扫描电镜、透射电镜、扫描隧道显微镜_第1页
扫描电镜、透射电镜、扫描隧道显微镜_第2页
扫描电镜、透射电镜、扫描隧道显微镜_第3页
扫描电镜、透射电镜、扫描隧道显微镜_第4页
扫描电镜、透射电镜、扫描隧道显微镜_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、扫描电子显微镜扫描电子显微镜(scanning electron microscope),简称扫描电镜(SEM)。是一种利用电子束扫描样品表面从而获得样品信息的电子显微镜。它能产生样品表面的高分辨率图像,且图像呈三维,扫描电子显微镜能被用来鉴定样品的表面结构。结构扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。真空系统真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装配了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的

2、组合。成像系统和电子束系统均内置在真空柱中。之所以要用真空,主要基于以下两点原因: 电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用SEM时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。 为了增大电子的平均自由程,从而使得用于成像的电子更多。 电子束系统电子束系统由电子枪和电磁透镜两部分组成,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成像。电子枪电子枪用于产生电子,主要有两大类,共三种。一类是利用场致发射效应产生电子,称为场致发射电子枪。这种电子枪极其昂贵,在十万美元以上,且需要小于10-10torr的极高真空。但它具有至少1000小时的寿命,且不

3、需要电磁透镜系统。另一类则是利用热发射效应产生电子,有钨枪和六硼化镧枪两种。钨枪寿命在30100小时之间,价格便宜,但成像不如其它两种明亮,常作为廉价或标准SEM配置。六硼化镧枪寿命介于场致发射电子枪与钨枪之间,为2001000小时,价格约为钨枪的十倍,图像比钨枪明亮510倍,需要略高于钨枪的真空,一般在10-7torr以上;但比钨枪容易产生过度饱和与热激发问题。电磁透镜热发射电子需要电磁透镜来成束,所以在用热发射电子枪的SEM上,电磁透镜必不可少。通常会装配两组: 汇聚透镜:用汇聚电子束,装配在真空柱中,位于电子枪之下。通常不止一个,并有一组汇聚光圈与之相配。但汇聚透镜仅仅用于汇聚电子束,与

4、成像会焦无关。 物镜:物镜为真空柱中最下方的一个电磁透镜,它负责将电子束的焦点汇聚到样品表面。 成像系统电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生次级电子、背散射电子、俄歇电子以及X射线等一系列信号。所以需要不同的探测器譬如次级电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。虽然X射线信号不能用于成像,但习惯上,仍然将X射线分析系统划分到成像系统中。有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用次级电子探测器代替,但需要设定一个偏压电场以筛除次级电子。基本参数放大率与普通光学显微镜不同,在SEM中,是通过控制扫描区域的大小来控制

5、放大率的。如果需要更高的放大率,只需要扫描更小的一块面积就可以了。放大率由屏幕照片面积除以扫描面积得到。所以,SEM中,透镜与放大率无关。场深在SEM中,位于焦平面上下的一小层区域内的样品点都可以得到良好的汇焦而成像。这一小层的厚度称为场深,通常为几纳米厚,所以,SEM可以用于纳米级样品的三维成像。作用体积电子束不仅仅与样品表层原子发生作用,它实际上与一定厚度范围内的样品原子发生作用,所以存在一个作用“体积”。作用体积的厚度因信号的不同而不同: 俄歇电子:0.52nm。 次级电子:5,对于导体,=1nm;对于绝缘体,=10nm。 背散射电子:10倍于次级电子。 特征X射线:m级。 X射线连续谱

6、:略大于特征X射线,也在m级。 工作距离工作距离指从物镜到样品最高点的垂直距离。如果增加工作距离,可以在其它条件不变的情况下获得更大的场深。如果减少工作距离,则可以在其它条件不变的情况下获得更高的分辨率。通常使用的工作距离在5mm到10mm之间。用途成像次级电子和背散射电子可以用于成像,两者用处不一,前者多用在显示物体表面起伏,后者则是用在显示物体原子序数的差异。表面分析俄歇电子、特征HYPERLINK "/wiki/X%E5%B0%84%E7%BA%BF"X射线、背散射电子的产生过程均与样品原子性质有关,所以可以用于成分分析。但

7、由于电子束只能穿透样品表面很浅的一层(参见作用体积),所以只能用于表面分析。表面分析以特征X射线分析最常用,所用到的探测器有两种:能谱分析仪与波谱分析仪。前者速度快但精度不高,后者非常精确,可以检测到“痕迹元素”的存在,但耗时太长。透射电子显微镜透射电子显微镜(Transmission electron microscope,TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片以及感光耦合组件)上显示出来。由于电子

8、的德布罗意波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.10.2nm,放大倍数为几万几百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,是光学显微镜所能够观察到的最小结构的数万分之一。TEM在中和物理学和生物学相关的许多科学领域都是重要的分析方法,如癌症研究、病毒学、材料科学、纳米HYPERLINK "/wiki/%E7%BA%B3%E7%B1%B3%E6%8A%80%E6%9C%AF"技术以及半导体研究等等。在放大倍数较低的时候,TEM成像的对比度主要是由于材料

9、不同的厚度和成分造成对电子的吸收不同而造成的。而当放大倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。第一台TEM由马克斯·克诺尔和恩斯特·鲁斯卡在1931年研制, 恩斯特·阿贝最开始指出,对物体细节的分辨率受到用于成像的光波波长的限制,因此使用光学显微镜仅能对m级的结构进行放大观察。通过使用由奥古斯特·柯勒和莫里茨·冯·罗尔研制的紫外光显微镜,可以将极限分辨率提升约一倍

10、。然而,由于常用的玻璃会吸收紫外线,这种方法需要更昂贵的石英光学元件。当时人们认为由于光学波长的限制,无法得到亚m分辨率的图像。1858年,尤利乌斯·普吕克认识到可以通过使用磁场来使阴极射线弯曲。这个效应早在1897年就由曾经被费迪南德·布劳恩用来制造一种被称为阴极射线示波器的测量设备,而实际上早在1891年,里克就认识到使用磁场可以使阴极射线聚焦。后来,汉斯·布斯在1926年发表了他的工作,证明了制镜者方程在适当的条件下可以用于电子射线。1928年,柏林科技大学的高电压技术教授阿道夫·马蒂亚斯让马克斯·克诺尔来领导一个研究小组来改进阴极射线示

11、波器。这个研究小组由几个博士生组成,这些博士生包括恩斯特·鲁斯卡和博多·冯·博里斯。这组研究人员考虑了透镜设计和示波器的列排列,试图通过这种方式来找到更好的示波器设计方案,同时研制可以用于产生低放大倍数(接近1:1)的电子光学原件。1931年,这个研究组成功的产生了在阳极光圈上放置的网格的电子放大图像。这个设备使用了两个磁透镜来达到更高的放大倍数,因此被称为第一台电子显微镜。分辨率改进1927年,徳布罗意发表的论文中揭示了电子这种本认为是带有电荷的物质粒子的波动特性。TEM研究组直到1932年才知道了这篇论文,随后,他们迅速的意识到了电子波的波长比光波波长小了若干

12、数量级,理论上允许人们观察原子尺度的物质。1932年四月,鲁斯卡建议建造一种新的电子显微镜以直接观察插入显微镜的样品,而不是观察格点或者光圈的像。通过这个设备,人们成功的得到了铝片的衍射图像和正常图像,然而,其超过了光学显微镜的分辨率的特点仍然没有得到完全的证明。直到1933年,通过对棉纤维成像,才正式的证明了TEM的高分辨率。然而由于电子束会损害棉纤维,成像速度需要非常快。 进一步研究在1970年芝加哥大学的阿尔伯特·克鲁发明了场发射枪,同时添加了高质量的物镜,从而发明了现代的扫描透射电子显微镜。这种设计可以通过环形暗场成像技术来对原子成像。克鲁和他的同事发明了冷场电子发射源,同时

13、建造了一台能够对很薄的碳衬底之上的重原子进行观察的扫描透射电子显微镜。 电子理论上,光学显微镜所能达到的最大分辨率,d,受到照射在样品上的光子波长以及光学系统的数值孔径,NA,的限制:理论上,使用电子可以突破可见光光波波长的限制(波长大约400nm-700nm)。与其它物质类似,电子具有波粒二象性,而他们的波动特性意味着一束电子具有与一束电磁辐射相似的性质。电子波长可以通过徳布罗意公式使用电子的动能得出。由于在TEM中,电子的速度接近光速,需要对其进行相对论修正:m=E/c2+m0=m01-v2c2 整理得v=E2c2+2m0EEc2+m0动量p=(Ec2+m0)v=(Ec2+m0)E2c2+

14、2m0EEc2+m0=E2c2+2m0E其中,h表示普朗克常数,m0表示电子的静质量,E是加速后电子的动能。电子显微镜中的电子通常通过电子热发射过程从钨灯丝上射出,或者采用场电子发射方式得到。随后电子通过电场进行加速,并通过静电场与电磁透镜聚焦在样品上。透射出的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。电子源基本的TEM光学元件布局图。从上至下,TEM包含有一个可能由钨丝也可能由六硼化镧制成的电子发射源。对于钨丝,灯丝的形状可能是别针形也可能是小的钉形。而六硼化镧使用了很小的一块单晶。通过将电子枪与高达105V-3105V的高电压源相连,在电流足够大的时候,电子枪将会通

15、过热电子发射或者场电子发射机制将电子发射入真空。该过程通常会使用栅极来加速电子产生。一旦产生电子,TEM上边的透镜要求电子束形成需要的大小射在需要的位置,以和样品发生作用。对电子束的控制主要通过两种物理效应来实现。运动的电子在磁场中将会根据右手定则受到洛伦兹力的作用,因此可以使用磁场来控制电子束。使用磁场可以形成不同聚焦能力的磁透镜,透镜的形状根据磁通量的分布确定。另外,电场可以使电子偏斜固定的角度。通过对电子束进行连续两次相反的偏斜操作,可以使电子束发生平移。这种作用在TEM中被用作电子束移动的方式,而在扫描电子显微镜中起到了非常重要的作用。通过这两种效应以及使用电子成像系统,可以对电子束通

16、路进行足够的控制。与光学显微镜不同,对TEM的光学配置可以非常快,这是由于位于电子束通路上的透镜可以通过快速的电子开关进行打开、改变和关闭。改变的速度仅仅受到透镜的磁滞效应的影响。电子光学设备TEM的透镜可以对电子束进行聚焦,聚焦的角度是一个可以变化的参数,这样TEM就拥有了通过改变透镜线圈、四极子或者六极子的电流来调节放大倍数的能力。四极子透镜是一种将电磁线圈垂直摆放在正方形的顶点的排列方式,从而使产生了聚焦用的磁场,而六极子配置通过使用六个线圈,提高了磁场的对称性。一般来说,TEM包含有三级透镜。这些透镜包括聚焦透镜、物镜和投影透镜。聚焦透镜用于将最初的电子束成型,物镜用于将穿过样品的电子

17、束聚焦,使其穿过样品(在扫描透射电子显微镜的扫描模式中,样品上方也有物镜,使得射入的电子束聚焦)。投影透镜用于将电子束投射在荧光屏上或者其它显示设备,比如胶片上面。TEM的放大倍数通过样品与物镜的像平面距离之比来确定。另外的四极子或者六极子透镜用于补偿电子束的不对称失真,被称为散光。需要注意的是,TEM的光学配置于实际实现有非常大的不同,制造商们会使用自定义的镜头配置,比如球面像差补偿系统或者利用能量滤波来修正电子的色差。成像设备TEM的成像系统包括一个可能由颗粒极细(10-100m)的硫化锌制成荧光屏,可以向操作者提供直接的图像。此外,还可以使用基于胶片或者基于CCD的图像记录系统。通常这些

18、设备可以由操作人员根据需要从电子束通路中移除或者插入通路中。组成结构TEM的电子源在顶端,透镜系统(4、7、8)将电子束聚焦于样品上,随后将其投影在显示屏(10)上。控制电子束的设备位于右方(13和14)。组件 电子枪:发射电子,由阴极、栅极、阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。 聚光镜:将电子束聚集,可用已控制照明强度和孔径角。 样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热、冷却等设备。 物镜:为放大率很高的短距透镜,作用是放大电子像。物镜是决定透射电子显微镜分辨能力和成像质量的关键。 中

19、间镜:为可变倍数的弱透镜,作用是对电子像进行二次放大。通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。 透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。 此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。TEM包含有若干元件,其中有一个用于传输电子束的真空系统,用于产生电子束的电子发射源,一系列的电磁透镜以及静电盘。后两个器件允许操作者按照要求对电子束进行操作。此外,还需要一个设备将样品移入或移出电子束通路,以及在通路中移动。成像设备随后使用射出前述系统的的电子束成像。真空系统真空系统的作用有两方面,一方面可以在阴极和地之间加以很高的电压,而不会将空气击穿产生电弧,

20、另一方面可以将电子和空气分子的撞击频率减小到可以忽略的量级,这个效应通常使用平均自由程来描述。标准的TEM需要将电子的通路抽成气压很低的真空,通常需要达到104Pa。由于TEM的元件如样品夹具和胶卷盒需要经常插入电子束通路,或者需要更换,因此系统需要能够重新抽成真空。因此,TEM不能采用永久密封的方法来保持真空,而是需要装备多个抽气系统以及气闸。用于将TEM抽成达到需要的真空度的真空设备包含有若干级。首先,需要使用旋片泵或者隔膜泵将TEM抽成低真空,以允许涡轮分子泵或者扩散泵将TEM抽至操作所需要的高度真空。为了让低真空泵不必连续运转,而涡轮分子泵连续的进行操作,低压泵的真空端需要与涡轮分子泵

21、级联。TEM不同段可以使用门阀隔离,以允许在TEM的不同的区域达到不同的真空度,例如在高分辨率TEM或者场发射TEM的电子枪处,需要真空度达到 104 - 107 Pa,甚至更高的真空。高电压TEM需要极高的真空度,通常要达到 107 -109 Pa以防止产生电弧,特别是在TEM的阴极处。因此高压TEM需要第三个真空系统,同时电子枪与主室使用门阀或者差动泵隔离。差动泵可以防止气体分子扩散入高真空电子枪区域的速度超过气体抽出的速度。对于这种非常低的气压,需要使用离子泵或者吸气材料。如果TEM的真空度达不到所需要的量级,会引起若干的问题,如进入TEM的气体会通过一种称为电子束致沉淀的过程沉淀于待观

22、察的样品上,或者在更严重的情况下会导致阴极损伤。由于样品导致的真空问题可以通过冷阱技术来吸收样品附近升华的气体。样品台TEM 样品支撑网格,其上有一超薄切片。TEM样品台的设计包括气闸以允许将样品夹具插入真空中而尽量不影响显微镜其它区域的气压。样品夹具适合夹持标准大小的网格,而样品则放置在网格之上,或者直接夹持能够自我支撑的样品。标准的TEM网格是一个直径3.05mm的环形,其厚度和网格大小只有几m到100m。样品放置在内部的网格区域,其直径约2.5mm。通常使用的网格材料为铜、钼、金或者铂。这个网格放置在与样品台配套的样品夹具上。大多数的样品台和夹具的设计依赖于需要进行的实验。除了3.05m

23、m直径的网格,2.3mm直径的网格偶尔也在实际中使用。这些网格在材料科学领域中得到广泛应用,这是因为经常需要将样品倾斜很大的角度,而样品材料经常非常稀少。对电子透明的样品的厚度约100nm,但是这个厚度与加速电子的电压相关。一旦插入TEM,经常需要对样品进行操作以使电子束照射在感兴趣的部分上,例如一个单晶粒在某个特殊的角度的衍射。为了达到这一目的,TEM的样品台需要能够使样品在XY平面平移,在Z方向调节高度,而且通常至少可以在某一方向上对样品进行旋转。因此TEM的样品台必须对样品提供四个运动的自由度。更现代的TEM可以为样品提供了两个方向正交的旋转自由度,这种夹具设计称为双倾斜样品夹具。某些顶

24、端进入或者称为垂直插入的样品台设计在高分辨率TEM研究中曾经很普遍,这种样品台仅有XY平面的平移能力。TEM样品台的设计准则非常复杂,需要同时考虑到机械和电子光学的限制,因此有许多非常独特的设计。由于TEM的放大倍数很高,样品台必须高度稳定,不会发生力学漂移。通常要求样品台的漂移速度仅有每分钟几纳米,而移动速度每分钟几m,精度要求达到纳米的量级。早期的TEM设计通过一系列复杂的机械设备来达到这个目标,允许操作者通过若干旋转杆来精确的控制样品台的移动。现代的TEM样品台采用电子样品台的设计,通过步进电机来移动平台,使操作者可以利用计算机输入设备来移动样品台,如操纵杆或轨迹球。TEM的样品台主要有

25、两个设计,侧入式和顶入式。每种设计都需要配合相应的夹具以允许样品插入电子束通路的时候不会损害TEM的光学性质或者让气体进入TEM的真空区域。一个单轴倾斜样品夹具,它可以插入TEM的测角仪。倾斜这个夹具可以通过旋转整个测角仪来实现。通常使用的夹具是侧入式的,样品放置在一个较长的金属杆的尖端,金属通常是黄铜或不锈钢,沿着金属杆是一些聚合物真空环,以保证在将样品插入TEM的时候拥有足够的真空气密性。样品台需要配合金属杆设计,而样品根据TEM物镜的设计或者放在物镜之间或者放在物镜附近。当插入样品台的时候,侧入式夹具的尖端伸入TEM的真空腔中,而其末端处在空气中,真空环形成了气闸。侧入式的TEM夹具的插

26、入过程包括将样品旋转以打开一个微开关,使得样品在插入TEM之前就开始对气闸进行抽真空操作。第二个设计,顶入式夹具包括一个几厘米长的小盒,盒沿轴有一个钻孔,样品被放置在洞中,可能需要利用一个小的螺丝来将样品固定在合适的位置。样品盒将被插入气闸中,其钻孔与TEM光轴垂直。在密封后,将操作气闸以将样品盒推入正确的位置,这时钻孔将与TEM的光轴一致,电子束将穿过样品盒的钻孔射入样品。这种设计通常无法将样品倾斜,因为一旦倾斜,就会阻碍电子束的通路,或者与物镜发生干扰。电子枪电子枪由若干基本元件组成:灯丝,偏置电路,韦乃特阴极,还有阳极。通过将灯丝和负电压电源相连,电子可以通过电子枪泵往阳极,并射入TEM

27、的真空腔,从而完成整个回路。电子枪用于使电子以一定的发散角度射出设备,这个角度被称为电子枪发散角。通过放置充有比灯丝更多负电荷的韦乃特阴极,呈发散状射出灯丝的电子会在适当的操作下被转变为会聚的形式,其最小大小为电子枪的截面直径。热电子发射电流强度J与发射电子材料的功函数和玻尔兹曼分布有关,关系如下,其中 A 是常数, 是功函数,而T是材料的温度:这个等式表明,为了达到足够的电流强度,需要将灯丝小心加热,而多余的热量也不能将灯丝损坏,因此需要具有较高熔点的材料,如钨,或者可以选择其它功函数较低的材料,如六硼化镧作为灯丝的材料。此外,六硼化镧和钨热电子源必须加热以使电子可以发射出来,通常可以使用一

28、个小电阻片来达到这一目的。为了防止热冲击,经常需要对电流进行延迟,以阻止热梯度对灯丝的损伤。对六硼化镧材料,这个延迟通常长达数秒钟,而对于钨,这个延迟相对来说非常短。电子透镜TEM分裂极靴设计透镜示意图电子透镜对电子束的作用类似于光学透镜对光线的作用,它可以将平行的电子束聚集在固定的焦点。透镜可以使用静电效应,也可以使用磁效应。TEM中使用的电子透镜大多数都使用了电磁线圈以产生凸透镜的作用。这些透镜产生的场必须是径向对称的,否则,磁场透镜将会产生散光等失真现象,同时会使球面像差与色差恶化。电子透镜使用铁、铁钴合金或者镍钴合金、坡莫合金制成 。选择这些材料是由于它们拥有适当的磁特性,如磁饱和、磁

29、滞、磁导等。电磁透镜的主要元件包括外壳、磁线圈、磁极、极靴以及外部控制电路。极靴必须制造得非常对称,这样可以提供形成透镜磁场的合适的边界条件。制造极靴的过程中的误差会严重影响磁场的对称性,从而导致透镜在物平面重建像的失真。透镜的空隙的大小、极靴的内径以及尖端的尺度,还有透镜的整体设计经常通过磁场有限元分析来完成,同时还需要考虑到设计的散热和电气限制。产生透镜磁场的线圈位于透镜的外壳之内。这些线圈中的电流可以变化,然而经常使用很高的电压,因此需要很强的绝缘能力,以防止透镜元件之间发生短路。散热元件需要将由线圈电阻造成的发热散出。线圈可能还需要使用水冷,亦即使用流动的冷水将热量带走。光圈孔径光圈是

30、环形的金属圆盘,距离光轴超过一定距离的电子将无法通过光圈。这个元件包含的小圆盘厚度足以阻止电子穿过,而中央的电子则可以从空洞穿过。允许中央的电子通过这一性质在TEM中可以同时产生两种效应。首先,光圈使得电子束的强度减弱,对于某些对电子束强度敏感的样品就需要使用光圈。其次,光圈可以去掉散射角过大的电子,从而可以削弱球面像差和色差,以及由于电子和样品发生作用的衍射等等不希望出现的现象。光圈是大小固定或者大小可变的。他们可以插入电子束通路或者取出,或者在垂直于电子束通路的平面中移动。光圈系统是一种允许操作人员选择不同大小的光圈的机械设备,这样操作人员可以在电子束强度与过滤效应上做出取舍。光圈系统通常

31、需要配合测微计来移动光圈。成像方式电子束穿过样品时会携带有样品的信息,TEM的成像设备使用这些信息来成像。投射透镜将处于正确位置的电子波分布投射在观察系统上。观察到的图像强度I,在假定成像设备质量很高的情况下,近似的与电子波函数的时间平均幅度成正比。若将从样品射出的电子波函数表示为,则不同的成像方法试图通过修改样品射出的电子束的波函数来得到与样品相关的信息。根据前面的等式,可以推出观察到的图像强度依赖于电子波的幅度,同时也依赖于电子波的相位。虽然在电子波幅度较低的时候相位的影响可以忽略不计,但是相位信息仍然非常重要。高分辨率的图像要求样品尽量的薄,电子束的能量尽量的高。因此可以认为电子不会被样

32、品吸收,样品也就无法改变电子波的振幅。由于在这种情况下样品仅仅对波的相位造成影响,这样的样品被称作纯相位物体。纯相位物体对波相位的影响远远超过对波振幅的影响,因此需要复杂的分析来得到观察到的图像强度。例如,为了增加图像的对比度,TEM需要稍稍离开聚焦位置一点。这是由于如果样品不是一个相位物体,和TEM的对比度传输函数卷积以后将会降低图像的对比度。对比度信息TEM中的对比度信息与操作的模式关系很大。复杂的成像技术通过改变透镜的强度或取消一个透镜等等构成了许多的操作模式。这些模式可以用于获得研究人员所关注的特别信息。亮场TEM最常见的操作模式是亮场成像模式。在这一模式中,经典的对比度信息根据样品对

33、电子束的吸收所获得。样品中较厚的区域或者含有原子数较多的区域对电子吸收较多,于是在图像上显得比较暗,而对电子吸收较小的区域看起来就比较亮,这也是亮场这一术语的来历。图像可以认为是样品沿光轴方向上的二维投影,而且可以使用比尔定律来近似。对亮场模式的更复杂的分析需要考虑到电子波穿过样品时的相位信息。衍射对比度由于电子束射入样品时会发生布拉格散射,样品的衍射对比度信息会由电子束携带出来。例如晶体样品会将电子束散射至后焦平面上离散的点上。通过将光圈放置在后焦平面上,可以选择合适的反射电子束以观察到需要的布拉格散射的图像。通常仅有非常少的样品造成的电子衍射会投影在成像设备上。如果选择的反射电子束不包括位

34、于透镜焦点的未散射电子束,那么在图像上没有样品散射电子束的位置上,也就是没有样品的区域将会是暗的。这样的图像被称为暗场图像。现代的TEM经常装备有允许操作人员将样品倾斜一定角度的夹具,以获得特定的衍射条件,而光圈也放在样品的上方以允许用户选择能够以合适的角度进入样品的电子束。这种成像方式可以用来研究晶体的晶格缺陷。通过认真的选择样品的方向,不仅能够确定晶体缺陷的位置,也能确定缺陷的类型。如果样品某一特定的晶平面仅比最强的衍射角小一点点,任何晶平面缺陷将会产生非常强的对比度变化。然而原子的位错缺陷不会改变布拉格散射角,因此也就不会产生很强的对比度。电子能量损失通过使用采用电子能量损失光谱学这种先

35、进技术的光谱仪,适当的电子可以根据他们的电压被分离出来。这些设备允许选择具有特定能量的电子,由于电子带有的电荷相同,特定能量也就意味着特定的电压。这样,这些特定能量的电子可以与样品发生特定的影响。例如,样品中不同的元素可以导致射出样品的电子能量不同。这种效应通常会导致色散,然而这种效应可以用来产生元素成分的信息图像,根据原子的电子-电子作用。电子能量损失光谱仪通常在光谱模式和图像模式上操作,这样就可以隔离或者排除特定的散射电子束。由于在许多图像中,非弹性散射电子束包含了许多操作者不关心的信息,从而降低了有用信息的可观测性。这样,电子能量损失光谱学技术可以通过排除不需要的电子束有效提高亮场观测图

36、像与暗场观测图像的对比度。相衬技术晶体结构可以通过高分辨率透射电子显微镜来研究,这种技术也被称为相衬显微技术。当使用场发射电子源的时候,观测图像通过由电子与样品相互作用导致的电子波相位的差别重构得出。然而由于图像还依赖于射在屏幕上的电子的数量,对相衬图像的识别更加复杂。然而,这种成像方法的优势在于可以提供有关样品的更多信息。衍射模式面心立方奥氏体不锈钢孪晶结晶衍射图如前所述,通过调整磁透镜使得成像的光圈处于透镜的后焦平面处而不是像平面上,就会产生衍射图样。对于单晶体样品,衍射图样表现为一组排列规则的点,对于多晶或无定形固体将会产生一组圆环。对于单晶体,衍射图样与电子束照射在样品的方向以及样品的

37、原子结构有关。通常仅仅根据衍射图样上的点的位置与观测图像的对称性就可以分析出晶体样品的空间群信息以及样品晶体方向与电子束通路的方向的相对关系。衍射图样的动态范围通常非常大。对于晶体样品,这个动态范围通常超出了CCD所能记录的最大范围。因此TEM通常装备有胶卷暗盒以记录这些图像。硅晶体产生的会聚电子束菊池线对衍射图样点对点的分析非常复杂,这是由于图像与样品的厚度和方向、物镜的失焦、球面像差和色差等等因素都有非常密切的关系。尽管可以对格点图像对比度进行定量的解释,然而分析本质上非常复杂,需要大量的计算机仿真来计算30。衍射平面还有更加复杂的表现,例如晶体格点的多次衍射造成的菊池线。在会聚电子束衍射

38、技术中,会聚电子束在样品表面形成一个极细的探针,从而产生了不平行的会聚波前,而汇聚电子束与样品的作用可以提供样品结构以外的信息,例如样品的厚度等等。 成像原理透射电子显微镜的成像原理可分为三种情况: 吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。 衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射波的振幅分布不均匀,反映出晶体缺陷的分布。 相位像:当样品薄至100

39、Å以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。 应用透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂在预处理过的铜网上进行观察。扫描隧道显微镜扫描隧道显微镜 - 概念解读扫描隧道显微镜(scanning tunneling microscope,STM)根据量子隧道效应来获取反映样品表面形貌及电子态

40、图像的一种新型显微镜。20 世纪80年代初发展起来的第三种能够直接观察到单个原子像的显微镜。STM可在大气、真空、常温、低温、高温中,甚至在绝缘且超低温液体(如液氮、液氦)、电解液等环境中直接观察自然状态下的物体表面现象和动态过程。避免了生物样品在真空中因脱水而产生的假象,以及固体材料因制成TEM超薄样品后与原来大块样品的性质间的差异,也不存在高能电子束对样品的辐照损伤。用STM第一次在实空间清楚地直接观察到Si (111)表面7X7结构的空间位置,解决了表面科学中长期争论不休的难题;也直接观察到了含水的生物样品,如DNA的内部结构等。扫描隧道显微镜的优点是三态(固态、液态和气态)物质均可进行

41、观察,而普通电镜只能观察制作好的固体标本。STM主要用来描绘表面三维的原子结构图,在纳米尺度上研究物质的特性,利用扫描隧道显微镜还可以实现对表面的纳米加工,如直接操纵原子或分子,完成对表面的刻蚀、修饰以及直接书写等。运用STM还可以在观测材料表面原子结构的同时得到材料表面的扫描隧道谱,从而研究材料表面的化学结构和电子状态。扫描隧道显微镜 - 工作原理 STM利用金属针尖在样品的表面上进行扫描,并根据量子隧道效应来获得样品表面的图像。隧道效应是量子力学中的微观粒子所具有的特性,即在电子能量低于它要穿过的势垒高度时,由于电子具有波动性而具有穿过势垒的几率。通常扫描隧道显微镜的针尖与样品的距离非常接

42、近(大约为0.51.0nm),所以他们之间的电子云互相重叠。当在它们之间施加一偏置电压Ub(Ub通常为2mV2V)时,电子就可以因量子隧道效应由针尖(或样品)转移到样品(或针尖),在针尖与样品的表面之间形成隧道电流,此隧道电流可以表示为: lUbexp(k1/2s),其中,k为常数,在真空条件下k1;为针尖与样品的平均功函数;s为针尖与样品表面之间的距离,一般为0.31.0nm由于隧道电流I与针尖和样品表面之间的距离s成指数关系,因此,电流对针尖和样品表面之间的距离的变化非常敏感。扫描隧道显微镜具有很高的空间分辨率,横向可达0.1nm,纵向可优于0.01nm。STM的工作模式有两种,恒电流模式

43、和恒高度模式。恒电流模式利用一套电子反馈线路控制隧道电流 I ,使其保持恒定。再通过计算机系统控制针尖在样品表面扫描,即是使针尖沿x、y两个方向作二维运动。由于要控制隧道电流 I 不变,针尖与样品表面之间的局域高度也会保持不变,因而针尖就会随着样品表面的高低起伏而作相同的起伏运动,高度的信息也就由此反映出来。这就是说,STM得到了样品表面的三维立体信息。这种工作方式获取图像信息全面,显微图像质量高, 应用广泛。恒高度模式在对样品进行扫描过程中保持针尖的绝对高度不变;于是针尖与样品表面的局域距离将发生变化,隧道电流I的大小也随着发生变化;通过计算机记录隧道电流的变化,并转换成图像信号显示出来,即

44、得到了STM显微图像。这种工作方式仅适用于样品表面较平坦、且组成成分单一(如由同一种原子组成)的情形。 从STM的工作原理可以看到:STM工作的特点是利用针尖扫描样品表面,通过隧道电流获取显微图像,而不需要光源和透镜。这正是得名“扫描隧道显微镜”的原因。工作时,必须定时地检测针尖和样品之间的隧道电流的变化,从而STM只能直接观察导体和半导体的表面结构。为了克服STM的不足之处,Binnig,Quate和Gerber决定用微悬臂作为信号的传播媒介,把微悬臂放在样品和STM的针尖之间,于1986年推出了原子力显微镜(atomicforce microscope,简称AFM)。AFM是通过探针与被测

45、样品之间微弱的相互作用力(原子力,范德华力)来获得物质表面形貌的信息,因此,AFM能直接观测导电和非导电样品的表面结构。对AFM进行改进,研制出了激光检测原子力显徽镜(LASER-AFM)以STM和AFM为基础,衍生出了一系列的扫描探针显微镜(scanning probe microscopeSPM),如激光力显微镜(LFM)、磁力显微镜(MFM)、摩擦力显微镜、扫描电化学显微镜(SECM)、近光光学显微镜(SNOM)、扫描离子电导显微镜(SICM)、静电力显微镜、扫描热显微镜、弹道电子发射显微镜(BEEM)、扫描隧道电位仪(STP)、扫描离子电导显微镜(SICM)、扫描近场光学显微镜(SNO

46、M)和扫描超声显微镜等。 扫描隧道显微镜 - 基本结构 隧道针尖隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图像的分辨率和图像的形状,而且影响着测定的电子态。 针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。如果针尖的尖端只有一个稳定的原子而不是有多重针尖,那么隧道电流就会很稳定,而且能够获得原子级分辨的图像。针尖的化学纯度高,就不会涉及系列势垒。例如,针尖表面若有氧化层,则其电阻可能会高于隧道间隙的阻值,从而导致针尖和样品间产生隧道电流之前,二者就发生碰撞。目前制备针尖的方法主要有电化学腐蚀法、机

47、械成型法等。制备针尖的材料主要有金属钨丝、铂-铱合金丝等。钨针尖的制备常用电化学腐蚀法,而铂-铱合金针尖则多用机械成型法,一般直接用剪刀剪切而成。不论哪一种针尖,其表面往往覆盖着一层氧化层,或吸附一定的杂质,这经常是造成隧道电流不稳、噪音大和扫描隧道显微镜图像的不可预期性的原因。因此,每次实验前都要对针尖进行处理,一般用化学法清洗,去除表面的氧化层及杂质,保证针尖具有良好的导电性。 三维扫描控制器由于仪器中要控制针尖在样品表面进行高精度的扫描,用普通机械的控制是很难达到这一要求的。目前普遍使用压电陶瓷材料作为x-y-z扫描控制器件。压电陶瓷利用了压电现象。所谓的压电现象是指某种类型的晶体在受到

48、机械力发生形变时会产生电场,或给晶体加一电场时晶体会产生物理形变的现象。许多化合物的单晶,如石英等都具有压电性质,但目前广泛采用的是多晶陶瓷材料,例如钛酸锆酸铅Pb(Ti,Zr)O3(简称PZT)和钛酸钡等。压电陶瓷材料能以简单的方式将1mV-1000V的电压信号转换成十几分之一nm到几m的位移。 用压电陶瓷材料制成的三维扫描控制器主要有以下几种 三脚架型,由三根独立的长棱柱型压电陶瓷材料以相互正交的方向结合在一起,针尖放在三脚架的顶端,三条腿独立地伸展与收缩,使针尖沿x-y-z三个方向运动。 单管型,陶瓷管的外部电极分成面积相等的四份,内壁为一整体电极,在其中一块电极上施加电压,管子的这一部

49、分就会伸展或收缩(由电压的正负和压电陶瓷的极化方向决定),导致陶瓷管向垂直于管轴的方向弯曲。通过在相邻的两个电极上按一定顺序施加电压就可以实现在x-y方向的相互垂直移动。在z方向的运动是通过在管子内壁电极施加电压使管子整体收缩实现的。管子外壁的另外两个电极可同时施加相反符号的电压使管子一侧膨胀,相对的另一侧收缩,增加扫描范围,亦可以加上直流偏置电压,用于调节扫描区域。 十字架配合单管型,z方向的运动由处在“十”字型中心的一个压电陶瓷管完成,x和y扫描电压以大小相同、符号相反的方式分别加在一对x、-x和y、-y上。这种结构的x-y扫描单元是一种互补结构,可以在一定程度上补偿热漂移的影响。除了使用

50、压电陶瓷,还有一些三维扫描控制器使用螺杆、簧片、电机等进行机械调控。 减震系统由于仪器工作时针尖与样品的间距一般小于1nm,同时隧道电流与隧道间隙成指数关系,因此任何微小的震动都会对仪器的稳定性产生影响。必须隔绝的两种类型的扰动是震动和冲击,其中震动隔绝是最主要的。隔绝震动主要从考虑外界震动的频率与仪器的固有频率入手。 电子学控制系统扫描隧道显微镜是一个纳米级的随动系统,因此,电子学控制系统也是一个重要的部分。扫描隧道显微镜要用计算机控制步进电机的驱动,使探针逼近样品,进入隧道区,而后要不断采集隧道电流,在恒电流模式中还要将隧道电流与设定值相比较,再通过反馈系统控制探针的进与退,从而保持隧道电

51、流的稳定。所有这些功能,都是通过电子学控制系统来实现的。离线数据分析软件离线数据分析是指脱离扫描过程之后的针对保存下来的图像数据的各种分析与处理工作。常用的图像分析与处理功能有:平滑、滤波、傅立叶变换、图像反转、数据统计、三维生成等。 平滑,平滑的主要作用是使图像中的高低变化趋于平缓,消除数据点发生突变的情况。 滤波,滤波的基本作用是可将一系列数据中过高的削低、过低的填平。因此,对于测量过程中由于针尖抖动或其它扰动给图像带来的很多毛刺,采用滤波的方式可以大大消除。 傅立叶变换,快速傅立叶变换对于研究原子图像的周期性时很有效。 图像反转,将图像进行黑白反转,会带来意想不到的视觉效果。 数据统计,

52、用统计学的方式对图像数据进行统计分析。 三维生成,根据扫描所得的表面型貌的二维图像,生成直观美丽的三维图像。在线扫描控制 参数设置功能 在扫描隧道显微镜实验中,计算机软件主要实现扫描时的一些基本参数的设定、调节,以及获得、显示并记录扫描所得数据图像等。计算机软件将通过计算机接口实现与电子设备间的协调共同工作。在线扫描控制中一些参数的设置功能如下: “电流设定”的数值意味着恒电流模式中要保持的恒定电流,也代表着恒电流扫描过程中针尖与样品表面之间的恒定距离。该数值设定越大,这一恒定距离也越小。测量时“电流设定”一般在“0.5-1.0nA” 范围内。 “针尖偏压”是指加在针尖和样品之间、用于产生隧道

53、电流的电压真实值。这一数值设定越大,针尖和样品之间越容易产生隧道电流,恒电流模式中保持的恒定距离越小,恒高度扫描模式中产生的隧道电流也越大。“针尖偏压”值一般设定在“50-100mV”范围左右。 “Z电压”是指加在三维扫描控制器中压电陶瓷材料上的真实电压。Z电压的初始值决定了压电陶瓷的初始状态,随着扫描的进行,这一数值要发生变化。“Z电压”在探针远离样品时的初始值一般设定在“-150.0mV -200.0mV”左右。 “采集目标”包括“高度”和“隧道电流”两个选项,选择扫描时采集的是样品表面高度变化的信息还是隧道电流变化的信息。 “输出方式”决定了将采集到的数据显示成为图像还是显示成为曲线。

54、“扫描速度”可以控制探针扫描时的延迟时间,该值越小,扫描越快。 “角度走向”是指探针水平移动的偏转方向,改变角度的数值,会使扫描得到的图像发生旋转。 “尺寸”是设置探针扫描区域的大小,其调节的最大值由量程决定。 尺寸越小,扫描的精度也越高,改变尺寸的数值可以产生扫描图像的放大与缩小的作用。 “中心偏移”是指扫描的起始位置与样品和针尖刚放好时的偏移距离,改变中心偏移的数值能使针尖发生微小尺度的偏移。中心偏移的最大偏移量是当前量程决定的最大尺寸。 “工作模式”决定扫描模式是恒电流模式还是恒高度模式。 “斜面校正”是指探针沿着倾斜的样品表面扫描时所做的软件校正。 “往复扫描”决定是否进行来回往复扫描

55、。 “量程”是设置扫描时的探测精度和最大扫描尺寸的大小。 这些参数的设置除了利用在线扫描软件外,利用电子系统中的电子控制箱上的旋钮也可以设置和调节这些参数。 马达控制 当使用软件控制马达使针尖逼近样品时,首先要确保电动马达控制器的红色按钮处于弹起状态,否则探头部分只受电子学控制系统控制,计算机软件对马达的控制不起作用。马达控制软件将控制电动马达以一个微小的步长转动,使针尖缓慢靠近样品,直到进入隧道区为止。 马达控制的操作方式为:“马达控制”选择“进”,点击“连续”按钮进行连续逼近,当检测到的隧道电流达到一定数值后,计算机会进行警告提示,并自动停止逼近,此时单击“单步”按钮,直到“Z电压”的数值

56、接近零时停止逼近,完成马达控制操作。扫描隧道显微镜 - 主要特点 与电子显微镜或 X线衍射技术研究生物结构相比,扫描隧道显微镜具有以下特点优越性1、高分辨率 扫描隧道显微镜具有原子级的空间分辨率,其横向空间分辨率为 l Å,纵向分辨率达0.1 Å. 可以观察单个原子层的局部表面结构,而不是体相或整个表面的平均性质,因而可直接观察到表面缺陷、表面重构、表面吸附体的形态和位置以及由吸附体引起的表面重构等。 2、扫描隧道显微镜可直接探测样品的表面结构,绘出立体三维结构图像。并且可用于具有周期性或不具备周期性的表面结构的研究,这种可实时观察的性能可用于表面扩散等动态过程的研究。3、

57、扫描隧道显微镜可在真空、常压、空气、甚至溶液中探测物质的结构,它的优点是三态(固态、液态和气态)物质均可进行观察,而普通电镜只能观察制作好的固体标本,由于没有高能电子束, 对表面没有破坏作用(如辐射,热损伤等),所以能对生理状态下生物大分子和活细胞膜表面的结构进行研究,样品不会受到损伤而保持完好。 4、扫描隧道显微镜的扫描速度快,获取数据的时间短,成像也快,有可能开展生命过程的动力学研究。5、不需任何透镜, 体积小,有人称之为“口袋显微镜”(pocket microscope)。6、配合扫描隧道谱(STS)可以得到有关表面电子结构的信息,例如表面不同层次的态密度、表面电子阱、电荷密度波、表面势

58、垒的变化和能隙结构等。如前所述,扫描隧道显微镜(STM)仪器本身具有的诸多优点,使它在研究物质表面结构、生物样品及微电子技术等领域中成为很有效的实验工具。例如生物学家们研究单个的蛋白质分子或DNA分子;材料学家们考察晶体中原子尺度上的缺陷;微电子器件工程师们设计厚度仅为几十个原子的电路图等,都可利用扫描隧道显微(STM)仪器。在扫描隧道显微镜(STM)问世之前,这些微观世界还只能用一些烦琐的、往往是破坏性的方法来进行观测。而扫描隧道显微镜(STM)则是对样品表面进行无损探测,避免使样品发生变化,也无需使样品受破坏性的高能辐射作用。另外,任何借助透镜来对光或其它辐射进行聚焦的显微镜都不可避免的受到一条根本限制:光的衍射现象。由于光的衍射,尺寸小于光波长一半的细节在显微镜下将变得模糊。而扫描隧道显微镜(STM)则能够轻而易举地克服这种限制,因而可获得原子级的高分辨率。尽管扫描隧道显微镜(STM)有着EM、FIM等仪器所不能比拟的诸多优点,但由于仪器本身的工作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论