命题教学设计_第1页
命题教学设计_第2页
命题教学设计_第3页
命题教学设计_第4页
命题教学设计_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、命题教学设计在教学工作者实际的教学活动中,可能需要进行教学设计编写工作,借助教学设计可以提高教学质量,收到预期的教学效果。那么你有了解过教学设计吗?下面是小编收集整理的命题教学设计,仅供参考,希望能够帮助到大家。命题教学设计1教学目标1、使学生了解命题、真命题和假命题等概念、2、使学生了解几何命题是由“题设”和“结论”两部分组成、能够初步区分命题的题设和结论,或把命题改写成“如果,那么”的形式重点和难点分清命题的题设和结论,既是教学的重点又是教学的难点、教学过程一、引入请大家随意说出一些语句,教师把它们写在黑板上、如:(1)对顶角相等吗?(2)作一条线段AB=2cm;(3)我爱初二(1)班;(

2、4)两直线平行,同位角相等;(5)相等的两个角,一定是对顶角、二、新课问:上述语句中,哪些是判断一件事情的句子?答:(3)、(4)、(5)是判断一件事情的句子、教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题、数学课堂里,只研究数学命题,如(4)、(5)、例1 请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?(1)等角的补角相等;(2)有理数一定是自然数;(3)内错角相等两直线平行;(4)如果a是有理数,那么a2a;(5)每一个大于4的偶数都可以表示成两个质数之和(即著名的哥德巴赫猜想)、教师启发学生得出:一个命题,由题设和结论两部分组成,都可

3、以写成“如果,那么”的形式,也可以简称为“若A则B”、练习:把上述(1)至(5),都按“如果,那么”的形式,表述一遍、例2 在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?(l)“如果两个角是等角的补角,那么这两个角相等、”是正确的命题,已经由补角的定义得到证明、(2)“如果是有理数,那么它一定是自然数”。是不正确的命题(判断),反例如是有理数但不是自然数。(3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行、”是正确的命题,已证、(4)“如果a是有理数,那么a2a、”是不正确的命题,反例如a=1,a2=a、(5)“如果是一个大于4的偶数,那

4、么它可以表示成两个质数之和、”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确、我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了“ 1+2”,离“ 1+1”这颗数学王冠上的珍珠,只差“一步之遥”、这是目前世界上对这个命题的真伪的判定,所能达到的最好结果、教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别、真命题如果题设成立那么结论一定成立,这样的命题叫做真命题、假命题如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题、注意:不是命题与假命题的区别!怎样判断一个命题的真假?检验真理的唯

5、一标准是实践、数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是假命题,只需举出一个反例即可、例3 试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假、(1)对顶角相等;(2)两直线平行,同位角相等;(3)若a=0,则ab=0;(4)两条直线不平行,则一定相交;(5)凡相等的角都是直角、解:(l)对顶角相等(真);相等的角是对顶角(假);不是对顶角不相等(假);不相等的角不是对顶角(真)、(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);两直线不平行,同位角不相等(真);同位角不相等,两直线不平行(

6、真)、(3)若a=0,则ab=0(真);若ab=0,则a=0(假);若a0,则ab0(假);若ab0,则a0(真)、(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);两条直线平行,则一定不相交(真);两条直线不相交,则一定平行(假)、(注)本小题如果添上“在同一平面内”的大前提条件,那么假命题将变为真命题、(5)凡相等的角都是直角(假);凡直角都相等(真);凡不相等的角不都是直角(真);凡不都是直角的角不相等(假)、说明:本例,尤其是第(5)小题,视学生接受情况,教师灵活掌握、讲还是不讲,讲到什么程度,介不介绍四种命题(原、逆、否、逆否),都有较大的伸缩性、小结:命题判

7、断一件事情的句子;命题的结构;如果(题设),那么(结论);命题的真假正确或错误的判断;四种命题原、逆、否、逆否、(用投影片显示或挂小黑板)三、作业1、在下列语句中,指出哪些是命题,哪些不是命题、如果是命题,指出命题的真假,并仿照例3说出一些新的命题来、(l)如果ABCD于O,那么AOC=90°;(2)取线段AB的中点C;(3)两条直线相交,有且只有一个交点;(4)一个平角的度数是180°;(5)若a=b,则a2=b2;(6)如果一个数的末位数字是0,那么它一定能够被5整除;(7)同角的余角相等;(8)周角的一半等于直角、2、选作题判断命题“如果n是自然数,那么n2+n+17

8、是质数”的真假、命题教学设计2教学建议(一)教材分析1、知识结构2、重点、难点分析重点:找出命题的题设和结论、因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础、难点:找出一个命题的题设和结论、因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题、但有些命题的题设和结论不明显、例如,“对顶角相等”,“等角的余角相等”等、一些没有写成“如果那么”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点、(二)教学建议1、教师

9、在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假、2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:(1)假命题可分为两类情况:题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题。题设有多种情形,其中至少有一种情形的结论是错误的、例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行、整体说来,这是错误的命题、(

10、2)是否是命题:命题的定义包括两层涵义:命题必须是一个完整的句子;这个句子必须对某件事情做出肯定或者否定的判断、即命题是判断某一件事情的句子、在语法上,这样的句子叫做陈述句,它由“题设+结论”构成、另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线、”疑问句“A是否等于B?”感叹句“竟然得到59的结果!”以上三个句子都不是命题、(3)命题的组成每个命题都是由题设、结论两部分组成、题设是已知事项;结论是由已知事项推出的事项、命题常写成“如果,那么”的形式、具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论、有些命题,没有写成“如果

11、,那么”的形式,题设和结论不明显、对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果那么”的形式、另外命题的题设(条件)部分,有时也可用“已知”或者“若”等形式表述;命题的结论部分,有时也可用“求证”或“则”等形式表述、教学设计示例:教学目标1、使学生对命题、真命题、假命题等概念有所理解、2、使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成“如果,那么”的形式、3、会判断一些命题的真假、教学重点和难点本节的重点和难点是:找出一个命题的题设和结论、教学过程设计一、分析语句,理解命题1、教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:(1)

12、我是中国人。(2)我家住在北京。(3)你吃饭了吗?(4)两条直线平行,内错角相等。(5)画一个45°的角。(6)平角与周角一定不相等。2、找出哪些是判断某一件事情的句子?学生答:(1),(2),(4),(6)。3、教师给出命题的概念,并举例。命题:判断一件事情中,每句话都判断什么事情、所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清、在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说、(不要让说过的再说)如:的句子,叫做命题,分析(3),(5)为什么不是命题。教师分析以上命题(1)对顶角相等。(2)等角的余角相等。(3)一条射线把一个角分成两个相等的角

13、,这条射线一定是这个角的平分线。(4)如果a0,b0,那么a+b0。(5)当a0时,|a|=a。(6)小于直角的角一定是锐角。在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题。(7)a0,b0,a+b0。(8)2与3的和是4。有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的.理解。4、分析命题的构成,改写命题的形式。例两条直线平行,同位角相等。(l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论、已知事项为“题设”,由已知推出的事项为“结论”。(2)改写命题

14、的形式。由于题设是条件,可以写成“如果”的形式,结论写成“那么”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等。”请同学们将下列命题写成“如果,那么”的形式,例:对顶角相等。如果两个角是对顶角,那么它们相等。两条直线平行,内错角相等。如果两条直线平行,那么内错角相等。等角的补角相等。如果两个角是等角,那么它们的补角相等。(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等。)以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等。”提示学生注意:题设的条件要全面、准确、如果条件不止一个时,要一一列出。如:两条直线相交,

15、有一个角是直角,则这两条直线互相垂直,可改写为:“如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直。”二、分析命题,理解真、假命题1、让学生分析两个命题的不同之处。(l)若a0,b0,则a+b0(2)若a0,b0,则a+b0相同之处:都是命题、为什么?都是对a0,b0时,a+b的和的正负,做出判断,都有题设和结论。不同之处:(1)中的结论是正确的(2)中的结论是错误的。教师及时指出:同学们发现了命题的两种情况。结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题。2、给出真、假命题定义真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。假命题:如果

16、题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题。注意:(1)真命题中的“一定成立”不能有一个例外,如命题:“a0,b0,则ab0”。显然当a=0时,ab0不成立,所以该题是假命题,不是真命题。(2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。(3)注意命题与假命题的区别、如:“延长直线AB”、这本身不是命题、也更不是假命题。(4)命题是一个判断,判断的结果就有对错之分、因此就要引入真假命题,强调真假命题的大前提,首先是命题。3、运用概念,判断真假命题。例请判断以下命题的真假。(1)若ab0,则a0,b0。(2

17、)两条直线相交,只有一个交点。(3)如果n是整数,那么2n是偶数。(4)如果两个角不是对顶角,那么它们不相等。(5)直角是平角的一半。解:(1)(4)都是假命题,(2)(3)(5)是真命题、4、介绍一个不辨真伪的命题、“每一个大于4的偶数都可以表示成两个质数之和”。(即著名的哥德巴赫猜想)我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确、我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”、即已经证明了“1+2”,离“1+1”只差“一步之遥”、所以这个命题的真假还不能做最好的判定。5、怎样辨别一个命题的真假。(l)实际生活问题,实践是检验真理的唯一标准。(2)数学中判定一个命题是真命题,要经过证明。(3)要判断一个命题是假命题,只需举一个反例即可。三、总结师生共同回忆本节的学习内容。1、什么叫命题?真命题?假命题?2、命题是由哪两部分构成的?3、怎样将命题写成“如果,那么”的形式。4、初步会判断真假命题、教师提示应注意的问题:1、命题与真、假命题的关系。2、抓住命题的两部分构成,判断一些语句是否为命题。3、命题中的题设条件,有两个或两个以上,写“如果”时应写全面。4、判断假命题,只需举一个反例,而判断真命题,数学问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论