




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四节 基本积分法 : 直接积分法 ; 换元积分法 ;分部积分法 初等函数求导初等函数积分机动 目录 上页 下页 返回 结束 一、有理函数的积分二、可化为有理函数的积分举例有理函数的积分本节内容: 第四四章 一、一、 有理函数的积分有理函数的积分)()()(xQxPxR nnnaxaxa110mmmbxbxb110有理函数:nm 时,)(xR为假分式;nm 时,)(xR为真分式有理函数相除多项式 + 真分 式分解其中部分分式的形式为kkqxpxNxMaxA)(;)(2)04,N(2qpk若干部分分式之和机动 目录 上页 下页 返回 结束 例例1. 将下列真分式分解为部分分式 :;) 1(1)
2、1 (2xx;653)2(2xxx.)1)(21 (1)3(2xx解解: (1) 用拼凑法22) 1() 1(1xxxx2) 1(1x) 1(1xx2) 1(1x) 1( xx2) 1(1x11xx1) 1( xx) 1( xx机动 目录 上页 下页 返回 结束 (2) 用赋值法6532xxx)3)(2(3xxx2xA3xB原式)2(xA2x233xxx5原式)3(xB3x323xxx6故25x原式36x机动 目录 上页 下页 返回 结束 (3) 混合法)1)(21 (12xx xA2121xCBx原式)21 (xA21x54机动 目录 上页 下页 返回 结束 代入等式两端分别令1 ,0 xC
3、541215461CB52B51C原式 =x214512112xx四种典型部分分式的积分四种典型部分分式的积分: CaxAln) 1( nCaxnAn1)(1xaxAd. 1xaxAnd)(. 2机动 目录 上页 下页 返回 结束 xqxpxNxMd. 32xqxpxNxMnd)(. 42) 1,04(2nqp变分子为 )2(2pxM2pMN 再分项积分 例例2. 求.)1)(21 (d2xxx解解: 已知)1)(21 (12xx51x214212xx211xxx21)21 ( d52原式221)1 ( d51xx21d51xxx21ln52)1 (ln512xCxarctan51例1(3)
4、目录 上页 下页 返回 结束 例例3. 求.d3222xxxx解解: 原式xxxd3223)22(21x32)32d(2122xxxx32ln212xx22)2() 1() 1d(3xxCx21arctan23思考思考: 如何求机动 目录 上页 下页 返回 结束 ?d)32(222xxxx提示提示: 变形方法同例3, 并利用 P209 例9 . xxxd)4)(1(22)4() 1(22xx例例4. 求求.d4555222423xxxxxxIxxxxxId4552243xxxxd455224245)55d(212424xxxx45ln2124xx2arctan21xCxarctan解解:机动
5、目录 上页 下页 返回 结束 说明说明: 将有理函数分解为部分分式进行积分虽可行,但不一定简便 , 因此要注意根据被积函数的结构寻求简便的方法. 例例5. 求求.d)22(222xxxx解解: 原式xxxd)22(22)22(2 xx)22(x1) 1(d2xx222)22()22d(xxxx) 1arctan( x2212xxC机动 目录 上页 下页 返回 结束 常规 目录 上页 下页 返回 结束 例例6. 求求解解: 原式xxd14) 1(2x) 1(2 x211d4xx(见P348公式21)2arctan2211xx21221 ln21xx21xxCxxxxd12122121xxxxd1
6、21221212)(2121xx)d(1xx 2)(2121xx)d(1xx 注意本题技巧注意本题技巧xx21arctan2212Cxxxx1212ln24122)0( x按常规方法较繁按常规方法较繁按常规方法解:1d4xx第一步 令)(1224dxcxbxaxx比较系数定 a , b , c , d . 得) 12)(12(1224xxxxx第二步 化为部分分式 . 即令) 12)(12(111224xxxxx121222xxDxCxxBxA比较系数定 A , B , C , D .第三步 分项积分 .此解法较繁 !机动 目录 上页 下页 返回 结束 二二 、可化为有理函数的积分举例、可化为
7、有理函数的积分举例设)cos,(sinxxR表示三角函数有理式 ,xxxRd)cos,(sin令2tanxt 万能代换t 的有理函数的积分机动 目录 上页 下页 返回 结束 1. 三角函数有理式的积分三角函数有理式的积分则例例7. 求求.d)cos1 (sinsin1xxxx解解: 令,2tanxt 则机动 目录 上页 下页 返回 结束 222222cossincossin2sinxxxxx222tan1tan2xx212tt22222222cossinsincoscosxxxxx2222tan1tan1xx2211ttxdttd122xxxxd)cos1 (sinsin1 2121tt212
8、tt)1 (2211ttttd212tttd122121221tt 2tlnC2tan412x2tanxCx2tanln21机动 目录 上页 下页 返回 结束 例例8. 求求.)0(cossind2222baxbxax解解: 原式xxd2cos1222tanbxa222)(tantand1abxxa)tanarctan(1xbabaC说明说明: 通常求含xxxxcossincos,sin22及的积分时,xttan往往更方便 .的有理式用代换机动 目录 上页 下页 返回 结束 例例9. 求. )0(d)cossin(12baxxbxa解法解法 1 xttan令原式 dx2)tan(bxax2co
9、s2)(dbtatCbtaa)(1Cxbxaax)cossin(cos机动 目录 上页 下页 返回 结束 xbxacossin例例9. 求求)0(d)cossin(12baxxbxa解法解法 2 cos,sin2222babbaa令22baxbabxbaacossin2222sincos原式)(cosd1222xxbaCxba)tan(122Cbaxba)arctantan(122机动 目录 上页 下页 返回 结束 baarctan例例10. 求求.dsinsin1cos2cos423xxxxx解解: 因被积函数关于 cos x 为奇函数, 可令,sin xt 原式xx42sinsin1xxx
10、dcos)2(cos2xxx422sinsin1 ) 1(sin4221d) 1(tttttttd1t1221213)()d(211ttttCtt3arctan311Cxxsin3cosarctan312xsind机动 目录 上页 下页 返回 结束 2. 简单无理函数的积分简单无理函数的积分,d),(xbaxxRn令nbxat,d),(xxRndxcbxa令ndxcbxat被积函数为简单根式的有理式 , 可通过根式代换 化为有理函数的积分. 例如:机动 目录 上页 下页 返回 结束 ,d),(xbaxbaxxRmn,pbxat令., 的最小公倍数为nmp例例11. 求.21d3xx解解: 令,
11、23xu则,23 uxuuxd3d2原式u123uuduuud11) 1(32uuud)111(33221uuu1lnC3223)2( x323x321ln3xC机动 目录 上页 下页 返回 结束 例例12. 求.d3xxx解解: 为去掉被积函数分母中的根式 , 取根指数 2 , 3 的最小公倍数 6 ,6tx 则有原式23tttt d65ttttd)111(626331t221ttt1lnCCxxxx)1(ln6632663令机动 目录 上页 下页 返回 结束 例例13. 求.d11xxxx解解: 令,1xxt则,112tx22) 1(d2dtttx原式原式tt) 1(2tttd) 1(22
12、2tttd1222t211lnttCxx12Cxxx1122ln机动 目录 上页 下页 返回 结束 内容小结内容小结1. 可积函数的特殊类型有理函数分解多项式及部分分式之和三角函数有理式万能代换简单无理函数三角代换根式代换2. 特殊类型的积分按上述方法虽然可以积出, 但不一定 要注意综合使用基本积分法 , 简便计算 .机动 目录 上页 下页 返回 结束 简便 , 思考与练习思考与练习如何求下列积分更简便 ?)0(d. 1662axxaxxxxcossind. 23解解: 1.23233)()(d31xax原式Caxaxa33333ln61Caxaxa33333ln612. 原式xxxxxdcossincossin322xxxcossindxxxdsincos3xxtantandxx3sinsindxtanlnCx2sin121机动 目录 上页 下页 返回 结束 作业作业P218 3 , 6 , 8 , 9 , 13 , 15, 17 , 18 , 20 , 21第五节 目录 上页 下页 返回 结束 备用题备用题 1.求不定积分解:解:.d)1 (126xxx令,1xt 则,1tx ttxd1d2, 故xxxd)1 (126161t)11 (2tttd)1(2tttd126ttttd)111(224551t331ttCt arctanCxxxx1arctan13
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗数据新纪元医疗信息共享平台的建设与隐私保护
- 医疗行业运维知识库的大数据应用前景
- 亲子拓展心得体会模版
- 医疗大数据在诊断中的创新应用
- 办公室健康的守护者-精准医疗嵌入式办公技术
- 医疗团队在数字化时代的转型发展
- 2025年幼儿园后勤工作总结模版
- 代加工月饼合同样本
- 医疗设备追溯的区块链技术应用案例
- 传媒公司拍摄合同标准文本
- GB/T 37507-2025项目、项目群和项目组合管理项目管理指南
- 2025年邮政社招笔试试题及答案
- 2025年保密观知识测试题及答案
- 信用评级ppt全套教学课件
- 2022年烟台毓璜顶医院医护人员招聘考试笔试题库及答案解析
- 抖音认证公函(企业认证申请公函)
- 《现代汉语语法》PPT课件(完整版)
- 柜式气体灭火系统培训
- 用人单位常见用工风险防范与应对培训讲义(PPT42张)课件
- 135调速器操纵手柄设计工艺卡片
- 《山东省消防条例》(2022年最新版)[1]
评论
0/150
提交评论