




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)【2016江苏(理)】已知集合A=1,2,3,6,B=x|2x3,则AB=【答案】1,2【解析】解:集合A=1,2,3,6,B=x|2x3,AB=1,2,【2016江苏(理)】复数z=(1+2i)(3i),其中i为虚数单位,则z的实部是【答案】5【解析】解:z=(1+2i)(3i)=5+5i,则z的实部是5,【2016江苏(理)】在平面直角坐标系xOy中,双曲线=1的焦距是【答案】2【解析】解:双曲线=1中,a=,b=,c=,双曲线=1的焦距是2【2016江苏(理)】已知一组数据4.7,4.8,5.1,5.4,5.5,
2、则该组数据的方差是【答案】0.1【解析】解:数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,该组数据的方差:S2=(4.75.1)2+(4.85.1)2+(5.15.1)2+(5.45.1)2+(5.55.1)2=0.1【2016江苏(理)】函数y=的定义域是【答案】3,1【解析】解:由32xx20得:x2+2x30,解得:x3,1,【2016江苏(理)】如图是一个算法的流程图,则输出的a的值是【答案】9【解析】解:当a=1,b=9时,不满足ab,故a=5,b=7,当a=5,b=7时,不满足ab,故a=9,b=5当a=9,b=5时,满
3、足ab,故输出的a值为9,【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是【答案】【解析】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,出现向上的点数之和小于10的概率:p=1=【2016江苏(理)】已知
4、an是等差数列,Sn是其前n项和,若a1+a22=3,S5=10,则a9的值是【答案】20【解析】解:an是等差数列,Sn是其前n项和,a1+a22=3,S5=10,解得a1=4,d=3,a9=4+8×3=20【2016江苏(理)】定义在区间0,3上的函数y=sin2x的图象与y=cosx的图象的交点个数是【答案】7【解析】解:画出函数y=sin2x与y=cosx在区间0,3上的图象如下:由图可知,共7个交点【2016江苏(理)】如图,在平面直角坐标系xOy中,F是椭圆+=1(ab0)的右焦点,直线y=与椭圆交于B,C两点,且BFC=90°,则该椭圆的离心率是【答案】【解析
5、】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(a,),C(a,),由BFC=90°,可得kBFkCF=1,即有=1,化简为b2=3a24c2,由b2=a2c2,即有3c2=2a2,由e=,可得e2=,可得e=,【2016江苏(理)】设f(x)是定义在R上且周期为2的函数,在区间1,1)上,f(x)=,其中aR,若f()=f(),则f(5a)的值是【答案】【解析】解:f(x)是定义在R上且周期为2的函数,在区间1,1)上,f(x)=,f()=f()=+a,f()=f()=|=,a=,f(5a)=f(3)=f(1)=1+=,【2016江苏(
6、理)】已知实数x,y满足,则x2+y2的取值范围是【答案】,13【解析】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y2=0的距离d=,则z=d2=()2=,故z的取值范围是,13,故答案为:,13【2016江苏(理)】如图,在ABC中,D是BC的中点,E,F是AD上的两个三等分点,=4,=1,则的值是【答案】【解析】解:D是BC的中点,E,F是AD上的两个三等分点,=+,=+,=+3,=+3,=2
7、2=1,=922=4,2=,2=,又=+2,=+2,=422=,【2016江苏(理)】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是【答案】8【解析】解:由sinA=sin(A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,由三角形ABC为锐角三角形,则cosB0,cosC0,在式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=tan(A)=tan(B+C)= ,则tanAtanBtanC=tanBtanC,由tan
8、B+tanC=2tanBtanC可得tanAtanBtanC=,令tanBtanC=t,由A,B,C为锐角可得tanA0,tanB0,tanC0,由式得1tanBtanC0,解得t1,tanAtanBtanC=,=()2,由t1得,0,因此tanAtanBtanC的最小值为8,当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角二、解答题(共6小题,满分90分)【2016江苏(理)】在ABC中,AC=6,cosB=,C=(1)求AB的长;(2)求cos(A)的值【解析】解
9、:(1)ABC中,cosB=,sinB=,AB=5;(2)cosA=cos(C+B)=sinBsinCcosBcosC=A为三角形的内角,sinA=,cos(A)=cosA+sinA=【2016江苏(理)】如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1DA1F,A1C1A1B1求证:(1)直线DE平面A1C1F;(2)平面B1DE平面A1C1F【解析】解:(1)D,E分别为AB,BC的中点,DE为ABC的中位线,DEAC,ABCA1B1C1为棱柱,ACA1C1,DEA1C1,A1C1平面A1C1F,且DE平面A1C1F,DEA1C1F;(2)AB
10、CA1B1C1为直棱柱,AA1平面A1B1C1,AA1A1C1,又A1C1A1B1,且AA1A1B1=A1,AA1、A1B1平面AA1B1B,A1C1平面AA1B1B,DEA1C1,DE平面AA1B1B,又A1F平面AA1B1B,DEA1F,又A1FB1D,DEB1D=D,且DE、B1D平面B1DE,A1F平面B1DE,又A1F平面A1C1F,平面B1DE平面A1C1F【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥PA1B1C1D1,下部的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍(1)若AB=6m
11、,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【解析】解:(1)PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍O1O=8m,仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=m,则仓库的容积V=×()2x+()24x=x3+312x,(0x6),V=26x2+312,(0x6),当0x2时,V0,V(x)单调递增;当2x6时,V0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO1=2m时
12、,仓库的容积最大【2016江苏(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y212x14y+60=0及其上一点A(2,4)(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围【解析】解:(1)N在直线x=6上,设N(6,n),圆N与x轴相切,圆N为:(x6)2+(yn)2=n2,n0,又圆N与圆M外切,圆M:x2+y212x14y+60=0,即圆M:(x6)2+(x7)2=25,|7n|
13、=|n|+5,解得n=1,圆N的标准方程为(x6)2+(y1)2=1(2)由题意得OA=2,kOA=2,设l:y=2x+b,则圆心M到直线l的距离:d=,则|BC|=2=2,BC=2,即2=2,解得b=5或b=15,直线l的方程为:y=2x+5或y=2x15(3)=,即,即|=|,|=,又|10,即10,解得t22,2+2,对于任意t22,2+2,欲使,此时,|10,只需要作直线TA的平行线,使圆心到直线的距离为,必然与圆交于P、Q两点,此时|=|,即,因此实数t的取值范围为t22,2+2,【2016江苏(理)】已知函数f(x)=ax+bx(a0,b0,a1,b1)(1)设a=2,b=求方程f
14、(x)=2的根;若对于任意xR,不等式f(2x)mf(x)6恒成立,求实数m的最大值;(2)若0a1,b1,函数g(x)=f(x)2有且只有1个零点,求ab的值【解析】解:函数f(x)=ax+bx(a0,b0,a1,b1)(1)设a=2,b=方程f(x)=2;即:=2,可得x=0不等式f(2x)mf(x)6恒成立,即m()6恒成立令t=,t2不等式化为:t2mt+40在t2时,恒成立可得:0或即:m2160或m4,m(,4实数m的最大值为:4(2)g(x)=f(x)2=ax+bx2,g(x)=axlna+bxlnb=ax+,0a1,b1可得,令h(x)=+,则h(x)是递增函数,而,lna0,
15、lnb0,因此,x0=时,h(x0)=0,因此x(,x0)时,h(x)0,axlnb0,则g(x)0x(x0,+)时,h(x)0,axlnb0,则g(x)0,则g(x)在(,x0)递减,(x0,+)递增,因此g(x)的最小值为:g(x0)若g(x0)0,xloga2时,ax=2,bx0,则g(x)0,因此x1loga2,且x1x0时,g(x1)0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾若g(x0)0,函数g(x)=f(x)2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b02=0,因此x0=0,因此=0,=1,即lna+
16、lnb=0,ln(ab)=0,则ab=1可得ab=1【2016江苏(理)】记U=1,2,100,对数列an(nN*)和U的子集T,若T=,定义ST=0;若T=t1,t2,tk,定义ST=+例如:T=1,3,66时,ST=a1+a3+a66现设an(nN*)是公比为3的等比数列,且当T=2,4时,ST=30(1)求数列an的通项公式;(2)对任意正整数k(1k100),若T1,2,k,求证:STak+1;(3)设CU,DU,SCSD,求证:SC+SCD2SD【解析】解:(1)当T=2,4时,ST=a2+a4=a2+9a2=30,因此a2=3,从而a1=1,故an=3n1,(2)STa1+a2+a
17、k=1+3+32+3k1=3k=ak+1,(3)设A=C(CD),B=D(CD),则AB=,分析可得SC=SA+SCD,SD=SB+SCD,则SC+SCD2SD=SA2SB,因此原命题的等价于证明SC2SB,由条件SCSD,可得SASB,、若B=,则SB=0,故SA2SB,、若B,由SASB可得A,设A中最大元素为l,B中最大元素为m,若ml+1,则其与SAai+1amSB相矛盾,因为AB=,所以lm,则lm+1,SBa1+a2+am=1+3+32+3m1=,即SA2SB,综上所述,SA2SB,故SC+SCD2SD附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区
18、域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A【选修41几何证明选讲】【2016江苏(理)】如图,在ABC中,ABC=90°,BDAC,D为垂足,E为BC的中点,求证:EDC=ABD【解析】解:由BDAC可得BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:EDC=C,由BDC=90°,可得C+DBC=90°,由ABC=90°,可得ABD+DBC=90°,因此ABD=C,而EDC=C,所以,EDC=ABDB.【选修42:矩阵与变换】【2016江苏(理)】已知矩阵A=,矩阵B的逆矩阵B
19、1=,求矩阵AB【解析】解:B1=,B=(B1)1=,又A=,AB=C.【选修44:坐标系与参数方程】【2016江苏(理)】在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长【解析】解:由,由得,代入并整理得,由,得,两式平方相加得联立,解得或|AB|=【2016江苏(理)】设a0,|x1|,|y2|,求证:|2x+y4|a【解析】证明:由a0,|x1|,|y2|,可得|2x+y4|=|2(x1)+(y2)|2|x1|+|y2|+=a,则|2x+y4|a成立附加题【必做题】【2016江苏(理)】如图,在平
20、面直角坐标系xOy中,已知直线l:xy2=0,抛物线C:y2=2px(p0)(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q求证:线段PQ的中点坐标为(2p,p);求p的取值范围【解析】解:(1)l:xy2=0,l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0),抛物线C:y2=8x(2)证明:设点P(x1,y1),Q(x2,y2),则:,即:,kPQ=,又P,Q关于直线l对称,kPQ=1,即y1+y2=2p,又PQ的中点在直线l上,=2p,线段PQ的中点坐标为(2p,p);因为Q中点坐标(2p,p),即,即关于y2+2py+4p
21、24p=0,有两个不相等的实数根,0,(2p)24(4p24p)0,p【2016江苏(理)】(1)求7C4C的值;(2)设m,nN*,nm,求证:(m+1)C+(m+2)C+(m+3)C+nC+(n+1)C=(m+1)C【解析】解:(1)7=4×=7×204×35=0证明:(2)对任意mN*,当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立假设n=k(km)时命题成立,即(m+1)C+(m+2)C+(m+3)C+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)+(k+1)+(k+2)=,右边=(m+1)=
22、(m+1)×k+3(km+1)=(k+2)=(k+2),=(m+1),左边=右边,n=k+1时,命题也成立,m,nN*,nm,(m+1)C+(m+2)C+(m+3)C+nC+(n+1)C=(m+1)C2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1【2016江苏(理)】已知集合A=1,2,3,6,B=x|2x3,则AB=2【2016江苏(理)】复数z=(1+2i)(3i),其中i为虚数单位,则z的实部是3【2016江苏(理)】在平面直角坐标系xOy中,双曲线=1的焦距是4【2016江苏(理)】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据
23、的方差是5【2016江苏(理)】函数y=的定义域是6【2016江苏(理)】如图是一个算法的流程图,则输出的a的值是7【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是8【2016江苏(理)】已知an是等差数列,Sn是其前n项和,若a1+a22=3,S5=10,则a9的值是9【2016江苏(理)】定义在区间0,3上的函数y=sin2x的图象与y=cosx的图象的交点个数是10【2016江苏(理)】如图,在平面直角坐标系xOy中,F是椭圆+=1(ab0)的右焦点,直线y=与椭圆交于B,C两点,且
24、BFC=90°,则该椭圆的离心率是11【2016江苏(理)】设f(x)是定义在R上且周期为2的函数,在区间1,1)上,f(x)=,其中aR,若f()=f(),则f(5a)的值是12【2016江苏(理)】已知实数x,y满足,则x2+y2的取值范围是13【2016江苏(理)】如图,在ABC中,D是BC的中点,E,F是AD上的两个三等分点,=4,=1,则的值是14【2016江苏(理)】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是二、解答题(共6小题,满分90分)15【2016江苏(理)】在ABC中,AC=6,cosB=,C=(1)求AB的长;(
25、2)求cos(A)的值16【2016江苏(理)】如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1DA1F,A1C1A1B1求证:(1)直线DE平面A1C1F;(2)平面B1DE平面A1C1F17【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥PA1B1C1D1,下部的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18【2016江苏(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y212x14y+60=0及其上一点A(2,4)(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围19【2016江苏(理)】已知函数f(x)=ax+bx(a0,b0,a1,b1)(1)设a=2,b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政管理经济法专注考点试题及答案
- 市政工程考试趋势与未来展望及试题及答案
- 行政管理与经济法教育试题及答案
- 酒店管理服务培训合作协议
- 物流管理与供应链知识测试卷
- 通信技术与网络应用知识考点
- 行政管理经济法热点追踪试题及答案汇编
- 经济师学术与实务结合试题及答案
- 优化药品使用管理的工作思路计划
- 宿舍门标设计
- 心脏骤停和心源性猝死诊疗规范诊疗指南
- 建筑智能化弱电系统建设项目设计方案建筑施工
- 航道治理工程施工组织设计
- 马工程教材《公共财政概论》PPT-第四章 政府消费支出
- GB/T 29531-2013泵的振动测量与评价方法
- GA/T 832-2014道路交通安全违法行为图像取证技术规范
- 博士生招生面试评分表
- SWOT分析法很全面课件
- 膀胱造瘘的护理课件
- 消防应急疏散演练人员签到表(标准通用版)
- 陕旅版五年级英语上册句型词汇知识点总结
评论
0/150
提交评论