




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上三角函数定义域和值域一、求定义域例1.求下列函数的定义域:(1) (2)(3) (4) (5) (6) 解:(1) (2) (3)(4) 即,故函数的定义域为且(5) 即故函数的定义域为(6) 函数的定义域为 (*) 的解集,由于y=tanx的最小正周期为,y=sinx的最小正周期为2,所以原函数的周期为2,应结合三角函数y=tanx和y=sinx的图象先求出(, )上满足(*)的x的范围,再据周期性易得所求定义域为x2kx2k+ ,或2k+ x2k+ ,kZ 总结:在确定三角函数的定义域时,应注意以下几点:1、 正、余弦函数的定义域是R,正切函数的定义域是;2、 若
2、函数是分式函数,则分母不能为零;3、 若函数是偶次根式函数,则被被开方式非负;4、 若函数是形如的函数,则定义域由确定;5、 若函数是有多个函数通过四则运算而构成,则函数定义域应是各部分定义域的交集。二、求值域、最值1、 型:当时, ; 当时 例1、若函数的最大值是1,最小值是,求a,b2、型: 利用公式,可以转化为一个三角函数的情形。3、型:这是关于的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,可转化为的形式。例1、求函数的最大值和最小值。答案:例2、求函数的最大值和最小值。答案:4、型:此类型可化为在区间上的最值问题。例1、求函数()的最值解:函数的最大值为,最小值为。例2、求函数
3、的最小值。解: ,若,则当时,若,则当时,若,则当时,。练习:函数在区间上的最大值为,则的值是 ( D )A0B C D 5、型:利用换元法,设, ,则,转化为关于的二次函数.例1、 求函数的最大值分析 若有 可以令: 解:设,则,则,当时,有最大值为(换元法)求函数的最大值和最小值,并指出当x分别为何值时取到最大值和最小值。解:定义域为0x1,可设且,即当或,即 =0或(此时x=1或x=0),y=1;当,即时,(此时),当x=0或x=1时,y有最小值1;当时,y有最大值。评析:利用三角换元法求解此类问题时,要注意所设角的取值范围,要同原函数定义域相一致,尽量恰到好处。6、型: 可以分离常数,
4、利用正弦函数的有界性。例1 求函数的值域。解法一:由变形为,知,则有,则此函数的值域是。解法二:,利用来解。练习:1、求函数的值域 2、函数的定义域为a,b,值域为,则b-a的最大值和最小值之和为 bA B C D7、型:此类型最值问题可考虑如下几种解法: 转化为再利用辅助角公式求其最值; 采用数形结合法(转化为斜率问题)求最值; 也可利用导数。例1、求函数的值域。解法1:将函数变形为,由,解得:, 故值域是解法2:数形结合法求原函数的值域等价于求单位圆上的点P(cosx, sinx)与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q点的直线与单位圆相切时得斜率便是函数得最值,由几何知识,易求得过Q的两切线得斜率分别为、。结合图形可知,此函数的值域是。练习:求函数的最值。解:由于 y/2即为单位圆上的点(cos,sin)与定点(3,1)连线的斜率,由数形结合可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030教育信息化生物特征库建设财政投入效益分析
- 2025-2030教育产业园区规划与投资回报分析报告
- 2025-2030攀岩训练器材市场需求变化与产品迭代方向报告
- 2025-2030护肤品纳米技术应用边界与安全标准研究
- 2025-2030抗衰老药物研发进展与银发经济市场机会分析报告
- 班级日常管理创新方案
- 2025-2030抗帕金森病药物行业竞争策略及增长潜力分析报告
- 2025-2030户外防腐木产品使用寿命延长技术路径研究
- 2025-2030户外运动装备市场消费升级与品牌战略优化研究报告
- 2025-2030感觉统合失调筛查工具的信效度检验与基层推广障碍分析
- 国际货物“双清包税”物流服务合同
- 模具测量培训
- 自愿打掉孩子协议书
- 工地安全教育试题及答案
- 2025年地理高考复习 微专题 风(讲义)(解析版)
- 2025至2030中国干洗市场运营状况分析与投资效益创新性报告
- 2024-2025学年部编人教版八年级语文拓展阅读计划
- 合同发票变更协议模板
- API RP 17A-2022 海底生产系统的设计和操作-一般要求和建议
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读
- 应急第一响应人理论考试试卷(含答案)
评论
0/150
提交评论