一元二次方程易错题-课件PPT_第1页
一元二次方程易错题-课件PPT_第2页
一元二次方程易错题-课件PPT_第3页
一元二次方程易错题-课件PPT_第4页
一元二次方程易错题-课件PPT_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021/8/261一元二次方程易错题2021/8/262案例案例1:关于关于x的方程的方程02) 1(2kkxxk有两个不相等的实数根,有两个不相等的实数根,求求k的取值范围。的取值范围。解:解:) 1(4)2(2kkk解得解得k又又k-10 k且且k1忽视二次项忽视二次项系数不为系数不为02021/8/263案例案例2:当当K为何值时为何值时,解关于,解关于x的方的方程程 有实数根有实数根.0)3(322kxkkx忽视对方程忽视对方程分类讨论分类讨论2021/8/2641542)2222xxxx(xx22015)2( 2)2222xxxx(0) 32)(5222xxxx(522 xx322

2、 xx案例案例3:已知实数已知实数x满足满足求:代数式求:代数式解:解:,的值。的值。或或522 xx又又无实根,无实根, 322 xx忽视根的忽视根的存在条件!存在条件!2021/8/265案例案例4:已知关于已知关于x的一元二次方程的一元二次方程 有两个实根,求有两个实根,求k的的取值范围。取值范围。01122xkx解:由解:由0,可得,可得04)12(2k解得解得 k - 2又又k+10, k1k 的取值范围是的取值范围是k1忽视系数中忽视系数中的隐含条件的隐含条件2021/8/2661x2x01522 xxxxxxxx2121212121xx案例案例5:已知已知 ,是方程是方程的两根,

3、求的两根,求解:解: 的值。的值。22122212212121212121xxxxxxxxxxxxxxxx说一说说一说忽视讨论两忽视讨论两根的符号!根的符号!2021/8/267)1 ()2(xxaxa1x2xxxS21a0) 12(22axxaaxx2121axx221xxS21212122xxxxSaa22211aa20a案例案例6:已知方程已知方程的两个实根为的两个实根为、,设,设,求求:解:原方程整理解:原方程整理,= 取什么取什么整数时整数时S的值为的值为1.由由= 4a+10得得,由,由02121axx得得21a410 a忽视系数中的忽视系数中的隐含条件与隐含条件与判别式判别式。

4、a取整数取整数0。41a2021/8/2680900222mmxx090222cba2522ba252)(2abba02142 mm3, 721 mm3, 721 mm案例案例7:在在RtABC中,中,C=,斜边斜边c=5,的两根,求的两根,求m的值的值 。解:在解:在RtABC中,中, C=检验检验:当当时,都大于时,都大于0两直角边的长两直角边的长a、b是是又因为直角边又因为直角边a,b的长均为正所以的长均为正所以m 的值只有的值只有7。忽视实忽视实际意义际意义!2021/8/269理一理理一理一元二次方程中几个容易忽视问题:一元二次方程中几个容易忽视问题:重视重视二次项系数不为二次项系数

5、不为0;重视重视对方程分类讨论;对方程分类讨论;重视重视系数中的隐含条件;系数中的隐含条件;重视重视根的存在条件根的存在条件 ;重视重视讨论两根的符号;讨论两根的符号;重视重视根要符合实际意义。根要符合实际意义。 说一说说一说系数系数根根2021/8/2610求下列各式的最值(最小值或最大值):求下列各式的最值(最小值或最大值): 9103810279669655249723106296122222222xxxxxxxxxxxxxxxx2021/8/2611阅读题例,解答下题:阅读题例,解答下题: 042221211002, 01110120, 01110110112212122222xxxx

6、xxxxxxxxxxxxxxxxxx仿照上例解法,解方程或是综上所述,原方程的解(不合题设,舍去),解得(不合题设,舍去),解得时,即当时,即当解:例:解方程2021/8/26122021/8/26132021/8/26142021/8/26152021/8/26162021/8/26172021/8/26182021/8/26192021/8/26202021/8/26212021/8/26222021/8/26232021/8/26242021/8/26252021/8/2626OxyABMDC2021/8/26272021/8/2628(图)yxOPAFBE图1yxOoPAFBE图220

7、21/8/26292021/8/2630A AB BC CP PQ Q(1 1)用含)用含x x的代数式表的代数式表示示BQBQ、PBPB的长度;的长度;(2 2)当为何值时,)当为何值时,PBQPBQ为等腰三角形;为等腰三角形;(3 3)是否存在)是否存在x x的值,使得四的值,使得四边形边形APQCAPQC的面积等于的面积等于20cm20cm2 2?若?若存在,请求出此时存在,请求出此时x x的值;若不的值;若不存在,请说明理由。存在,请说明理由。其它类型应用题:其它类型应用题:4.4.如图,如图,RtRtABCABC中,中,B=90B=90,AC=10cmAC=10cm,BC=6cmBC

8、=6cm,现有两个动点,现有两个动点P P、Q Q分别从点分别从点A A和点和点B B同同时出发,其中点时出发,其中点P P以以2cm/s2cm/s的速度,沿的速度,沿ABAB向终点向终点B B移动;点移动;点Q Q以以1cm/s1cm/s的速度沿的速度沿BCBC向终点向终点C C移动,移动,其中一点到终点,另一点也随之停止。连结其中一点到终点,另一点也随之停止。连结PQPQ。设动点运动时间为设动点运动时间为x x秒。秒。2021/8/2631其它类型应用题:其它类型应用题:5.5.在直角梯形在直角梯形ABCDABCD中,中,ADBCADBC,CC=90=90,BCBC=16=16,ADAD=21=21,DC=12DC=12,动点,动点P P从点从点D D出发,沿出发,沿线段线段DADA方向以每秒方向以每秒2 2个单位长度的速度运动,个单位长度的速度运动,动点动点Q Q从点从点C C出发,沿线段出发,沿线段CB CB 以每秒以每秒1 1个单位个单位长度的速度向点长度的速度向点B B运动运动. . 点点P P、Q Q分别从点分别从点D D、C C同时出发,当点同时出发,当点P P运动到点运动到点A A时,点时,点Q Q随之停止随之停止运动,设运动时间为运动,设运动时间为t t秒秒. .问问: :当当t t为何值时,为何值时,BP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论