版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、11.3.2余弦函数、正切函数的图象与性质(二)第一章1.3三角函数的图象与性质2学习目标1.了解正切函数图象的画法,理解掌握正切函数的性质.2.能利用正切函数的图象及性质解决有关问题.3题型探究问题导学内容索引当堂训练4问题导学5思考1知识点一正切函数的图象结合正切函数的周期性, 如何画出正切函数在整个定义域内的图象? 类比正弦函数图象的作法,可以利用正切线作正切函数在区间的图象,阅读课本,了解具体操作过程.答案答案我们作出了正切函数一个周期 上的图象,根据正切函数的周期性,把图象向左、右扩展,得到正切函数ytan x(xR且x k(kZ)的图象.答案6思考2一条平行于x轴的直线与正切曲线相
2、邻两支曲线的交点的距离为多少?答案答案一条平行于x轴的直线与相邻两支曲线的交点的距离为此函数的一个周期.答案7(1)正切函数的图象称作“正切曲线”,如下图所示.梳理梳理(2)正切函数的图象特征正切曲线是由通过点( k,0)(kZ)且与y轴相互平行的直线隔开的无穷多支曲线所组成的.8思考1知识点二正切函数的性质正切函数的定义域是什么?答案思考2诱导公式tan(x)tan x,xR且x k,kZ说明了正切函数的什么性质?答案答案 周期性.9思考3诱导公式tan(x)tan x,xR且x k,kZ说明了正切函数的什么性质?答案答案答案 奇偶性.思考4从正切线上看,在 上正切函数值是增大的吗?答案答案
3、是.10思考5结合正切函数的周期性,正切函数的单调性如何?正切函数在整个定义域内是增函数吗?正切函数会不会在某一区间内是减函数?答案11梳理梳理解析式ytan x图象12定义域_值域_周期_奇偶性_单调性在开区间 内都是增函数R奇13题型探究14解答类型一正切函数的定义域例例1求下列函数的定义域.15解答16反思与感悟求定义域时,要注意正切函数自身的限制条件,另外解不等式时,要充分利用三角函数的图象或三角函数线.17解答又ytan x的周期为,18类型二正切函数的单调性及其应用解答命题角度命题角度1求正切函数的单调区间求正切函数的单调区间19反思与感悟20解答21答案解析命题角度命题角度2利用
4、正切函数的单调性比较大小利用正切函数的单调性比较大小例例3(1)比较大小:tan 32_tan 215;解析解析tan 215tan(18035)tan 35,ytan x在(0,90)上单调递增,3235,tan 32tan 35tan 215.22答案解析23答案解析(2)将tan 1,tan 2,tan 3按大小排列为_.(用“”连接)tan 2tan 3tan 1解析解析tan 2tan(2),tan 3tan(3),tan(2)tan(3)tan 1,即tan 2tan 3答案解析26类型三正切函数的奇偶性与对称性问题例例4(1)判断下列函数的奇偶性.解答该函数既不是奇函数,也不是偶
5、函数.27yxtan 2xx4.解答令f(x)xtan 2xx4,则f(x)(x)tan 2(x)(x)4xtan 2xx4f(x),该函数是偶函数.28(2)求y3tan(2x )的图象的对称中心.解答29反思与感悟(1)在利用定义判断与正切函数有关的函数的奇偶性时,必须要坚持定义域优先的原则,即首先要看函数的定义域是否关于原点对称,然后判断f(x)与f(x)的关系.(2)求函数ytan(x)的图象的对称中心,方法是把x看作一个整体,由x (kZ)解出的x的值为对称中心的横坐标,纵坐标为零.30解答跟踪训练跟踪训练4判断下列函数的奇偶性.解解要使函数有意义,需满足tan x0且tan x有意
6、义,函数f(x)为奇函数.31解答(2)f(x)lg|tan x|.都有f(x)lg|tan(x)|lg|tan x|lg|tan x|f(x),函数f(x)是偶函数.32类型四正切函数的图象及应用例例5画出函数y|tan x|的图象,并根据图象判断其单调区间、奇偶性、周期性.解答其图象如图所示.由图象可知,函数y|tan x|是偶函数,33反思与感悟(1)作出函数y|f(x)|的图象一般利用图象变换方法,具体步骤是:保留函数yf(x)图象在x轴上方的部分;将函数yf(x)图象在x轴下方的部分沿x轴向上翻折.(2)若函数为周期函数,可先研究其一个周期上的图象,再利用周期性,延拓到定义域上即可.34(1)求函数f(x)的周期,对称中心;解答35(2)作出函数f(x)在一个周期内的简图.解答36当堂训练37答案23451解析38答案2345139答案2345140答案23451解析41答案解析234515.比较大小:tan 1_tan 4.解析解析由正切函数的图象易知,tan 10,所以tan 1tan(4)tan 4.42规律与方法1.正切函数的图象正切函数有无数多条渐近线,渐近线方程为xk ,kZ,相邻两条渐近线之间都有一支正切曲线,且单调递增.2.正切函数的性质(1)正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国海上风电装备产业发展调查及经营状况深度解析研究报告
- 2025至2030中国电接触材料市场需求变化与产能布局战略研究报告
- 2026年智能安防行业创新报告及人脸识别技术分析报告
- 初中AI课程中自然语言处理与文本简化结合的教学课题报告教学研究课题报告
- 2026年无人驾驶汽车技术报告及未来五至十年汽车科技报告
- 三改一归安全培训课件
- 2026年交通物流无人机配送创新报告与成本
- 2025年全球物流无人机配送行业报告
- 农机收割机培训课件下载
- 前端面试题库及答案
- 2026年货物运输合同标准模板
- 2026年广州市民政局直属事业单位第一次公开招聘工作人员25人备考题库及1套参考答案详解
- 广西壮族自治区南宁市2025-2026学年七年级上学期期末语文综合试题
- 2024VADOD临床实践指南:耳鸣的管理解读课件
- 2025中国航空集团建设开发有限公司高校毕业生校园招聘5人笔试参考题库附带答案详解(3卷合一)
- 2025年山东畜牧兽医职业学院单招职业适应性测试题库附答案
- 贵州国企招聘:2026贵州贵阳花溪智联数智科技服务有限公司招聘9人参考题库附答案
- 1104报表基础报表、特色报表填报说明v1
- 铝材销售沟通话术技巧
- 第一单元写作:考虑目的和对象 教学课件
- 危化品无仓储经营培训
评论
0/150
提交评论