




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、参数回归与非参数回归的优缺点比较:参数回归与非参数回归的优缺点比较:参数回归:参数回归:优点:优点:(1).(1).模型形式简单明确,仅由一些参数表达模型形式简单明确,仅由一些参数表达 (2). (2).在经济中,模型的参数具有一般都具有明确的经济含义在经济中,模型的参数具有一般都具有明确的经济含义 (3).(3).当模型参数假设成立,统计推断的精度较高,能经受实际检验当模型参数假设成立,统计推断的精度较高,能经受实际检验 (4). (4).模型能够进行外推运算模型能够进行外推运算 (5). (5).模型可以用于小样本的统计推断模型可以用于小样本的统计推断缺点:缺点:(1).(1).回归函数的
2、形式预先假定回归函数的形式预先假定 (2).(2).模型限制较多:一般要求样本满足某种分布要求,随机误差满足模型限制较多:一般要求样本满足某种分布要求,随机误差满足 正态假设,解释变量间独立,解释变量与随机误差不相关,等正态假设,解释变量间独立,解释变量与随机误差不相关,等 (3) (3)需要对模型的参数进行严格的检验推断,步骤较多需要对模型的参数进行严格的检验推断,步骤较多 (4).(4).模型泛化能力弱,缺乏稳健性,当模型假设不成立,拟合效果模型泛化能力弱,缺乏稳健性,当模型假设不成立,拟合效果 不好,需要修正或者甚至更换模型不好,需要修正或者甚至更换模型非参数回归:非参数回归:优点:优点
3、:(1)(1)回归函数形式自由,受约束少,对数据的分布一般回归函数形式自由,受约束少,对数据的分布一般不做任何要求不做任何要求 (2) (2)适应能力强,稳健性高,回归模型完全由数据驱适应能力强,稳健性高,回归模型完全由数据驱动动 (3) (3)模型的精度高模型的精度高 ;(4);(4)对于非线性、非齐次问题,有非对于非线性、非齐次问题,有非常好的效果常好的效果缺点缺点:(1)(1)不能进行外推运算不能进行外推运算,(2),(2)估计的收敛速度慢估计的收敛速度慢 (3) (3)一般只有在大样本的情况下才能得到很好的效一般只有在大样本的情况下才能得到很好的效果,果, 而小样本的效果较差而小样本的
4、效果较差 (4) (4)高维诅咒高维诅咒, , 光滑参数的选取一般较复杂光滑参数的选取一般较复杂非参数回归方法样条光滑样条光滑正交回归正交回归核回归:核回归:N-WN-W估计、估计、P-CP-C估计、估计、G-MG-M估计估计(9.19.1) 局部多项式回归:线性、多项式局部多项式回归:线性、多项式(9.29.2) 光滑样条:光滑样条、光滑样条:光滑样条、B B样条样条近邻回归:近邻回归:k-NNk-NN、k k近邻核、对称近邻(近邻核、对称近邻(9.49.4) 正交级数光滑(正交级数光滑(9.59.5) 稳健回归:稳健回归:LOWESSLOWESS、L L光滑、光滑、R R光滑、光滑、M M
5、光滑光滑 -(9.39.3) 局部回归局部回归FourierFourier级数光滑级数光滑waveletwavelet光滑光滑处理高维的非参数方法:多元局部回归、薄片样条、处理高维的非参数方法:多元局部回归、薄片样条、 可加模型、投影寻踪、可加模型、投影寻踪、 回归树、张量积,等回归树、张量积,等3核函数核函数K K :函数:函数K(.)K(.)满足满足: :( )0K x 22( )Kx Kx dx ( )0 xKx dx ( )1Kx dx (2)(3)(4 )2()KcKxdx 常见的核函数:常见的核函数:ParzenParzen 核:核:(1)GaussianGaussian核:核:E
6、panechnikovEpanechnikov核:核:tricubetricube核:核:( ) 1/2 ( )K xI x2/ 2( )1/2xK xe2( )3/4(1) ( )K xxI x3 3( )70/81(1 | )( )K xxI x( )I x为示性函数为示性函数4回归模型:回归模型:()Ymx20,( )EVar(1)(1)模型为随机设计模型模型为随机设计模型, ,样本观测样本观测 (X (X i i, Yi), Yi)iidiid(2)(2)模型为固定设计模型模型为固定设计模型Xi 为为R中中n个试验点列个试验点列, , i=1,2,n( )(|)m xE YXxYi为固
7、定为固定Xi的的n次独立观测,次独立观测,i=1,2,nm(x)为为一未知函数,用一些方法来拟合为为一未知函数,用一些方法来拟合定义:线性光滑定义:线性光滑 (linear smoother)(linear smoother)( )( )iiim xlx Y5光滑参数的选取光滑参数的选取风险风险( (均方误差均方误差) ) (mean squared error , MSE)(mean squared error , MSE)211( )( )( )nhiiiR hEmxm xn 理想的情况是希望选择合适的光滑参数理想的情况是希望选择合适的光滑参数h,使得通过样本数,使得通过样本数据拟合的回归
8、曲线能够最好的逼近真实的回归曲线据拟合的回归曲线能够最好的逼近真实的回归曲线( (即达到风险即达到风险最小最小) ),这里真实回归函数,这里真实回归函数m(x)一般一般是未知的。是未知的。 可能会想到用平均残差平方和来估计风险可能会想到用平均残差平方和来估计风险R(h)211()nihiiYmxn但是这并不是一个好的估计,会导致过拟合(欠光滑),但是这并不是一个好的估计,会导致过拟合(欠光滑),原因在于两次利用了数据,一次估计函数,一次估计风险。原因在于两次利用了数据,一次估计函数,一次估计风险。我们选择的函数估计就是使得残差平方和达到最小,因此我们选择的函数估计就是使得残差平方和达到最小,因
9、此它倾向于低估了风险。它倾向于低估了风险。 是是 的估计,的估计,h是光滑参数,称为带宽或窗宽是光滑参数,称为带宽或窗宽 ( )hm x( )mx6光滑参数光滑参数的选取的选取缺一交叉验证方法缺一交叉验证方法(leave-one-out cross validation , CV)(leave-one-out cross validation , CV)2()11( )()nii hiiCVR hYmxn这里这里 是略去第是略去第i个数据点后得到的函数估计个数据点后得到的函数估计()( )i hmx交叉验证的直观意义:交叉验证的直观意义:22()( 1)( )( )( )( )ii hiiii
10、hiE YmxE Ym xm xmx22( 1)22( 1)22( )( ( )( )( ( )( )( ( )( )iiihiihiihiE Ym xE m xmxE m xmxE m xm x2( ( )E R hR预测风险因此:因此:7光滑参数光滑参数的选取的选取定理:若定理:若 那么缺一交叉验证得分那么缺一交叉验证得分 能够写成:能够写成:1 ( )( )nhjjjm xx Y( )R h21 ( )1( )1nihiiiiYmxR hhL这里这里 是光滑矩阵是光滑矩阵L的第的第i个对角线元素个对角线元素( )iiiiLx 广义交叉验证广义交叉验证(generalized cross-
11、(generalized cross-validation,GCVvalidation,GCV) )21 ( )1( )1/nihiiYm xGCV hhn其中:其中: 为有效自由度为有效自由度11/niiinnL( )tr L8光滑参数光滑参数的选取的选取其他标准其他标准(1)(1)直接插入法直接插入法(Direct Plug-In , DPI) (Direct Plug-In , DPI) 相关文献可以参考:相关文献可以参考: Wolfgang Hrdle(1994),Applied Nonparametric Regression,Berlin Jeffrey D.Hart (1997)
12、, Nonparametric Smoothing and Lack-of-Fit Tests, Springer Series in Statistics 李竹渝、鲁万波、龚金国李竹渝、鲁万波、龚金国(2007),经济、金融计量学中的非,经济、金融计量学中的非参数估计技术,科学出版社,北京参数估计技术,科学出版社,北京 吴喜之译吴喜之译(2008),现代非参数统计,科学出版社,北京,现代非参数统计,科学出版社,北京 (2)(2)罚函数法罚函数法(penalizing function) (penalizing function) (3)(3)单边交叉验证单边交叉验证(One Sided Cr
13、oss Validation(One Sided Cross Validation,OSCV)OSCV)(4)(4)拇指规则拇指规则(Rule Of Thumb)(Rule Of Thumb)99.1.9.1.核回归(核光滑)模型核回归(核光滑)模型N-WN-W估计是一种简单的加权平均估计,可以写成线性估计是一种简单的加权平均估计,可以写成线性光滑:光滑:局部回归局部回归由由NadarayaNadaraya(1964) (1964) 和和 Watson(1964) Watson(1964)分别提出,分别提出,(1 1)N-WN-W估计估计形式:形式: 11()( )()nnnhiNWninih
14、jjKxXmxYKxX .1( )( )nNWniiimxx Y1()( )()nnhiinhjjKxXxKxX( )( /) /hKKhh 其中:其中: , , 为核函数,为核函数, 为带宽或窗宽为带宽或窗宽()Knh01x10局部回归局部回归(2) (2) G-MG-M估计估计由由Gasser and Gasser and MllerMller(1979)(1979)提出,形式如下提出,形式如下: :11( )()inisnGMnihisnxumxYKduh其中其中010,() / 2,1,1,1iiinssxxins写成线性写成线性光滑的光滑的形式形式: :1( )( )nGMniiim
15、xx Y1( )()inisihsnx uxKduh11局部回归局部回归核估计存在边界效应,边界点的估计偏差较大核估计存在边界效应,边界点的估计偏差较大, ,以以N-WN-W估计为例,如下图估计为例,如下图12局部回归局部回归一般,核函数的选取并不是很重要,重要的是带宽的选取一般,核函数的选取并不是很重要,重要的是带宽的选取13局部回归局部回归一般,核函数的选取并不是很重要,重要的是带宽的选取一般,核函数的选取并不是很重要,重要的是带宽的选取14局部回归局部回归一般,核函数的选取并不是很重要,重要的是带宽的选取一般,核函数的选取并不是很重要,重要的是带宽的选取可以看到:拟合曲线的光滑度受到光滑
16、参数可以看到:拟合曲线的光滑度受到光滑参数h h变化的影响变化的影响15局部回归局部回归核估计的渐近方差核渐近偏差核估计的渐近方差核渐近偏差核估计渐近偏差渐近方差N-W估计G-M估计22()2Khm fmdf22Khm d2( )Kxcnhf23( )2Kxcnhf其中,其中,h h为光滑参数,为光滑参数,f f为为X X的密度函数,且的密度函数,且2( )Kdu K u du2( )KcK u du16局部回归局部回归 9.2.9.2.局部多项式回归局部多项式回归多项式的回归模型多项式的回归模型()Ym X2012( )ppm xxxx其中其中 可由最小二乘法估计可由最小二乘法估计, , 即
17、即 01(,)Tp21arg min()niiiYm X局部多项式回归:对局部多项式回归:对m(x)m(x)在在u u处进行处进行p p阶泰勒展开,略去阶泰勒展开,略去p p阶阶高阶无穷小量,得到高阶无穷小量,得到m(x)m(x)在在u u处的一个处的一个p p阶多项式近似,即阶多项式近似,即01( )( )( )()( )()ppm xuu xuu xu( )( )( )/ !,1,2,jjumujjp此时,此时,x x应该靠近应该靠近u u,且,且17局部回归局部回归通过最小二乘来估计系数通过最小二乘来估计系数01( )( ),( ),( )Tpuuuu注意:是在注意:是在x x的一个邻域
18、内进行多项式估计,因此,最小二乘应的一个邻域内进行多项式估计,因此,最小二乘应该与该与x x的邻域有关的邻域有关局部加权平方和:局部加权平方和:2011( )()() )(),nnpiiipihinxXYxxXxXKh使上述问题最小化,可以得到系数的局部多项式的最小二乘估计使上述问题最小化,可以得到系数的局部多项式的最小二乘估计可以很容易得到,取可以很容易得到,取p=0p=0时为局部常数估计,即时为局部常数估计,即N-WN-W核估计核估计取取p=1p=1,为局部线性估计,为局部线性估计18局部回归局部回归写成矩阵形式:写成矩阵形式:(-)(-)TxxxYXWYX使上式最小化,可以得到系数的估计
19、使上式最小化,可以得到系数的估计-1( )=()TTxxxxxxX W XX W Y其中其中1122()1!()1!()1!ppxpnnxxxxpxxxxXpxxxxp1()nixnhn nnxxWh diag Kh12nYYYY 19局部回归局部回归得到加权最小二乘估计得到加权最小二乘估计-1( )( )()LPETThxxxxxxxmxXxX X W XX WY当当p=1p=1时(局部线性估计)的渐近偏差和渐近方差时(局部线性估计)的渐近偏差和渐近方差2( )( ),2LPEhKhbias mxm x d2( )( )( )LPEhKxVar mxcnhf x其中其中2( )Kdu K u
20、 du2( )KcKu du可以看到局部线性回归的渐近方差和可以看到局部线性回归的渐近方差和N-WN-W估计相同,估计相同,而渐近偏差却比而渐近偏差却比N-WN-W回归小,说明局部线性多项式回归小,说明局部线性多项式可以减少边界效应,局部线性估计由于可以减少边界效应,局部线性估计由于N-WN-W估计估计20局部回归局部回归局部多项式光滑可以很好的减少边界效应局部多项式光滑可以很好的减少边界效应21局部回归局部回归检验函数检验函数(Doppler(Doppler函数函数) )2.1( )(1)sin,010.05m xxxxx22局部回归局部回归使用使用GCVGCV选取最优带宽选取最优带宽h=0
21、.017h=0.017,权函数为,权函数为tricubetricube核函数核函数23局部回归局部回归使用使用GCVGCV选取最优带宽选取最优带宽h=0.017h=0.017,权函数为权函数为tricubetricube核函数核函数24局部回归局部回归9.4.9.4.近邻光滑近邻光滑(1) (1) k-NNk-NN回归回归(k-nearest neighbor regression)(k-nearest neighbor regression)1 ( , )( , )nniiimx kx k Y,1/( )0,x kik iIxotherwise其中其中 = = i : : xi是离是离x最近
22、的最近的k个观测值之一个观测值之一 , x kIK-NNK-NN估计的渐近偏差和渐近方差:估计的渐近偏差和渐近方差:231( , )( , )( )(2)( )( / )24( )nnbias m x kEm x km xm fm fxk nfx2( )( , )nxVar mx kk对于随机设计模型,近邻估计写成线性光滑器的形式对于随机设计模型,近邻估计写成线性光滑器的形式权函数:权函数:25局部回归局部回归(1) (1) k-NNk-NN回归回归(k-nearest neighbor regression)(k-nearest neighbor regression)26局部回归局部回归(1) (1) k-NNk-NN回归回归(k-nearest neighbor regression)(k-nearest neighbor regression)27局部回归局部回归(2)(2)k- k-近邻核回归近邻核回归K K近邻核估计的权重近邻核估计的权重1()( , )()RiinRiiKxxx kKxx其中其中R为为xi 中中离离x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年塑料枝头花行业深度研究分析报告
- 宾馆转让双方合同协议书
- 物业招聘人员合同协议书
- 2025年中国氯化钾项目商业计划书
- 创业基础商业计划书
- 补充合同协议书怎么写
- 过户合同协议书怎么写有效
- 项目部环保管理策划方案
- 家庭保姆合同简易协议书
- 合同协议书文本格式
- 传染病法律法规培训课件
- 高中地理学业水平合格性考试必修二知识点总结(会考)
- 职业升学就业协议书
- 旅行导游协议书
- 2024年新牛津译林版三年级上册英语 Unit 1 Hello!第三课时
- 2025届百师联盟高三下学期二轮复习联考(三)地理试题(含答案)
- 新能源合伙人合同8篇
- 节目脚本委托合同协议
- 2025年下半年河北省邢台路桥建设总公司招聘50人易考易错模拟试题(共500题)试卷后附参考答案
- (二模)青岛市2025年高三年级第二次适应性检测地理试卷(含标准答案)
- 海林市社区工作者招聘真题2024
评论
0/150
提交评论