下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 一维弹黏塑性固结模型研究 作者:张超杰 王立忠 陈云时间:2007-11-25 12:11:00 摘要:建模时考虑固结压缩的分段性,引入参考应力状态概念、弹黏塑性屈服准则
2、以及一些其它观点,同时结合殷建华3等提出有效应力、应变和蠕变速率的唯一性原则,建立了一个原状土的一维弹黏塑性固结模型。计算表明,该模型能适用于一维条件下任何加载方式的固结模拟,能描述表观前期固结压力的应变率效应、次固结引起的表现前期固结压力增加等一些已被试验证实但不能被太沙基固结理论反映的现象。 关键词:固结 弹黏塑性 屈服准则 表观前期固结压力 1967年,Bjerrum提出了一个描述土压缩时间效应的模型1。该模型首次提出次固结的表观前期固结压力效应,并用时间线概念成功解释次固结的黏滞性行为,但其时间线概念有若干缺陷:瞬时时间线物理
3、意义不清,忽略了应力-应变关系的时间效应,因为土体同其它工程材料一样,土骨架的屈服应力随应变速率的增加而增加;Bjerrum的瞬时压缩指加荷瞬间土颗粒间的应力增量就等于所施加荷载,并由此而产生的瞬时沉降,不考虑水动力滞后的影响,因此按Bjerrum的定义,怎样构造饱和软粘土瞬时时间线是个难点;Bjerrum的时间线是用加载持续作用时间定义的,在多级加载条件下失去参考意义,因此根据它推导的固结模型仅能适用于单级加载条件。针对Bjerrum时间线概念的上述局限性,众多的学者(Hawley & Borin, 1973; Mesri & Rokhsar, 1974; Magnan et
4、 al., 1979; Christie & Tonks, 1985)提出了不同的修正。实际上,各种修正方案的区别仅在于对时间线物理意义的阐述,但对时间线的描述方式基本达成共识,即不能用独立的时间变量(如加载持续时间)来定义时间线,而应用间接时间变量,如等效时间或蠕变速率来定义时间线,不过各位学者对等效时间或蠕变速率所赋予的意义并不相同。 Yin & Graham2,3在前人工作的基础上,给出了等效时间的物理解释和数学定义,指出“对特定加载历史的一个状态点,其蠕变速率等于相同应力下从参考点估算的等效蠕变时间所计算的蠕变速率”,并阐明
5、了等效时间与蠕变速率的关系,即对给定状态点,依据蠕变速率求得的时间是等效的,同时在试验的基础上提出有效应力、应变和蠕变速率的唯一性原则。可是绝大多数原状土都有一定的结构性,其压缩曲线有明显的分段性4,上述等效时间概念及有效应力、应变和蠕变速率的唯一性原则仅仅描述正常压缩阶段应力-应变关系的特性,不能考虑再压缩阶段在固结过程中的行为,也不能反映表观前期固结压力对固结行为的影响。 在本文中,考虑结构性饱和土体固结压缩过程的分段性,同时结合殷建华等提出的有效应力、应变和蠕变速率的唯一性原则,创建了一个与时间相关的一维固结模型。由于在构造模型中提出参考应力
6、状态的概念和一个新的屈服准则,这些措施使本文模型适用于任何加载条件(单级、多级和连续加载条件),并能描述整个固结进程中的孔隙水压及应力、应变随时间的变化规律。1 建模基本思想 根据结构性黏土的变形机理,可将压缩曲线的第一段视为弹性变形阶段,第二段视为弹黏塑性应变硬化阶段。在弹黏塑性阶段,有效应力、应变和黏塑性蠕变速率的相互关系具有唯一性。与文献2不同,本文用蠕变速率来描述时间线,如图1所示,P0D为加载持续为24h的正常压缩线,将其定义为参考时间线,设其上的蠕变速率为,根据文献2,Ca为次固结系数(/logt)。如果知道时间线AC的蠕变速率,则在任
7、意荷载下,从参考时间线到时间线AC的蠕变变形P0C等于。 大量实验证实,土的屈服应力(亦即表现前期固结压力)依赖于应变速率3。表观前期固结压力与变形的速率相关的根源在于土骨架有黏滞性效应,因此可认为表观前期固结压力主要是与黏滞性的蠕变速率相关。当实际的变形速率等于过当前应力-应变状态点的时间线上的黏塑性蠕变速率时,达到初始屈服状态,这时弹性变形速率已极小,因此可以认为达到(室内常规固结压缩试验条件下)表观前期固结压力时的应变率与参考时间线上的蠕变速率相等,如图1所示。 在弹性变形阶段,固结系数大,孔隙水
8、压消散快,有效应力小于初始屈服应力,实际的变形率大于过当前应力-应变状态点的时间图1 时间线与参考时间线线上的黏塑性蠕变速率;当实际的变形速率等于过当前应力-应变状态点的时间线上的黏塑性蠕变速率,达到初始屈服状态;在弹黏塑性变形阶段,总应变率等于弹性应变率和黏塑性蠕变速率(下文简称为蠕变速率)之和,有效应力、应变和蠕变速率的相互关系具有唯一性2,实际的蠕变速率等于过当前有效应力-应变状态点的时间线上的蠕变速率。 为了记录变形过程中应力-应变状态的变化,本文将当前应力-应变状态点在参考时间线上的“投影”,称为参考状态点,它表示当前应力状态的参考应力状
9、态,如图1中初始状态点O的参考状态点为P0。对单级加载,初始状态和弹性变形状态在参考时间线上的参考状态点相同,将此参考状态点称为初始参考状态点,该点的有效应力等于室内常规压缩试验条件下测得的表观前期固结压力(亦即该试验条件下土骨架的初始屈服应力)。在弹黏塑性变形阶段,变形处于黏塑性应变硬化状态,随着新的屈服产生,参考应力状态(点)也不断发生变化。2 一维弹黏塑性团结模型推导 初始应力状态对土的应力-应变性状有很大影响,而且加载方式不同,初始应力状态会发生变化。下文分两种情况来推导一维弹黏塑性本构方程。2.1 单级加载条件下的一维弹黏塑性固结模型推导
10、2.1.1 弹性阶段变形计算 在有效应力达到相应于表观前期固结压力的屈服应力之前,变形是弹性的,应力-应变关系为=Crlog(´/´0),对此式求时间导数:(1) 变形速率由超静孔隙水压力的消散速率控制,可由下列一维固结普遍方程6得出。(2)式中:为竖向应变;z为排水距离;t为时间;e0为初始孔隙率;e为t时刻时的孔隙率;K是渗透系数;w为水的容重;u为孔压。 式(2)成立的条件是孔隙水的渗流符合达西定律和土体饱和。利用有效应力原理´=-u,得(3)用适当的边界条件和初值条
11、件,联立式(1)、式(2)和式(3)可解出固结层中弹性变形阶段的孔隙水压、应变、应力。2.1.2 屈服准则 根据本文建模思想,这里先推导初始屈服时屈服应力和应变速率应满足的关系。如图1所示,单级加载条件下,初始再压缩(亦即弹性变形)沿OB方向,P0D为参考时间线,其所代表的蠕变速率为;P0是初始再压缩线与正常固结线的交点,坐标为(),、分别为室内常规固结压缩试验条件下测得的表观前期固结压力和应变,为初始屈服时的变形速率,它与参考时间线所代表的蠕变速率相等;OB和P0D的斜率分别为Cr(/log´)和Cc(/log´),上述参数都可由常规压缩试验得出。 由于表观前期固结压力(亦即初始屈服应力)的大小与应变速率相关,因此应变率不同,初始屈服点的位置必不相同,但无论如何,初始屈服点必然在弹性变形线上,如图1中的弹性再压缩线OB。设点A为OB线上的某一初始屈服点,屈服时的有效应力、应变和应变率分别为´A、A和,可得如下关系式:(4) 观察式(4),和为室内常规压缩试验条件下测得的表观前期固
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年诊所扩展合作协议
- 2026年商业养老保险合同
- 上海浦东新区2025-2026学年高一上化学期中监测模拟试题含解析
- 丹毒下肢个案护理
- 大动脉转位术后心律失常个案护理
- 许昌陶瓷职业学院《社会调查方法实验》2024-2025学年第一学期期末试卷
- 陕西省榆林一中2025-2026学年生物高一第一学期期末质量检测试题含解析
- 肾肉芽肿的护理
- 静脉输液护理要点
- 新生儿鱼鳞病外出护理:安全与舒适兼顾
- 2025及未来5年步进电机铁芯冲片项目投资价值分析报告
- 药店医保人员合同范本
- 2025巴彦淖尔市交通投资(集团)有限公司(第一批)招聘40人笔试备考试题附答案
- 《汽车结构认识》职校汽修专业全套教学课件
- 《小额贷款公司监督管理暂行办法》测试竞赛考试练习题库(附答案)
- (一模)新疆维吾尔自治区2025年普通高考第一次适应性检测 文科综合试卷(含答案)
- 第四讲大力推进现代化产业体系建设-形势与政策
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 【2022】举报信(法官滥用职权,违规办案)
- 高考语文备考之整本书阅读《红楼梦》名著导读与章节训练(19~23回)
- midas软件-参数gen实用手册
评论
0/150
提交评论