波器后的功率谱u 帯通带限白噪声的概率密度图形:图16 白噪声通过带通滤波器后的概率密度u 帯通带限白噪声的频谱图形:图17 白噪声通过带通滤波器后的频谱五、实验结论在实验中绘制出白噪声的自相关函数的图像,发现在处,自相关函数是一个脉冲,说明只有在同一时刻它们才相关。对应于功率谱,从图中可以发现高斯白噪声的功率谱无限宽,从而印证了理论的推导。均值代表信号的平均值,均方值代表着平均功率,均值的平方代表直流功率,方差代表交流功率高斯白噪声通过低通滤波器后,滤除掉了高频分量,只剩下低频分量。同理,通过带通滤波器后,只保留了通频带内的频率
9、分量。通过滤波器之后,噪声的功率谱密度已经不是无限宽了,我们知道功率谱密度图像的面积代表着功率,此时功率可以计算出来,而且平均功率与滤波器的带宽成正比,从而噪声变成了能量有限的信号。在通过滤波器之后,信号的均方值、方差均变小,与上面它们所代表的物理意义相对应,说明信号的平均功率和交流功率都变小。这也与信号通过滤波器的性质相吻合。低通滤波器和带通滤波器都属于线性系统,高斯白噪声通过线性系统后,器输出的分布仍然服从高斯分布,这一点我们可以由三幅概率密度图形来得出。通过MATLAB仿真和以上对带限白噪声的分析表明,我们发现其实真正的白噪声是不存在的,同时我们也验证了课本中的结论。白噪声通过线性系统后
10、已经不再是白噪声,输出端的信号(带限白噪声)的功率谱密度主要由系统的幅频特性决定。在实际应用中当噪声的带宽远大于系统的带宽的时候,此时可以看成白噪声。若一个具有零均值的平稳随机过程,其功率谱密度在某一个有限频率范围内均匀分布,而在此范围外为零,则称这个过程为带限白噪声。六、参考文献1 MATLAB7辅助信号处理技术与应用 电子工业出版社2 王福杰,潘宏侠.MATLAB中几种功率谱估计函数的比较分析与选择 J 电子产品可靠性与环境试验 2009 12 第6期3 王凤瑛、张丽丽. 功率谱估计及其MATLAB仿真 J 仿真技术:200634 高西全、丁玉美数字信号处理 西安:西安电子科技大学出版社2
11、0064 陈怀琛,吴大正MATLAB及在电子信息课程中的应用(第二版)北京:电子工业出版社,2004年七、附件o 程序一16%产生高斯白噪声Fs=10000;Ns=1024;x=randn(Ns,1);%产生高斯白噪声t=0:Ns-1;figure(1)plot(t,x);grid ontitle('高斯白噪声波形')xlabel('t')ylabel('幅值(V)')x_mean=mean(x) %均值x_std=std(x) ; %标准差x_var=x_std.2 %方差x_msv=x_var+x_mean.2 %均方值 %计算高斯白噪声的相
12、关函数x_c,lags=xcorr(x,200,'unbiased');%相关函数figure(2)plot(lags,x_c);%画出相关函数的图形title('白噪声的自相关函数')xlabel('时间:t');grid on % 利用pwelch函数计算功率谱nfft=1024;index=0:round(nfft/2-1);k=index.*Fs./nfft;window=boxcar(length(x_c);Pxx,f=pwelch(x_c,window,0,nfft,Fs);x_Px=Pxx(index+1);figure(3)plo
13、t(k,x_Px);grid ontitle('白噪声的功率谱')Ylabel(' 幅值( W / Hz) ');Xlabel('f / Hz') %求高斯白噪声的一维概率密度x_pdf,x1=ksdensity(x);figure(4)plot(x1,x_pdf);%画出高斯白噪声的一维概率密度grid onxlabel('x')ylabel('f(x)')title('白噪声的一维概率密度') %求高斯白噪声的频谱f=(0:Ns-1)/Ns*Fs;X=fft(x);%对高斯白噪声进行傅里叶变换m
14、ag=abs(X); %取信号X的幅度figure(5)plot(f(1:Ns/2),mag(1:Ns/2);%画出白噪声的频谱grid ontitle('白噪声频谱');ylabel('幅值(V)')xlabel('f / Hz'); %利用双极性Z变换设计0-2kHz低通滤波器fp=2000;fs=2200;rp=0.5;rs=50;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;wap=tan(wp/2);was=tan(ws/2);Fs=1;N,Wn=buttord(wap,was,rp,rs,'s');%估计所需
15、滤波器的阶数z,p,k=buttap(N);bp,ap=zp2tf(z,p,k);bs,as=lp2lp(bp,ap,wap);bz,az=bilinear(bs,as,Fs/2);H,w=freqz(bz,az,512,Fs*10000);%计算数字滤波器的频率响应figure(6)plot(w,abs(H);%低通滤波器的频谱title('低通滤波器的幅频响应')xlabel('f / Hz')ylabel('H(w)')grid on %白噪声通过滤波器以及通过后y相关参数y=filter(bz,az,x);%白噪声通过滤波器y_mean=
16、mean(y) %y的均值y_std=std(y); %标准差y_var=y_std.2 %方差y_msv=y_var+y_mean.2y_pdf,y1=ksdensity(y);figure(7)plot(y1,y_pdf);%y的一维概率密度grid ontitle('白噪声通过低通滤波器的一维概率密度函数图像');y_c,lags1=xcorr(y,200,'unbiased');%计算y的相关函数figure(8)plot(lags1,y_c);%画出y的相关函数的图形axis(-50,50, -0.1,0.5 );title('白噪声通过低通滤
17、波器的自相关函数')grid on %计算y的频谱Y=fft(y);%对y进行傅里叶变换magY=abs(Y);figure(9)plot(f(1:Ns/2),magY(1:Ns/2);%画出y的频谱grid ontitle('白噪声通过低通滤波器的频谱');ylabel('幅值(V)')xlabel('f / Hz'); %y的功率谱nfft=1024;Fs=10000;index=0:round(nfft/2-1);ky=index.*Fs./nfft;window=boxcar(length(y_c);Pyy,fy=pwelch(y
18、_c,window,0,nfft,Fs);y_Py=Pyy(index+1);figure(10)plot(ky,y_Py);grid ontitle('白噪声通过低通滤波器后的功率谱')ylabel('幅值(W / Hz)')Xlabel('f /Hz')p 程序二%产生白噪声Fs=100000;Ns=1024;x=randn(Ns,1);%产生白噪声t=0:Ns-1;figure(11)plot(t,x);grid ontitle('高斯白噪声波形')xlabel('t')x_mean=mean(x) %均值x
19、_std=std(x) ; %标准差x_var=x_std.2 %方差x_msv=x_var+x_mean.2 %均方值 %计算高斯白噪声的相关函数%x_c,lags=xcorr(x,200,'unbiased');%相关函数figure(12)plot(lags,x_c);%画出相关函数的图形title('白噪声的自相关函数')grid on % 利用pwelch函数计算功率谱%nfft=1024;index=0:round(nfft/2-1);k=index.*Fs./nfft;window=boxcar(length(x_c);Pxx,f=pwelch(x
20、_c,window,0,nfft,Fs);x_Px=Pxx(index+1);figure(13)plot(k,x_Px);grid ontitle('白噪声的功率谱')ylabel('幅值(W / Hz)')Xlabel('f / Hz') %求白噪声的一维概率密度x_pdf,x1=ksdensity(x);figure(14)plot(x1,x_pdf);%画出白噪声的一维概率密度grid ontitle('白噪声的一维概率密度') %求高斯白噪声的频谱f=(0:Ns-1)/Ns*Fs;X=fft(x);%对白噪声进行傅里叶变
21、换mag=abs(X); %取信号X的幅度figure(15)plot(f(1:Ns/2),mag(1:Ns/2);%画出白噪声的频谱grid ontitle('白噪声频谱');xlabel('f / Hz'); %产生一个十阶IIR带通滤波器%通带为10KHz-20KHz,并得到其幅频响应Fs=100000b,a=ellip(10,0.5,50,10000,20000*2/Fs);H,w=freqz(b,a,512);figure(16)plot(w*Fs/(2*pi),abs(H);title('带通滤波幅频响应');set(gcf,'color','white')xlabel('f / Hz');ylabel( 'H(w)');grid on %白噪声通过带通滤波器以及通过后y相关参数y=filter(b,a,x);%白噪声通过带通滤波器y_mean=mean(y) %y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 33419-2016环氧乙烷灭菌生物指示物检验方法》
- 2025年湖北十堰东风高级中学自主招生物理试题真题
- 2026届高三生物二轮复习课件:大单元2 细胞的生存需要能量和营养物质 限时练7 植物对特殊环境的适应性
- 7 两件宝【从基到通】一年级上册语文统编版
- 医疗数据安全投入效益评估模型
- 医疗数据安全应急演练的流程标准化研究
- 医疗数据安全存储的多层加密策略
- 胸外科出科课件
- 5G-A工业智能化应用项目教程 课件(6)5G-A NR核心网
- 【9化第三次月考】亳州市蒙城县2025-2026学年九年级上学期第三次月考化学试题
- 2025年天水村文书考试题及答案
- 课程顾问的年终工作总结
- 仪表设备点检员综合考核试卷及答案
- 公交车站设施维护管理规范
- 木门工程售后方案(3篇)
- 2025至2030中国淡竹叶行业发展分析及产业运行态势及投资规划深度研究报告
- 挂名监事免责协议书模板
- 宁波职高高一数学试卷
- 2025-2026学年苏教版(2024)小学数学二年级上册(全册)教学设计(附目录P226)
- 分布式光伏电站运维管理与考核体系
- HY/T 0457-2024蓝碳生态系统碳储量调查与评估技术规程海草床
评论
0/150
提交评论