版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、MayArticle物理化学学报(WuliHuaxueXuebao)ActaPhys.-Chim.Sin.2012,28(5),1107-1112doi:10.3866/PKU.WHXB乙炔在Ge(001)表面吸附的反应路径范晓丽1,2,*3刘燕1刘2崇1刘焕明2,3,*(1西北工业大学材料科学与工程学院,西安710072;北京计算科学研究中心,北京100084;成都绿色能源与绿色科技研发中心,成都610207)摘要:采用第一性原理方法研究了乙炔分子在Ge(001)表面的吸附反应.通过系统考察0.5和1.0ML覆盖度时形成di-和end-bridge构型的反应路径,研究在表面形成di-和pai
2、red-end-bridge构型的反应几率.除了表面反应以外,本文还涉及了亚表层Ge原子参与的吸附反应,乙炔在亚表层原子上吸附形成的亚稳态结构sub-di-,是形成end-bridge结构的第二条途径,此反应机理对于表面吸附结构的形成起重要的作用.与乙炔分子不同的是,表面以下原子参与时乙烯分子的吸附反应为吸热反应.综合热力学和动力学的分析表明,paired-end-bridge构型是乙炔分子吸附的主要构型,此结论解释了乙炔分子在Ge(001)表面吸附构型的实验结果.对于乙烯和乙炔两分子在Ge(001)表面吸附的分析比较揭示了导致两者之间差异的原因.关键词:密度泛函理论;Ge(001)表面;乙炔
3、分子;形成反应;亚表层;热力学;动力学O641中图分类号:ReactionPathwaysofAcetyleneAdsorptionontheGe(001)SurfaceFANXiao-Li1,2,*LIUYan1LIUChong1LAUWoon-Ming2,3,*(1SchoolofMaterialsScienceandEngineering,NorthwesternPolytechnicalUniversity,Xi'an710072,P.R.China;2BeijingComputationalScienceResearchCenter,Beijing100084,P.R.Chi
4、na;3ChengduGreenEnergyandGreenManufacturingTechnologyResearchandDevelopmentCenter,Chengdu610207,P.R.China)Abstract:TheadsorptionreactionofacetyleneontheGe(001)surfaceisinvestigatedbyfirst-principlescalculations.Inordertounderstandtherelativepopulationsofthedi-andpaired-end-bridgestructures,wecalcula
5、tedtheadsorptionreactionpathsleadingtotheirformationat0.5and1.0MLcoverage.Moreimportantly,westudiedtheadsorptionchannelinvolvingsublayerGeatomsbyformingametastablesub-di-structure.Thissub-di-structurerepresentssecondreactionpathwaythatresultsintheend-bridgestructure,whichplaysanimportantroleinthefor
6、mationoftheadsorptionconfigurations.IncontrasttoC2H2,theadsorptionofC2H4ontheGe(001)surfaceinvolvingsubsurfaceGeatoms,isendothermic.Ourcalculationsshowfrombothkineticandthermodynamicstandpointsthatthepaired-end-bridgestructureistheprimaryadsorptionconfigurationthatexplainstheexperimentalobservations
7、.OurworkalsohelpstounderstandthefundamentaldifferencesbetweentheadsorptionofC2H2andC2H4ontheGe(001)surface.KeyWords:Densityfunctionaltheory;Ge(001)surface;Acetylenemolecule;Sublayer;Thermodynamics;KineticsFormationreaction;Received:December12,2011;Revised:February20,2012;PublishedonWeb:March1,2012.C
8、orrespondingauthors.FANXiao-Li,Email:xlfan;TelLAUWoon-Ming,Email:leolau;Tel:+86-10-82687096.TheprojectwassupportedbytheNationalNaturalScienceFoundationofChina(20903075)andProgramofIntroducingTalentsofDisciplinetoUniversities,China(111Project)(B08040).国家自然科学基金(20903075)及高等学校学科创新引智计划(
9、111)(B08040)资助项目EditorialofficeofActaPhysico-ChimicaSinica1108ActaPhys.-Chim.Sin.2012Vol.281IntroductionTheadsorptionofunsaturatedhydrocarbonmoleculesontheelementalsemiconductorsurfacehasattractedgreatinterestbe-causeofitspotentialintechnologicalapplicationssuchasnon-linearopticaldevices,molecularel
10、ectronicdevices,andchemi-calsensors.1-4Comparingtotheintensivestudiesontheinterac-tionofhydrocarbonmoleculesonSi(001)surface,thedevotiontotheGe(001)surfaceismuchless.Inordertostudythepoten-tialoftheassemblehydrocarbonlayeronGe(001)surfaceinproductionofmolecularmicroelectronicandoptoelectronicde-vice
11、sfabricationandstability,theinteractionofunsaturatedhy-drocarbonmoleculeswithGe(001)surfacehasreceivedmoreattentionrecently.5-7GedimeristhereactivecenterontheGe(001)surface,thus,boththeintradimerandinterdimeradsorptionsarepossibleforC2H4/Ge(001).Theintradimerdi-modelhasthetwoCatomsoftheC2H4bondedtot
12、hetwoGeatomsofasinglesurfacedi-mer,andtheinterdimerend-bridgemodelhasthetwoCatomsbondedtothetwoGeatomsononesideoftwoadjacentdi-mersalongthedimeraxis.Kimetal.5observedtwodistinctde-sorptionfeaturesbytheirtemperature-programmeddesorption(TPD)measurements.Accordingtotheirobservedscanningtunnelingmicros
13、copy(STM)features,theserespectivefeatureswereassignedasthedi-andpaired-end-bridgeconfigurationsinwhichanadditionalC2H4moleculeadsorptionmakestheend-bridgestructuretobepaired.TheSTMimagesshowthatthedi-structuredominatesoverthepaired-end-bridgestruc-ture.Recently,we8studiedthedi-andend-bridgeconfigura
14、-tionsforC2H4adsorptiononGe(001)surfaceat0.5and1.0MLcoveragesusingfirst-principlescalculations.Ourcalculatedto-talenergiesindicatethatdi-andpaired-end-bridgestructuresareenergeticallyfavorable,i.e.,theadsorptionisexothermic.Furthermore,ourcalculationsoftheformationpathsshowthatthereactionrateofdi-st
15、ructureishigher,andtheend-bridgestructureiseasytobepaired.Inadditiontothedi-andend-bridgemodelsinwhichtwoCatomsarebondedtotwoGeatoms,twoadditionaladsorp-tionmodelsofthep-bridgeandr-bridgeconfigurationsarebe-lievedtobeprobableforC2H2/Ge(001).Inbothther-bridgeandp-bridgeconfigurations,thetwoCatomsofC2
16、H2moleculearebondedtothefourGeatomsofthetwoadjacentsurfacedi-mersbyformingfourbonds.TheCCaxisisparalleltotheGe-Gedimerbondinthep-bridgeconfigurationandperpendic-ulartotheC-Cdimerbondinther-bridgeconfiguration.ThepreviousSTMandTPDinvestigationbyKimetal.9observedtwoadsorptionconfigurationsforC2H2onGe(
17、001)surfacela-beledas“FeatureA”and“FeatureB”,whichwereassignedtothedi-andp-bridgeconfigurations,respectively.However,aslistedinTable1,accordingtoourtotalenergycalculation,10aswellasthetheoreticalcalculationsofChoandKleinman,11p-bridgeconfigurationismuchlessstablethanthepaired-end-bridgeconfiguration
18、.Bothcalculationsconfirmthatthetwobondingfeaturesareactuallythedi-andpaired-end-bridgeTable1Calculatedadsorptionenergies(unitineV)perC2H2moleculeonGe(001)surfacedi-end-bridge0.5ML1.0ML0.5ML1.0MLr-bridgep-bridgethisGGA1.591.571.521.880.07-0.23ChoandKleinman111.781.811.641.870.24-0.03configurations,re
19、spectively.Moreover,theoreticalcalculationsofChoandKleinman11foundthatthereactionratetoformtheend-bridgestructurewassmallerthanthatofthedi-structure.Nevertheless,thewell-measuredSTMimagesindicatesthatFeatureBdominatesatallC2H2coverage,andatthesaturatedcoverage,theappear-anceratioofFeatureBtoFeatureA
20、is0.62:0.38.Thisindicatesthereactionratetoformtheend-bridgeandpaired-end-bridgeadsorptionsshouldbelargerthantheratetoformthedi-ad-sorptions,whichisconflictingwithChoandKleinmanscalcu-lationresults.Ontheotherside,theexperimentalresultsonthetwomoleculesareincontrasttoeachother:paired-end-bridgestructu
21、rehasbeenobservedtobedominantoverthedi-struc-tureinthepresentcaseofC2H2,9andthepopulationofdi-structureislargerthanthatofthepaired-end-bridgestructureinthecaseofC2H4,5whichisindeedconsistentwithourcalcu-lationresultsonC2H4/Ge(001).8Inthepresentwork,were-studytheadsorptionanddesorp-tionkineticsofC2H2
22、/Ge(001)byemployingourexperienceinusingthefirst-principlesmethodbasedonthedensityfunction-altheory(DFT)toexaminesmallmoleculesonSiandGesys-tematically,tounderstandthediscrepancybetweentheexperi-mentobservationandtheoreticalcalculation,andtodigouttherootcausetothedifferencebetweentheadsorptionsofC2H2
23、andC2H4onGe(001)surface.2CalculationmethodsTheGe(001)surfacewassimulatedbyaslabcontainingeightGeatomiclayersandavacuumregionof1.294nmspac-ing.Ge(001)surfacehasthesimilarreconstructionastheSi(001)surface.Fourdifferentreconstructions,symmetric(2×1),bucked(2×1),p(2×2),andc(4×2),have
24、beeninvestigated.Amongthemc(4×2)andp(2×2)arethemoststablegeome-tries.Theenergydifferencebetweenthetwogeometriesislessthan0.003eVdimer-1,whichagreeswellwithtwopreviousstudies12,13inthistopic.Thus,theGe(001)surfacewasmodeledbyarepeatedp(2×2)unitcell,whilethedanglingbondsofthebottomGeato
25、msweresaturatedbyHatoms.Thestructureop-timizationwasperformedusingthecalculatedbulklatticecon-stantof0.575nminthetotalenergycalculation,theGeatomsinthebottomlayeroftheslab,aswellastheterminatinghy-drogenatomswerefixedtothebulkposition.TheBrillouinzonewassampledbyaMonkhorst-Packschemewith4×4
26、5;1k-pointgrids.Thegeometryoptimizationinthepresentstudywasper-formedonthebasisofdensityfunctionaltheorywithapplyingtheViennaabinitiosimulationpackage(VASP).14-17ThetotalNo.5FANXiao-Lietal.:ReactionPathwaysofAcetyleneAdsorptionontheGe(001)Surface1109energycalculationswerecarriedoutusingtheVanderbilt
27、ul-trasoftpseudopotential18-20andplane-wavemethodwithcutoffenergyof350eV.Thegeneralizedgradientapproximation(GGA)21,22ofPerdew-Wang(PW91)wasusedfortheelectronicexchange-correlationpotential.Theminimumenergypathsfortheadsorptionreactionsweremappedoutusingthenudgedelasticband(NEB)methoddevelopedbyJ
28、43;nssonandco-work-ers.23,243Resultsanddiscussion3.1Reactionpathwaysat0.5MLAccordingtopreviousstudies8,25-27forC2H4/Si(001),C2H2/Si(001),andC2H4/Ge(001),theconcerted2+2cycloadditionreactionisactuallyallowedbasedonthecalculatedreactionbarrierandtheanalysisofthesymmetry.Therelativeimpor-tancebetweenth
29、esymmetricconcerted2+2additionmecha-nismandthetwo-stepasymmetricadditionmechanismhasbeeninvestigatedfurther.Itturnsoutthattheasymmetricaddi-tionstartingfromathree-atomcomplexstateinwhichthetwoCatomsoftheadsorbedmoleculearebondedtothe“down”-GeatomofaGe-Gedimerwithadativebondisthemoreaccessibleroutebe
30、causethe“down”-GeatomofaGe-Gedimerisknowntobeelectrondeficient,andbecausetheadsorbedmoleculecanaccesstothisprecursorstatewithnostrictalignmentrequirementofthemolecularaxisinitsar-rivaltrajectoryrelativetotheGe-Gedimer.Incontrast,thecon-certedadditionmechanismislessimportantbecausetheincom-ingmolecul
31、araxismustaligninparalleltothesurfacedimer.Thus,statistically,thesignificanceofconcertedadditionpath-waysismuchlessthanthatoftheasymmetricadditionpath-waysandtheroleofconcertedadditioncanbeignored.Inanotherconsiderationofreactionkinetics,westudytheasymmetricadditionpathwaysincludingtheirintermediate
32、pre-cursorstates.ByusingtheNEBmethod,wehavefoundtheminimumenergypathsfromtheprecursorstatestothedi-andend-bridgestructures.PathIdescribestheformationofthedi-configurationfromthePIstateandPathIIleadstothefor-mationoftheend-bridgeconfigurationfromthePIIstate,thecorrespondingatomicgeometriesoftheprecur
33、sor(P),transi-tion(T),andthechemisorptions(C)statesonthereactionpathsIandIIaredisplayedinFig.1,andthecorrespondingadsorptionenergiesaregiveninTable2.AlongPathI,there-spectiveadsorptionenergiesofthePIandTIstatesare0.27and0.08eV;thusthereactionbarrierfromthePIstatetothedi-configurationis0.19eV.Incompa
34、rison,alongPathII,thecorrespondingadsorptionenergiesforthePIIandTIIare0.28and0.05eV,andthereactionbarriertoformtheend-bridgestructureis0.23eV.Itindicatesthatboththedi-andend-bridgeconfigurationsareenergeticallyfavorableovertheprecursorstatesbyabout1.2-1.3eV.Thus,iftheenergyreleasedbytheformationofth
35、eprecursorstateisnotdissipatedawayquickly,itisenoughtodrivethechemisorp-tionsthroughthetransitionstate.Inotherwords,boththedi-andend-bridgeconfigurationscanbeformedviathepre-cursorstateincommonexperimentalconditions,theirforma-tionratesaredecidedbythereactionbarriers.Ourcalculatedadsorptionenergiesf
36、orPIandPIIstatesareconsistentwiththepreviousfirst-principlesstudybyChoandKleinman,11aslistedinTable2.Accordingtotheircalcula-tions,thebarriersare0.09and0.13eVforthedi-andend-bridgestructures,respectively.Althoughourcalculationsraisebothrespectivevaluesto0.19and0.23eV,thedifferencebe-(a)(b)Fig.1Atomi
37、cgeometriesofthe-complexprecursor(P),transition(T),andchemisorption(C)statesfortheadsorptionofC2H2onGe(001)surfacealongdifferentpaths(a)pathI:asymmetricadditionreactionleadingtothedi-structurefromPIstate;(b)pathII:asymmetricadditionreactionleadingtotheformationoftheend-bridgestructurefromthePIIstate
38、1110ActaPhys.-Chim.Sin.2012Vol.28Table2ComparisonbetweentheadsorptionofC2H2andC2H4onGe(001)surface,calculatedadsorptionenergies(Eads)ofthe-complexprecursor(P),transition(T),andthechemisorption(C)states,andenergybarriers(Eb)fromthePtotheCC2H2/Ge(001)C2H4/Ge(001)bConfigurationEads/eVPTCEEads/eVb/eVPTC
39、Eb/eVdi-0.270.081.590.190.400.171.000.230.25a0.16a1.78a0.09aend-bridge0.280.051.520.230.350.160.900.190.26a0.13a1.64a0.13apaired-di-0.240.051.560.970.171.81apaired-end-bridge0.290.161.81a0.29a1.87a0.02aEads=E(mole)+E(Ge(001)-E(mole/Ge(001),whereE(mole)andE(Ge(001)
40、representtheenergiesoftheC2H2(C2H4)moleculeandthebareGe(001)surface,respectively;E(mole/Ge(001)representsthetotalenergyoftheadsorbedC82H2(C2H4)/Ge(001)system.aReference11,bReferencetweenthetwobarriersisagain0.04eV.AsreportedbyChoandKleinman,11theratioofthereactionrateR1toformthedi-configurationtothe
41、reactionrateR2toformtheend-bridgeconfiguration,representedasR1/R2,is1.2ifalltheadsorptionenergyoftheprecursorstateisretained.UsingtheArrhenius-typeactivationprocesswithatypicalvalue(1014s-1)forthepre-exponentialfactorwhichhasbeenadoptedbyChoandKleinman,wehavecalculatedthereactionrateR2fromtheprecurs
42、orstatePIItotheend-bridgestructure;there-sultantR2is1.3×1010s-1.WealsofindthatthereactionrateR1toformthedi-structureis4.7timeslargerthanR2.ThefactorR1/R2becomes1.1ifalltheadsorptionenergiesoftheprecur-sorstateareretained.Therefore,ourcalculationsareagaincon-sistentwiththereportedresultsofChoand
43、Kleinman,withbothpredictingthattheformationrateofdi-structureislarg-erthanthatoftheend-bridgestructure.3.2Reactionpathwaysat1.0MLAfterstudyingtheadsorptionofonesinglemoleculetoformthedi-andend-bridgestructures,wehavefurthercalculatedtherespectivereactionpathwaysofaddingonemoreC2H2mol-eculetoformthea
44、ctualpaired-di-andpaired-end-bridgestructures.AslistedinTable2,comparingtheformationofthepaired-di-structureandthefirstdi-structure,oneseesthattheadsorptionenergyoftheprecursorstatetoformthepaired-di-structureisslightlylowerby0.03eV,andtheformationenergyoftheseconddi-structureisalsolowerby0.02eV.Inc
45、ontrast,theadsorptionenergyoftheprecursorstatetoformthepaired-end-bridgestructureisslightlyhigher,andthefor-mationenergyofthesecondend-bridgestructureishigherbyabout0.4eV.Thesecomparisonsindicatethatthedi-struc-tureisenergeticallyfavorableoverthepaired-di-structure;incontrast,theend-bridgestructurew
46、illbeeventuallypairedup.Alongthereactionpathwaytoformthepaired-di-struc-ture,theenergybarrieris0.19eV.Incomparison,thereactionbarrieris0.13eValongtheformationpathofthepaired-end-bridgestructure.Comparingtheformationreactionofthepaired-end-bridgestructureandthefirstend-bridgestructure,thereac-tionbar
47、rierislowerby0.10eV.Inthecaseofthedi-struc-ture,thereactionbarriertoformthepaired-di-structuredoesnotchangefromthebarrierofthefirstdi-structure.Allthesecomparisonsfromboththermodynamicsandkineticsindicatethattheadsorptionofaseconddi-C2H2isimpeded;incon-trast,theformationofthepaired-end-bridgestructu
48、reiseasyandtheformationrateishigheroncetheend-bridgestructureisformed.Inordertodemonstratetheabovecomparisonsmoreexplic-itly,weestimatethereactionratetoformthepaired-end-bridgestructurebyadoptinganArrhenius-typerateformulaagainandthevalueturnsouttobe6.4×1011s-1,whichis11timeslargerthantheformat
49、ionrateofthepaired-di-structure.ThefactorR1/R2becomes1.3ifalltheadsorptionenergiesoftheprecur-sorstatesareretained.AccordingtotheSTMexperiment,theratioof“FeatureA”imagewhichisassignedasdi-structuretothe“FeatureB”imagewhichisnowassignedaspaired-end-bridgestructurewasobtainedas0.38:0.62atsaturationcov
50、er-age.Hence,afactorof1.3isnotenoughtomakeupthedefi-ciencyintheformationratesoftheend-bridgestructure.Con-sistentwithourcalculations,theformationofthepaired-end-bridgestructureisalsoeasierasshowninthereportbyChoandKleiman,11whichcannothelptheappearanceratioofpaired-end-bridgestructuretothedi-structu
51、retorisetotheexperimentalvalueof0.62:ReactionpathwaysinvolvingthesublayerGeatomThecalculatedadsorptionenergiesoftheprecursorstateandthereactionbarrierstoformtheintradimerdi-andinterdimerend-bridgestructuresforC2H4moleculeonGe(001)surfacearealsolistedinTable2.Theenergyreleasedbytheformationof
52、theprecursorstateisnotdissipatedawayquicklywhenthesurfacetemperatureishigh,whichisthecommonexperimen-talcondition.SincetheadsorptionenergyofthePIIstateislarg-erthanthatofthePIstate,thereactionratetoformthedi-structurewillbelargerthanthereactionratetoformtheend-bridgestructure.Thisisconsistentwiththe
53、presentcasefortheadsorptionofC2H2onGe(001)surface.Also,theadsorptionen-ergiesoftheprecursorstatesandreactionbarrierstoformthepaired-di-andpaired-end-bridgestructuresareconsistentbe-tweenthetwomolecules,bothshowstheend-bridgestructurewillbeeasilypairedup.Accordingtotheexperimentalstudies,5ontheothers
54、ide,thedi-structuredominatesoverthepaired-end-bridgestructureontheC2H4adsorbedGe(001)surface,whileinthepresentcaseofC2H2/Ge(001),asmentionedabove,theappearancera-tioofpaired-end-bridgestructuretodi-structureis0.68:0.32.Inotherwords,incontrasttothetheoreticalstudies,therela-tivepopulationbetweenthedi
55、-structureandpaired-end-bridgestructureinthecaseofC2H2/Ge(001)isoppositetothatinthecaseofC2H4/Ge(001).Inourpreviousstudy27forthead-No.5FANXiao-Lietal.:ReactionPathwaysofAcetyleneAdsorptionontheGe(001)Surface1111sorptionsofC2H2andC2H4moleculeonSi(001)surface,wefoundonemoreimportantreactionsitebesides
56、thesurfacedi-mer,thesublayeradsorptionsite,whichplaysacrucialroleinunderstandingthedifferentadsorptionofC2H2andC2H4onSi(001)surface.Here,inordertodigouttherootcausetothedifferencebetweentheadsorptionsofthetwomoleculesonGe(001)surface,andtounderstandthediscrepancybetweentheexperimentobservationandthe
57、oreticalcalculation,westudythesublayeradsorptionagain.Theformationofthesub-di-structurefromthePIIstateisdescribedasPathIIIdisplayedinFig.2(a).Theformationpro-cessinvolvesthebreakingoftheGe1Ge3bondandthefor-mationoftwoCGebonds,C2Ge1andC1Ge3.TheadsorptionenergyforthetransitionstateTIIIis0.10eVaslisted
58、inTable3,thusthereactionbarriertoformthesub-di-struc-tureis0.18eV.Themorestableend-bridgestructurecanbeformedthroughthissub-di-structureinthereactionalongPathIV.TheatomicstructuresinvolvedinthispathareshowninFig.2(b).Duringtheconversionfromthesub-di-structuretothetransitionstateTIV,theGe3Ge3andC1Ge3bondsarebroken,andtheC1Ge3andGe1Ge3bondsareformed.AslistedinTable3,theadsorptionenergyofthesub-di-structureis0.54eV,andthereactionbarrierfromittothemorestableend-bridgestructureis0.31eV.Incommonexperi-mentalconditions,thereleasedenergy
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农场合作协议书
- 食品贴牌加工合同(标准版)
- 培训押金协议书
- 动土协议的合同范本
- 汽修店转让协议书
- 直营店加盟协议书
- 2025年汽车发动机零部件市场分析报告
- 2025电梯安装施工合同示范文本
- 2025至2030中国强化营养食品行业发展趋势分析与未来投资战略咨询研究报告
- 电梯检验员安全培训试题及答案解析
- 2025年六安裕安罗集乡招考村级后备干部7人考试参考题库及答案解析
- 2025年甘肃省酒泉市玉门市招聘专职社区工作者20人考试参考题库及答案解析
- 2025版中风常见症状及护理方法指南
- 2025年芜湖市第二十四届中等职业学校职业技能大赛“无人机操控与维护(学生赛)”赛项竞赛规程
- 青年高尔夫培训营开营仪式策划方案
- 基金从业人员资格考试知识点大全2025年含答案
- 浆砌石挡墙拆除施工详细技术方案
- 乡村道路修建知识培训课件
- 2025宁夏旅游投资集团有限公司招聘16人(第二批)笔试备考题库及答案解析
- 公路养护项目安全技术交底
- 2025云南昆明元朔建设发展有限公司第一批收费员招聘20人考试参考试题及答案解析
评论
0/150
提交评论