等比数列基础习题选附详细解答_第1页
等比数列基础习题选附详细解答_第2页
等比数列基础习题选附详细解答_第3页
等比数列基础习题选附详细解答_第4页
等比数列基础习题选附详细解答_第5页
免费预览已结束,剩余41页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等比数列基础习题选(附详细解答)一.选择题(共27小题)1 .已知an是等比数列,a2=2, a5=l,则公比q=()A.B.-2C.2D.2 .在等比数列an中,ai=1, a1o=3,则 a2a3a4a5a6a7a8a9=()A.81B.27*CD.2433 .如果-1, a, b, c, -9成等比数列,那么()A. b=3, ac=9B. b=- 3, ac=9C. b=3, ac=9 D. b=- 3, ac=9色号 a i4 .已知数列1, ab a2, 4成等差数列,1, b, b2, b3, 4成等比数列,贝1_的值是()A.B.C.或一士D.5 .正项等比数列an满足a2a4

2、=1 , $=13, bn=log3an,则数列bn的前10项和是()A. 65B. -65C. 25D. -256 .等比数歹!J an中,a6+a2=34, a&- a2=30,那么 a4等于A 8B 16C ±8D ±169. (2012匕京)已知an为等比数列,下面结论中正确的是()A. ai+a3> 2a2B.C.若 ai=a3,则 ai=a2D.若 a3>a1,则 a4>a210. (2011?宁)若等比数列an满足anan+i=16n,则公比为()A 2B 4C 8D 1611 . (2010?ff西)等比数列an中,|a“=1 ,

3、a5=- 8a2, a5>a2,贝U an=()A.(-2) n1B. - (-2n1)C(-2) nD. - (-2)12.已知等比数列an中,a6- 2a3=2, a5- 2a2=1,则等比数列a n的公比是()A. - 1B. 2C. 3D. 413.正项等比数列an中,a2a5=10,则 Iga 3+lga4=()A. - 1B. 1C. 2D.014.在等比数列bn中,b3?b9=9,则b6的值为()A. 3B. ±3C. -3D.15 .(文)在等比数列an中,贝U tan (a1a4a9)=(A.B.C.D.16 .若等比数列an满足 a4+a8=-3,则 a6

4、(az+2%+ao)=()A. 9B. 6C. 3D.17 .设等比数列an的前n项和为S,若*=3,则会()A.B.C.D.18.在等比数列an中,an>0, a=1 a1,a4二9 a3,贝 a4+%=()A. 16B. 27C. 36D.8119.在等比数列an中a2=3,则a&a3=()A. 81B. 27C. 22D. 920.等比数列an各项均为正数且 a4a7+a5a6=16, log 2ai+log 2a2+log 2a10=()A. 15B. 10C. 12D. 4+log2521.等比数列an中a4, a8是方程x2+3x+2=0的两根,则a5a6a7=()A

5、. 8B. ±2/2C. -2<2D. 2n22.在等比数列an中,若a3a4a5a6a7=243,则/的值为()A. 9B. 6C. 3D. 223.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是()A.B.C.D.24.已知等比数列1, a2, 9,,则该等比数列的公比为()A. 3 或-3B. 3 或'C. 3D.25. (2011?ff西)已知数列an的前n项和Sn满足:Sn+SiSn+m,且Hl = 1,那么 日0=()A. 1B. 9C. 10D. 55A. 8B.C. 6D.27.等比数列an的前n项和为Sai=1,若

6、4ai, 2a2, a3成等差数列,则 &二(A. 7B. 8C. 16D. 15a6+a7=26.在等比数列an中,前 7项和 S=16,又曰2+&2+a72=128, WJ aiaz+a a4+a5二.填空题(共3小题)28 .已知数列an中,a1二1, an=2an 1+3,则此数列的一个通项公式是 29 .数列3,畤,咕,的前n项之和是.S30 .等比数列an的首项a产-1,前n项和为若二生=且,则公比q等于参考答案与试题解析选择题(共27小题)1. (2008?折江)已知an是等比数列,a2=2, as。,则公比q=()A.B. - 2C. 2D.考等比数列.点

7、9; 八、分 根据等比数列所给的两项,写出两者的关系,第五项等于第二项与公比的三次方的乘 析:积,代入数字,求出公比的三次方,开方即可得到结果.解 解:: an是等比数列,a2=2, as,4答:设出等比数列的公比是q, a5=a?q3,13 一小血Q -九 2 区一Y胃故选D点 本题考查等比数列的基本量之间的关系,若已知等比数列的两项,则等比数列的所有 评:量都可以求出,只要简单数字运算时不出错,问题可解.2. (2006砌北)在等比数列an中,ai=1, a10=3,则 a2a3a4a5a6a7a8a9=()A. 81B. 27;C.D. 243考等比数列.点' 八、分由等比数列的

8、性质知(a2a9)=(a3a8)=(a4a7)=(a5a6)=(aa。).析:解 解:因为数列an是等比数列,且ai=1, a3,答:4 4所以 a2a3a4a5a6a7a8a9= (a2a9) (a3a8)(a4a7) (a5a6)= (aa。)4=34=81,故选A点 本题主要考查等比数列的性质.评:3. (2006?|匕京)如果-1, a, b, c, -9成等比数列,那么()A. b=3, ac=9B. b= - 3, ac=9C. b=3, ac= 9D. b= - 3, ac= 9考等比数列.点' 八、分由等比数列的等比中项来求解.析:解 解:由等比数列的性质可得 ac=

9、( - 1) x (-9) =9,答:bx b=9且b与奇数项的符号相同,.b=- 3,故选B点 本题主要考查等比数列的等比中项的应用.评:a-p - ai4. 已知数列1, ai, a2, 4成等差数列,1, bi, b2, b3, 4成等比数列,则一1的值是(1 - It 1-A.B. fC.不或D.占I乙乙考 等差数列的通项公式;等比数列的通项公式.点' 八、专计算题.分 由1, ai, a2, 4成等差数列,利用等差数列的性质求出等差d的值,进而得到a2-ai析:的值,然后由1, bi, b2, b3, 4成等比数列,求出b2的值,分别代入所求的式子中即 可求出值.解 解:.1

10、, ai, a2, 4成等差数列,答:3d=4- 1=3,即 d=1, . a 2 ai =d=1)又1, bi, b2, b3, 4成等比数列,b22=bib3=1 X 4=4,解得 b2=± 2,又 bi =b2 >0,b 2=2,故选A点 本题以数列为载体,考查了等比数列的性质,以及等差数列的性质,熟练掌握等比、评:等差数列的性质是解本题的关键,等比数列问题中符号的判断是易错点5 .正项等比数列an满足a2a4=1 , 4=13, bn=log 3an,则数列bn的前10项和是()A. 65B. -65C. 25D. -25考 等差数列的前n项和;等比数列的通项公式.点&

11、#39; 八、分由题意可得3 2二a2a4 =1,解得 a3=1,由 $=13 可得 ai+&=12,则有 a1q2=1, ai+a1q=12,-J析:解得q和ai的值,由此得到an的解析式,从而得到bn的解析式,由等差数列的求和公式求出它的前 10项和.解 解:二,正项等比数列an满足a2a4=1, 0=13, bn=log 3an,答:a 2=a2a4 =1,解得 a 3=1. -J由 曰+&+a=13,可得 a 1+a2=12.设公比为 q,贝有 a1 q2=1, a1+a1q=12,解得 q=. a二9.n- 1故 an =9X(工)=33 n.3故bn=log3an=

12、3-n,则数列bn是等差数列,它的前10项和是 二 二-25,故选D点 本题主要考查等比数列的定义和性质,等比数列的通项公式,等差数列的前n 项和公评:式的应用,求出an=33n,是解题的关键,属于基础题.6 .等比数列an中,a6+a2=34, ae- a=30,那么 a4等于()A 8B 16C ±8D ± 16考 等比数列的通项公式点:专 计算题题:分 要求a,,就要知道等比数列的通项公式,所以根据已知的两个等式左右两边相加得到析:ae,左右两边相减得到a2,根据等比数列的性质列出两个关于首项和公比的关系式,联立求出a和q,得到等比数列的通项公式,令 n=4即可得到.

13、解 解:设此等比数列的首项为a,公比为q,答:由ae+a2=34, ae - a2=30两个等式相加得到2a6=64,解彳4 ae=32;两个等式相减得到 2a2=4,解得 a2=2根据等比数列的通项公式可得 a6=aq5=32CD, a2=aq=2®,把代入得q4=16,所以q=2,代入解得a=1所以等比数列的通项公式 an=2n,则a4=23=8.故选A点 此题要求学生灵活运用等比数列的性质解决数学问题,会根据条件找出等比数列的通评:项公式.本题的关键是根据题中的已知条件得到数列的a2和a6.7 .已知数列an满足3尸1, a-尸(口4口九)曰,其中人为实常数,则数列an( 1

14、nrlnA.不可能是等差数列,也不可能是等比数列8 .不可能是等差数列,但可能是等比数列C.可能是等差数列,但不可能是等比数列D.可能是等差数列,也可能是等比数列考点:等差关系的确定;等比关系的确定.专题:等差数列与等比数列.分析:由于 汕=n2+n入,而n2+n-入不是固定的常数,不满足等比数列的定义.若是等差数列,则由ai+a=2 a2,解得人=3,此时,a二Cn2+ii- 3) a ,显然,不满足等差数列的定义,从而得出结论.解答:解:由"二1, a-二(门21-入)3 可得汕=n2+n-入,由于n2+n-入不是固 1rrrln|a定的常数,故数列不可能是等比数列.若数列是等差

15、数列,则应有 ai+a3=2 a2,解得 人=3.此时,o - (114n-3)a,显然,此数列不是等差数列, rrrln故选A.点评:本题主要考查等差关系的确定、等比关系的确定,属于中档题.8.已知数列an的前n项和为&,若对于任意nCN*,点Pn (n, $)都在直线y=3x+2上,则数列a n()A.是等差数列不是等比数列B.是等比数列不是等差数列C.是常数列D.既不是等差数列也不是等比数列考点:等比关系的确定;等差关系的确定.专题:计算题.分析:由点Pn (n, S)都在直线y=3x+2上,可得&=3n+2,再利用an=&-S-1求解.解答:解:由题意,丁点Pn

16、 (n, &)都在直线y=3x+2上 .Sn=3n+2当 n>2 时,an=S- S 1=3当 n=1 时, a1=5数列an既不是等差数列也不是等比数列故选 D点评:本 题的考点是等比关系的确定,主要考查由前n 项和求数列的通项问题, 关键是利用前 n 项和与通项的关系9 (2012?北京)已知an 为等比数列,下面结论中正确的是()A. a+a3> 2a2B.C. 若 ai=a3,则 a尸&D.若 a3>a1,则 a4&考点 : 等 比数列的性质专题:探究型.刀析. ai+a3=+a q,当且仅当a2, q同为正时,ai+a3>2a2成立;Q

17、 d28L币占(£)+(七Q)2>2 . 所以播+a>2;若ai=a3,则ai=aq2,从 而可知 a尸&或 a二一a2;若 a3>a,则 a1q2>ai,而 a4a2=aq (q21),其正负由 q 的符号确定,故可得结论.角至答一 i ao,一, 一, ,解:设等比数列的公比为q,则&+&:"?+& q,当且仅当a, q同为正时,a1+a3>2a2 q上成立,故A不正确;2aj+ai产(二)+ (3')*2 J,'故 B 正确;若 a1二a3, 则 ai=aq2, ;q2=1,q=+ 1,.

18、a 产&或 a二a2, 故 C不正确;若a3>ai,则aq2>ai, &4-a2=aq (q2- 1),其正负由q的符号确定,故 D不正确故选B.点评:本题主要考查了等比数列的性质.属基础题.10. (2011TS宁)若等比数列 a满足a&+产16二则公比为(A. 2B. 4C. 8D. 16考等比数列的性质.点' 八、专计算题.题:分 令n=1,得到第1项与第2项的积为16,记作,令n=2,得到第2项与第3项的积析:为256,记作,然后利用+,利用等比数列的通项公式得到关于q的方程,求出方程的解即可得到q的值,然后把q的值代入经过检验得到满足题意的

19、 q的值即可.解 解:当 n=1 时,aia2=16D;当 n=2 时,a2a3=2562),答:+得:=16,即q2=16,解得q=4或q=-4,当q=-4时,由得:a;x (-4) =16,即a;=-4,无解,所以q=- 4舍去,则公比q=4.故选B点 此题考查学生掌握等比数列的性质,灵活运用等比数列的通项公式化简求值,是一道评:基础题.学生在求出q的值后,要经过判断得到满足题意的q的值,即把q=-4舍去.11. (2010?ff西)等比数列an中,|ai|=1 , a5=-8a2, a5>a2,则 an=()A. (-2) n1B. - (-2n1)C.(-2) nD). - (-

20、2)考等比数列的性质.点' 八、刀根据等比数列的性质,由a5=-8a得到一等于q1求出公比q的值,然后由a5>a2,a2析:利用等比数列的通项公式得到 ai大于0,化简已知|ai|=1 ,得到ai的值,根据首项和公比利用等比数列的通项公式得到 an的值即可.解 解:由a5=- 8a2,得至U=q3= 8,解得q=- 2,答:又 a5>a2,得到 16ai>-2ai,解得 ai>0,所以 |ai|=ai=1则 an=aiqn 1= (-2) n1故选A点 此题考查学生灵活运用等比数列的性质及前n项和的公式化简求值,是一道中档题.评:12.已知等比数列an中,a6-

21、2a3=2, a5- 2a2=1,则等比数列an的公比是()A. 一 1B. 2C. 3D. 4等比数列的性质.分 根据等比数列的通项公式化简已知的两等式,得到关于首项和公比的两个方程,分别析:记作和,把提取q后,得到的方程记作,把代入即可求出 q的值.解 解:由 a6- 2a3=2, a5 2a2=1 得:答:,力q片已q& - ?力由得:q (a1q4-2a1q) =2,把代入得:q=2.故选B点 此题考查学生灵活运用等比数的通项公式化简求值,掌握等比数的性质,是一道评: 基础题13 .正项等比数列an中,a2a5=10,则 lga 3+lga4=()A. TB. 1C. 2D.

22、0考 等比数的性质点:专 计算题题:分等比数列的定义和性质,得到a3a4=10,故有lga 3+lga4=lga3a4=lg10=1 .析:解 解:,正项等比数列an中,a2a5=10,a3a4=10,lga 3+lga4=lga3a4=lg10=1 ,答:故选 B点本题考查等比数列的定义和性质,得到a 3a4=10,是解题的关键.评:14 .在等比数列bn中,b3?b9=9,则b6的值为()考等比数列的性质.点' 八、专计算题.题:分 在等比数列bn中,由b3?b9=b62=9,能求出b6的值.析:解解:.在等比数列bn中,答: 2_b3?b9=b6 =9,b6=± 3.故

23、选B.点 本题考查等比数列的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等 评:价转化.15 .(文)在等比数列an中,力自产下二1巧,贝U tan (a1a4a9)=()A.B.C.D.考等比数列的性质.点' 八、分 由安%叮二,根据等比数列an的通项公式得aaa9=二,再结合三角函数的性析:质可求出tan (a1a4a9)的化 .tan (a1a4a9)=七/16兀故选B.点 本题考查等比数列的性质和应用,解题时要注意三角函数的等价转换.评:16 .若等比数列an满足 a4+a8=- 3,则 ae (a2+2as+aio)=()A. 9B. 6C. 3D. -3考等比数列

24、的性质.计算题.分 根据等比数列的性质若 m n, p, qC N*,且m+n=p+q则有aman=apaq可得a6 (a+Za+ao) 析:=(a4+a8)2,进而得到答案.解 解:由题意可得:在等比数列an中,若mi, n, p, qCN*,且m+n=p+q则有aman=apaq.因为 a6 (a2+2a6+aio) =a6a2+2a6a6+aoa6所以 a6a2+2a6a6+aioa6= (a4+a8)2=9.故选A.点 解决此类问题的关键是熟练掌握等比数列的通过性质,并且结合正确的运算,一般以 评:选择题的形式出现.17 .设等比数列an的前n项和为S,若=3,则U=()A.B.D.考

25、等比数列的性质.计算题.八 首先根据等比数列的前n项和对寸=析:3解解:/=3,s3答:巧(13L 一 Q,-5 整理得,1+q3=28 j a i q)1 - Q,q3=2/GT)单 L,=!% aA (1 q6)31 - q故选B.点 本题考查了等比数列的关系,注意在题评:18.在等比数列an中,an>0, a2=1 ai,:3进行化简,求出q°,进而即可求出结果.井把 q3当作未知数,会简化运算.a4=9 a3,贝U a4+&=()A. 16B. 27C. 36D. 81考等比数列的性质.点' 八、专计算题.题:分 首先根据等比数列的性质求出q=3和ai=

26、的值,然后彳t入a4+a5=aiq3+aiqP可求出结果.析:解 解:2 2=1 - ai, a4=9a3; aiq+a=1 aiq3+aiq2=9答:两式相除得,q=±3,.an>0 q=3 a i=4a4+a5=aiq3+aiq4=27故选B.本题考查了等比数列的性质,熟练掌握性质是解题的关键,属于基础题.评:19.在等比数列an中a2=3,则a1a2a3=()A 81B 27C 22D 9考 等比数的性质点:专 计算题题:分 由等比数的性质可得:a1a2a3=a23 ,结合题意即可得到答案析:解 解:由等比数的性质可得:a1a2a3=a23,答:3因为 a2=3,所1 以

27、 a1a2a3=& =27.故选 B点本题考查了等比数列的性质,解题的关键aa=a2an-i=akan-k,属于中档题.评:20.等比数列an各项均为正数且 a4a7+a5a6=16, log 2ai+log 2a2+log 2a10=()A 15B 10C 12D 4+log 25考 等比数列的性质点:专 计算题题:分 先用等比数列an各项均为正数,结合等比数列的性质,可得aiai0=&a9=a3a8=a4a7=&a6析: >0, 从而 aa2a3a9aio=( a5a6 ) 5,然后用对数的运算性质进行化简求值,可得正确选项解 解:等比数列an各项均为正数答:

28、a iaio=a2a9=a3a8=a4a7=a5a6> 0: a 4a7+a5a6=16二 a 5a6=a4a7=8根据对数的运算性质,得log 2日+log2a2+ +log 2aio=log2 (aia2a3-a9aio) =log2 (a5a6)5=log2 (8) 5=15v (8) 5= (23) 5=215log 2 (8) 5=log 2215=15故选A点 本题考查了等比数列的性质和对数的运算性质,考查了转化化归的数学思想,属于基 评:础题.21.等比数列an中a4, a8是方程x2+3x+2=0的两根,则a5a6a7=()A. 8B. ±2«C. -

29、2/2D. 2/2考等比数列的性质.点' 八、专计算题.题:分 根据等比数列的性质得到第6项的平方等于第4项与第8项的积,又根据韦达定理,析:由a4,a8是方程x2+3x+2=0的两根即可得到第4项与第8项的积,进而求出第6项的值,然后把所求的式子也利用等比数列的性质变为关于第6项的式子,把第6项的值代入即可求出值.解 解:根据等比数列的性质得:a;a4a8,的值为(A.B. 6C. 3D. 2析:等比数列的性质.计算题.先利用等比数列通项的性质,求得 a5=3,再将,即可求得又a4, a8是方程x2+3x+2=0的两根,得至U a4a8=2,则 a62=2,解得 a6=±6

30、,贝 a5a6a7= (a5a7) a6=a63=±2/2.故选B点 此题考查学生灵活运用等比数列的性质及韦达定理化简求值,是一道基础题.评:22.在等比数列an中,若 a3a4a5a6a7=243,解 解:二,等比数列an中,若a3a4a5a6a7=243,答:,券 243 - 5 5=3设等比数列的公比为q故选C.点 本题重点考查等比数列通项的性质,考查计算能力,属于基础题.评:23 .在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是()A.B.C.D.考 等差数列的性质;等比数列的性质.计算题.分 根据题设条件,设中间两数为x, y,由3,

31、x, y成等比数列,知x2=3y,由x, y, 9析:等比数列,知2y=x+9,列出方程组./二3y ,从而求得这两个数的和.2y=H9解解:设中间两数为x, y,答:则卜”如,|2y=x+9所以K+尸等=1旺. 44故选C.点 本题主要考查等比数列和等差数列的性质, 是基础题,难度不大,解题时要认真审题, 评:仔细解答.24 .已知等比数列1, a2, 9,,则该等比数列的公比为()A. 3 或-3B. 3 或巧C. 3D.考等比数列的性质.分 由等比数列的通项公式可得 9=1xJ,解得a 2=3,从而得到公比.析:解 解:由题意可得9=1xJ, .J=3,故公比为 彳=3,答:故选C.点

32、本题考查等比数列的通项公式,求出 a2的值,是解题的关键.评:25 . (2011?ff西)已知数列an的前n项和Sn满足:Sn+Sm=Sn+m,且a1 = 1,那么 曰0二(A. 1B. 9C. 10D. 55考 等比数列的前n项和;数列的求和.计算题分根据题意,用赋值法,令 n=1, m=9可彳导:Si+S9=Sio,即s1o-s9=s尸a1二1,进而由数列析 的前 n 项和的性质,可得答案解 解:根据题意,在Sn+Sm=Sn+m中,答令 n=1, m=9可得:Si+S9=Sio, 即 si。 S9=Si=ai=1,根据数列的性质,有aio=sio- S9,即aio=1,故选 A点 本题考

33、查数列的前n 项和的性质,对于本题,赋值法是比较简单、直接的方法评26 .在等比数列an中,前 7项和 S=16,又 ai2+a22+a72=128,贝 aia2+a3 a4+a5 ae+a7=()A 8BC 6D考 等比数列的通项公式;等比数列的前n 项和点:八、计算题.分 把已知的前7项和S7=16利用等比数列的求和公式化简,由数列an2是首项为ai,公析:比为q2的等比数列,故利用等比数列的求和公式化简a;+a22+a,=128,变形后把第一个等式的化简结果代入求出直-的值,最后把所求式子先利用等比数列的 1+通项公式化简,把前六项两两结合后,发现前三项为等比数列,故用等比数列的求和公式化简,与最后一项合并后,将求出 土一的值代入即可求出值.l+q二128,222-'1":.2+&2+a;=?1-Lq为(1十q,)=8l+q则 ai a2+a a4+a ae+a?=(ai a2)+ (as- a4)+ (a5 a6)+a7=ai (1-q) +aiq2 (1-q) +aiq4 (1-q) +

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论