基于AT89C51直流电机PWM调速系统设计_第1页
基于AT89C51直流电机PWM调速系统设计_第2页
基于AT89C51直流电机PWM调速系统设计_第3页
基于AT89C51直流电机PWM调速系统设计_第4页
基于AT89C51直流电机PWM调速系统设计_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、目 录第一章 绪 论31.概述31.1 直流电机的特点及应用和控制前景31.2 直流调速的发展42.直流电动机原理52.1 直流电机的基本工作原理52.2 直流电机的电器特性6第二章 直流电机的控制方案设计72.1 直流电动机的调速方法72.1.1 PWM调速设计112.1.2 直流电机控制结构图12第三章 直流电机调速硬件设计133.1 最小系统设计133.11 AT89C51介绍133.12 系统时钟的设计173.1.3 系统复位方式173.2 电源电路的设计183.2.1 芯片介绍183.2.2 电源电路图1933 显示电路设计193.3.1 78LS48芯片介绍193.3.2 显示电路

2、图203.4 键盘电设计203.5 驱动电路设计213.5.1 L298N芯片介绍213.5.4 驱动电路21第四章 直流电机转速控制程序设计224.1 主程序流程图224.2 键盘扫描流程图234.3 中断程序流程图24第五章 结论与展望245.1 结论245.2 展望25致谢25参考文献26英文摘要26附录(主程序及原理图)27基于AT89C51的直流电动机PWM调速系统设计摘要 :文章设计了以单片机AT89C51和L298N控制的直流电机脉宽调制(PWM)调速系统。主要介绍了用单片机软件实现PWM调整电机转速的基本方法,给出了程序流程图、Keic51程序。硬件电路实现了对电机的正转、反转

3、、急停、加速、减速控制以及PWM的占空比在四位LED上的实时显示。关键字:单片机,调速,直流电动机, PWM控制第一章 绪 论1.概述1.1 直流电机的特点及应用和控制前景电机是把电能转换成机械能的装置。电机的种类繁多,如果按电源类型分,可分为直流电机和交流电机两大类。常见的直流电机包括有刷电机、无刷电机、步进电机等。直流有刷电机是所有电机的基础,它具有启动快、制动及时、可在大范围内平滑地调速、控制电路相对简单等特点。历来是自动控制系统的主要执行元件,在轧钢及其辅助机械、矿井卷扬机、挖掘机、海洋钻机、大型起重机、金属切削机床、造纸机、纺织机械等领域中得到了广泛的应用。 换向器是直流电机的主要薄

4、弱环节,它使直流电机的单机容量、过载能力、最高电压、最高转速等重要指标都受到限制,也给直流电机的制造和维护添了不少麻烦。然而,鉴于直流拖动控制系统的理论和实践都比较成熟,直流电机仍在广泛的使用。因此,长期以来,在应用和完善直流拖动控制系统的同时,人们一直不断在研制性能与价格都赶得上直流系统的交流拖动控制系统,近年来,在微机控制和电力电子变频装置高度发展之后,这个愿望终于有了实现的可能。电动机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、自动控制技术;特别是微控制器技术,现代控制技术是以微控制器为核心的技术,由此构成的控制系统成为当今工业控制的主流系统。这种系统已取代常规的模拟检测、

5、调节、显示、记录等仪器设备和很大部分操作的人工职能,使受控对象的动态过程按规定方式和技术运行,以完成各种控制、操作管理等任务。近几年来,这种嵌入式系统在肩同、通信、工业、仪器、等领域的广泛应用,现代控制技术已深入各行业的诸多领域。进入90年代以来,由于计算机技术的飞速发展,推动数控技术更快的更新换代。世界上许多数控系统生产厂家利用PC机丰富的软硬件资源开发开放式体系结构的新一代数控系统。开放式体系结构使数控系统有更好的通用性、柔性、适应性、扩展性,并向智能化、网络化方向大大发展。正是这些技术的进步使电动机控制技术在近20年内发生了很大的变化。其中,电动机控制策略的模拟实现正逐渐退出历史舞台,而

6、采用微处理器、FPGA/CPLD、通用计算机、PWM控制技术等现代手段构成的数字控制系统得到了迅速发展。应用先进控制算法,开发全数字化的智能控制运动控制系统将成为新一代控制系统设计方向。1.2 直流调速的发展直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能,所以目前极少采用。该法只适用在一些小功率且调速范围要求不大的场合。20世纪30年代末期,出现了发电机-电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能,

7、如有较宽的调速范围(十比一至数十比一)、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备。但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。特别是它的系统快速响应性是发电机、电动机系统不能比拟的。但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是水银蒸汽对维护人员会造成一

8、定的危害等。1957年,世界上出现了第一只晶闸管,与其它变流元件相比,品闸管具有许多独特的优越性,因而晶闸管直流调速系统立即显示出强大的生命力。由于它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。晶闸管变流装置的放大倍数在10000以上,比机组(放大倍数10)高1000倍,比汞弧变流器(1000)高10倍;在响应快速性上,机组是秒级,而晶闸管变流装置为毫秒级。从20世纪80年代中后期起,以晶闸管整流装置取代了己往的直流发电机电动机组及水银整流装置,使直流电气传动完成一次大的跃进。同

9、时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。近年来,随着得力于微电子技术、电力电子技术、传感器技术、自动控制技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统,出现了微控制器技术,现代控制技术是以微控制器为核心的技术,

10、由此构成的控制系统成为当今工业控制的主流系统。这种系统已取代常规的模拟检测、调节、显示、记录等仪器设备和很大部分操作的人工职能,使受控对象的动态过程按规定方式和技术运行,以完成各种控制、操作管理等任务。这种嵌入式系统在肩同、通信、工业、仪器、等领域的广泛应用。正是这些技术的进步使电动机控制技术在近20年内发生了很大的变化。其中,电动机控制策略的模拟实现正逐渐退出历史舞台,而采用微处理器、通用计算机、PWM控制技术等现代手段构成的数字控制系统得到了迅速发展。应用先进控制算法,开发全数字化的智能控制运动控制系统将成为新一代控制系统设计方向使得直流电机调速系统的研究得到了更深的发展。2.直流电动机原

11、理 2.1 直流电机的基本工作原理直流电机由永久磁铁、电枢、换相器等组成。如图1-1和图1-2所示,上下是两个固定的永久磁铁,上面是N极,下面是S极,磁力线从N到S。两极之间是一段可旋转的导体abcd,称为电枢。电枢的ab段与cd段分别接到两个互不接触的半圆形金属片上,这两个金属片称为换向器。如图2-1所示,在换向器的AB两端上加上一个上正下负的直流电压,电流由a到b,由c到d。根据左手定则,ab段在自上而下的磁力线作用下,向左移动,cd段向右移动。在这两个力的作用下,abcd电枢开始逆时针旋转,因为换向器和电枢固定在一起,它也跟着转动。图1-1直流电动机工作原理(1)图1-2 直流电动机工作

12、原理(2)当电枢转过180时如图1-2所示,cd段在上方,ab段在下方,电流由d到c,由b到a。根据左手定则,cd段在自上而下的磁力线作用下,向左移动,ab段向右移动,即电枢继续往逆时针旋转方向旋转。当电枢再转过180后,变回图1-1的情况,电机继续重复地转动。如果把AB两端的电压方向反过来,电枢将顺时针旋转,原理同上。2.2 直流电机的电器特性 图1-3为直流电机的等效电路图。电源Eb给电机供电,产生电流Ia。电机在运转过程中等效于电阻Ra和反向电动势Ec串接起来。其中Ra为电枢等效电阻;Ec为电枢旋转时产生的反向电动势,它和转速成正比,转速越快,反向电动势越大。图1-3 直流电机的等效电路

13、根据图1-3列出了如下公式: Eb=RaIa+Ec (1-1)上面已经说过,反向电动势和转速成正比,具体关系为: (1-2)式中是电动势常数,是气隙磁通,它们都是电机的固有常数。另外,电机的电流和电机的输出转矩成正比。具体关系为: (1-3)式中是电磁转矩常数,它是电机的固有常数。 第二章 直流电机的控制方案设计2.1 直流电动机的调速方法直流电动机分为有换向器和无换向器两大类。直流电动机调速系统最早采用恒定直流电压给直流电动机供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行、设备制造方便、价格低廉;但缺点是效率低、机械特性软,不能得到较宽和平滑的调速性能。该法只适用在一些小功率且调

14、速范围要求不大的场合。30年代末期,发电机-电动机系统的出现才使调速性能优异的直流电动机得到广泛应用。这种控制方法可获得较宽的调速范围、较小的转速变化率和平滑的调速性能。但此方法的主要缺点是系统重量大、占地多、效率低及维修困难。近年来,随着电力电子技术的迅速发展,由晶闸管变流器供电的直流电动机调速系统已取代了发电机-电动机调速系统,它的调速性能也远远地超过了发电机-电动机调速系统。特别是大规模集成电路技术以及计算机技术的飞速发展,使直流电动机调速系统的精度、动态性能、可靠性有了更大的提高。电力电子技术中IGBT等大功率器件的发展正在取代晶闸管,出现了性能更好的直流调速系统。直流电动机的转速n和

15、其他参量的关系可表示为: (2-1)式中 Ua电枢供电电压(V); 电枢电流(A); 励磁磁通(); 电枢回路总电阻();电势系数,p为电磁对数,N为导体数。由式(2-1)可以看出,式中、三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻;(2)改变电枢供电电压;(3)改变励磁磁通。1.改变电枢回路电阻调速各种直流电动机都可以通过改变电枢回路电阻来调速,如图2-1(a)所示。此时转速特性公式为 (2-2)式中为电枢回路中的外接电阻()。当负载一定时,随着串入的外接电阻的增大,电枢回路总电阻增大,电动机转速就降低。其机

16、械特性如图2-1(b)所示。的改变可用接触器或主令开关切换来实现。图2-1 改变电枢电阻电路图图2-1(b) 改变电枢电阻调速时的机械特性这种调速方法为有级调速,调速比一般约为2:1左右,转速变化率大,轻载下很难得到低速,效率低,故现在已极少采用。2.改变电枢电压调速(1)采用发电机-电动机组调速方法如图2-2(a)所示,通过改变发电机励磁电流来改变发电机的输出电压从而改变电动机的转速n。在不同的电枢电压时,其得到的机械特性便是一簇完全平行的直线,如图2-2(b)所示。改变发电机励磁电流的方向,的极性和n的转向都更这改变,就可以使系统很方便地工作在任意四个象限内。图2-2 (a) G-M直流调

17、速系统图2-2(b) G-M机械特性由图可知,这种调速方法需要两台与调速电动机容量相当的旋转电机和另一台容量小一些的励磁发电机,因而设备多、体积大、费用高、效率低、安装需打基础、运行噪声大、维护不方便。为克服这些缺点,50年代开始采用水银整流器(大容量)和闸流管这样的静止交流装置来代替上述的旋转变流机组。目前已被更经济、可靠的晶闸管变流装置所取代。(2)采用晶闸管变流器供电的调速方法图2-3(a) V-M调速系统图2-3(b)V-M调速系统机械特性有晶闸管变流器供电的调速电路如图2-3(a)所示。通过调节触发器的控制电压来移动触发脉冲的相位,即可改变整流电压,从而实现平滑调速。在此调速方法下可

18、得到与发电机-电动机组调速系统类似的调速特性。其开环机械特性示于图2-3(b)中。图2-3(b)中的每一条机械特性曲线都由两段组成,在电流连续区特性还比较硬,改变延迟角a时,特性呈一簇平行的直线,它和发电机-电动机组供电时的完全一样。但在电流断续区,则为非线性的软特性。这是由于晶闸管整流器在具有反电势负载时电流易产生断续造成的。变电枢电压调速是直流电机调速系统中应用最广的一种调速方法。在此方法中,由于电动机在任何转速下磁通都不变,只是改变电动机的供电电压,因而在额定电流下,如果不考虑低速下通风恶化的影响(也就是假定电动机是强迫通风或为封闭自冷式),则不论在高速还是低速下,电动机都能输出额定转矩

19、,故称这种调速方法为恒转矩调速。这是它的一个极为重要的特点。如果采用反馈控制系统,调速范围可达50:1150:1,甚至更大。(3)采用大功率半导体器件的直流电动机脉宽调速方法PWM(脉宽调制)是利用功率开关器件通断实现控制,调节通断时间比例,将固定的直流电源电压变成平均值可调的直流电压。脉宽调速系统出现的历史久远,但因缺乏高速大功率开关器件而未能及时在生产实际中推广应用。近年来,由于大功率晶体管(GTR),特别是IGBT功率器件的制造工艺成熟、成本不断下降,大功率半导体器件实现的直流电动机脉宽调速系统才获得迅猛发展,目前其最大容量已超过几十兆瓦数量级。本设计因使用小容量直流电机,故采用第三种调

20、速方法即PWM控制技术,实现基于AT89C51的直流电机的速度控制。3.改变励磁电流调速当电枢电压恒定时,改变电动机的励磁电流也能实现调速。由式1可看出,电动机的转速与磁通(也就是励磁电流)成反比,即当磁通减小时,转速n升高;反之,则n降低。与此同时,由于电动机的转矩是磁通和电枢电流的乘积(即),电枢电流不变时,随着磁通的减小,其转速升高,转矩也会相应地减小。所以,在这种调速方法中,随着电动机磁通的减小,其转矩升高,转矩也会相应地降低。在额定电压和额定电流下,不同转速时,电动机始终可以输出额定功率,因此这种调速方法称为恒功率调速。为了使电动机的容量能得到充分利用,通常只是在电动机基速以上调速时

21、才采用这种调速方法。采用弱磁调速时的范围一般为1.5:13:1,特殊电动机可达到5:1。这种调速电路的实现很简单,只要在励磁绕组上加一个独立可调的电源供电即可实现.2.1.1 PWM调速设计调速采用PWM(Pulse Width Modulation)脉宽调制,工作原理:通过产生矩形波,改变占空比,以达到调整脉宽的目的。PWM的定义:脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时

22、间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在0V,5V这一集合中取值。模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能

23、够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。设计方案主要包括四个模块:单片机控制模块,L298N驱动模块,占空比显示模块,运行方式设置模块。2.1.2 直流电机控制结构图图2-4直流电机控制结构图第三章 直流电机调速硬件设计3.1 最小系统设计3.11 AT89C51介

24、绍AT89C51是美国ATMEL公司生产的AT89系列单片机中的一种,它与MCS51系列的许多机种都具有兼容性,并具有广泛的代表性。AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROMFlash Programmable and Erasable Read Only Memory)的低电压,高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储

25、器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 AT89C51的特点l 与MCS-51 兼容 l 4K字节可编程闪烁存储器 l 寿命:1000写/擦循环l 数据保留时间:10年l 全静态工作:0Hz-24MHzl 三级程序存储器锁定l 1288位内部RAMl 32可编程I/O线l 两个16位定时器/计数器l 5个中断源 l 可编程串行通道l 低功耗的闲置和掉电模式l 片内振荡器和时钟电路 引脚定义及功能AT89C51有40条引脚,与其他51系列单片机引脚是兼容的。这40

26、条引脚可分为I/O端口线、电源线、控制线、外接晶体线四部分。其封装形式有两种:双列直插封装(DIP)形式和方形封装形式,如图3-1所示。图3-1 AT89C51引脚主电源引脚VCC:供电电压(+5V)。GND:接地。I/O端口功能P0口: P0口有八条端口线,命名为P0.0P0.7,其中P0.0为低位,P0.7为高位。每条线的结构组成如图3-2所示。它由一个输出锁存器,两个三态缓冲器,输出驱动电路和输出控制电路组成。P0口是一个三态双向I/O口,它有两种不同的功能,用于不同的工作环境。P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。

27、P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 图3-2 P0口位结构图 P1口:P1口有八条端口线,命名为P1.0P1.7,每条线的结构组成如图3-3所示。P1口是一个准双向口,只作普通的I/O口使用,其功能与P0口的第一功能相同。作输出口使用时,由于其内部有上拉电阻,所以不需外接上拉电阻;作输入口使用时,必须先向锁存器写入“1”,使场效应管T截止,然后才能读取数据。P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1

28、后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 图3-3 P1口位结构图P2口:P2口有八条端口线,命名为P2.0P2.7,每条线的结构如图3-4所示。P2口也是一个准双向口,它有两种使用功能:一种是当系统不扩展外部存储器时,作普通I/O口使用,其功能和原理与P0口第一功能相同,只是作为输出口时不需外接上拉电阻;另一种是当系统外扩存储器时,P2口作系统扩展的地址总线口使用,输出高8位的地址A7A15,与P0口第二功能输出的低8位地址相配合,共同访问外部程序或数据存储器(64 KB),但它只确定

29、地址并不能像P0口那样还可以传送存储器的读写数据。P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口有八条端口线,命名为P3.0P3.7,每条线的结构如

30、图3-1所示。P3口是一个多用途的准双向口。第一功能是作普通I/O口使用,其功能和原理与P1口相同。第二功能是作控制和特殊功能口使用,这时八条端口线所定义的功能各不相同,如表3-4所示。P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口同时为闪烁编程和编程校验接收一些控制信号。图3-4 P2口位结构图 图3-5 P3口位结构图表1 P3口各位的第二功能引脚第二功能功 能 说 明 P3.0RXD串行数据输入端 P3.1TXD串行数据

31、输出端 P3.2INT0外部中断0中断请求信号输入端P3.3INT1外部中断1中断请求信号输入端P3.4T0定时/计数器0外部计数脉冲输入端P3.5T1定时/计数器1外部计数脉冲输入端P3.6WR片外RAM写选通信号输出端 P3.7RD片外RAM读选通信号输出端 3.12 系统时钟的设计时钟电路是用来产生AT89C51单片机工作时所必须的时钟信号,AT89C51本身就是一个复杂的同步时序电路,为保证工作方式的实现,AT89C51在唯一的时钟信号的控制下严格的按时序执行指令进行工作 ,时钟的频率影响单片机的速度和稳定性。通常时钟由于两种形式:内部时钟和外部时钟。我们系统采用内部时钟方式来为系统提

32、供时钟信号。AT89C51内部有一个用于构成振荡器的高增益反向放大器,该放大器的输入输出引脚为XTAL1和XTAL2,它们跨接在晶体振荡器和用于微调的电容,便构成了一个自激励振荡器。电路中的C1、C2的选择在30PF左右,但电容太小会影响振荡的频率、稳定性和快速性。晶振频率为在1.2MHZ12MHZ之间,频率越高单片机的速度就越快,但对存储器速度要求就高。为了提高稳定性我们采用温度稳定性好的NPO电容,采用的晶振频率为12MHZ。图3-6 系统时钟3.1.3 系统复位方式当MCS-5l系列单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST持

33、续为高电平,单片机就处于循环复位状态。根据应用的要求,复位操作通常有两种基本形式:上电复位和上电或开关复位。上电复位要求接通电源后,自动实现复位操作。常用的上电复位电路如图 (3-7)中左图所示。图中电容C1和电阻R1对电源十5V来说构成微分电路。上电后,保持RST一段高电平时间,由于单片机内的等效电阻的作用,不用图中电阻R1,也能达到上电复位的操作功能,如图 (3-7)中所示。上电或开关复位要求电源接通后,单片机自动复位,并且在单片机运行期间,用开关操作也能使单片机复位。常用的上电或开关复位电路如图 (3-8)所示。上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。当单

34、片机已在运行当中时,按下复位键K后松开,也能使RST为一段时间的高电平,从而实现上电或开关复位的操作。根据实际操作的经验,下面给出这两种复位电路的电容、电阻参考值。 单片机的复位电路图3-7 中:Cl22uF,R11k图3-8中:C:22uF,Rl300,R21k图3-7复位电路图3-8手动复位电路3.2 电源电路的设计3.2.1 芯片介绍78XX,XX就代表它所输出的电压值,能降低电压4-5V电子产品中常见到的三端稳压集成电路有正电压输出的78系列和负电压输出的79系列。故名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。用78/79系列三端稳压IC来组

35、成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。有时在数字78或79后面还有一个M或L,如78M12或79L24,用来区别输出电流和封装形式等,其中78L调系列的最大输出电流为100mA,78M系列最大输出电流为1A,78系列最大输出电流为1.5A。在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。3.2.2 电源电路图用78系列的芯片产生5V电压供给单

36、片机使用,给单片机供电。图3-9电源电路33 显示电路设计3.3.1 78LS48芯片介绍48为内部上拉电阻的BCD-七段译码驱动器,共有54/74448 、54/74LS48两种线路结构形式。输出端(Ya-Yg)为高电平有效,可驱动缓冲器或共阴极VLED。当要求输出0-15时,消隐输入(BI)应为高电平或开路,对于输出为0时还要求脉冲消隐输入(RBI)为高电平或开路。当BI为低电平时,不管其它输入端状态如何,YaYg均为低电平。当RBI和地址端(A0-A3)均为低电平,并测试输入端(LT)为高电平时Ya-Yg为低电平。引出端符号A0-A3 译码地址输入端BI/RBO 消隐输入(低电平有效)/

37、脉冲消隐输出(低电平有效)LT 灯测试输入端(低电平有效)RBT 脉冲消隐输入端(低电平有效)Ya-Yg 段输出端3.3.2 显示电路图 用四位共阴LED数码管实时显示电机的速度.以AT89C51单片机的P0口做八位数据线以P0.0-P0.3为数码管的控制端。 图3-11 显示电路3.4 键盘电设计运行方式的设置主要有P1口外接键盘来完成,判断键盘是否按下的方法:首先设置P1口为高电平,然后从P1.0到P1.4逐个检测引脚的电平,如果某个引脚为低电平表示该键按下,此时不需要做相应的处理实现键盘功能,如果引脚为高电平则不做处理。采用5个独立的开关主要控制电机的正反转,急停,加减速。 图3-11

38、键盘电路3.5 驱动电路设计3.5.1 L298N芯片介绍L298N是SGS公司的产品,是由达林顿管组成的双桥高电压大电流集成PWM电路。PWM电路由四个大功率晶体管组成的桥电路, 四个晶体管分为两组, 交替导通和截止, 用单片机控制达林顿管使之工作在开关状态, 根据调整输入脉冲的占空比, 精确调整电动机转速。这种电路由于管子工作只在饱合和截止状态下, 效率非常高。H型电路使实现转速和方向的控制简单化, 且电子开关的速度很快, 稳定性也极强, 是一种广泛采用的PWM调速技术。内部的每个H桥的下侧桥臂晶体管发射极连在一起, 其输出脚(SENSEA和SENSEB) 用来连接电阻检测电流。VSS接逻

39、辑控制的电源。VS为电动机驱动电源.IN1-IN4输入引脚为标准TTL逻辑电平信号, 用来控制桥的开与关即实现电机的正反转, ENA、ENB引脚则为使能控制端, 用来输入PWM信号实现电机调速。3.5.4 驱动电路采用L298N驱动器,接受单片机的输入信号并放大,驱动电机运转。 图3-12 驱动电路第四章 直流电机转速控制程序设计4.1 主程序流程图图4-1 主流程图主程序主要完成的工作是设置堆栈,清除标志位,清除暂存,清显示,对T0口进行初始化,对串口进行初始化后,调用其它功能子程序,完成设计的任务。4.2 键盘扫描流程图图4-2 键盘扫描流程图采用独立式键盘,本设计的键盘较为简单,只设计了

40、电机的正反转,急停,加减速5个按键。4.3 中断程序流程图图4-3中断流程图第五章 结论与展望5.1 结论本文对直流调速系统进行了初步研究,从直流调速系统原理出发,逐步建立了直流电机调速控制系统的数学模型,并在此基础上给出了软、硬件实现方案。本文采用PWM控制技术,即利用逆变器装置中半导体开关的开通和关断,把直流电压转化变成一定规律的电压脉冲序列,以实现调频、调压和消除谐波三个目的。 PWM控制技术经历了一个不断创新和不断完善的发展过程,电力电子技术的发展,一些全控型快速半导体器件,如BJT、IGBT、GTO等的出现,推动了PWM控制技术的进一步发展。PWM控制技术有许多种,如等脉宽PWM法、

41、正弦波PWM法(SPWM法)、磁链追踪型PWM法和电流跟踪型PWM法以及新近发展起来的空间矢量PWM法(SVPWM)等。根椐占空比和电机电枢两端U及电机转速的关系,通过改变PWM的占空比来调节电机两端的平均电压,实现粗略的调速. 通过S3,S4来改变PWM的占空比,每按动一次就改变10%数码管显示当前的PWM占空比,例如显示5表示占空比为50%;LED1和LED2分别表示电机正转和反转。参考文献1张彦,张同庄 基于80C196KB单片机实现数字化触发技术J机械制造与自动化,2005(1) ,45-602陈伯时. 电力拖动自动控制系统M. 北京: 机械工业出版社, 2003.3李发海 王岩. 电

42、机与拖动基础(第三版)M. 北京: 清华大学出版社2006.4 李群芳. 单片机原理及应用M. 北京: 清华大学出版社, 2005.5 贾金铃. 微型计算机原理及应用M. 重庆: 重庆大学出版社, 2006.6 谭浩强. C程序设计(第二版)M. 北京: 清华大学出版社7 吴弋,综合性最优控制及其在直流调速系统中的应用.科技情报开发与经济J,2003(7): 110-1128 潘策,杨培林,陈晓楠.基于最优化控制的直流脉宽调速系统.包装与食品机械J,2003. 21(4) :21-239 任天良,郑利军,姜燕.90KW IGBT直流调速装置.电力电子技术J,1997(1):35-3810 程耕

43、国,张国栋.PWM直流可逆调速微机控制系统.电气时代J,2004. 11: 22-2511 孙立功,刘珊中,田藏.直流电机驱动控制器的技术改进.起重运输机械J,2002 (9):28-30英文摘要PWM Regulating Speed System Of Dcmotor Based On AT89C51 MicrocontrollerAbstract: A kind of speed regulation system of Pules Width Modulation(PWM) for DC motor composed of microcontroller AT89C51 and L298N was designed .The basic metiods of PWM regulating DC motor speed are explaind . Programs in KeilC51. Quick stop.acceleration and deceleration of the m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论