乙炔在Ge(001)表面吸附的反应路径_第1页
乙炔在Ge(001)表面吸附的反应路径_第2页
乙炔在Ge(001)表面吸附的反应路径_第3页
乙炔在Ge(001)表面吸附的反应路径_第4页
乙炔在Ge(001)表面吸附的反应路径_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、MayArticle物理化学学报(WuliHuaxueXuebao)ActaPhys.-Chim.Sin.2012,28(5),1107-1112doi:10.3866/PKU.WHXB乙炔在Ge(001)表面吸附的反应路径范晓丽1,2,*3刘燕1刘2崇1刘焕明2,3,*(1西北工业大学材料科学与工程学院,西安710072;北京计算科学研究中心,北京100084;成都绿色能源与绿色科技研发中心,成都610207)摘要:采用第一性原理方法研究了乙炔分子在Ge(001)表面的吸附反应.通过系统考察0.5和1.0ML覆盖度时形成di-和end-bridge构型的反应路径,研究在表面形成di-和pai

2、red-end-bridge构型的反应几率.除了表面反应以外,本文还涉及了亚表层Ge原子参与的吸附反应,乙炔在亚表层原子上吸附形成的亚稳态结构sub-di-,是形成end-bridge结构的第二条途径,此反应机理对于表面吸附结构的形成起重要的作用.与乙炔分子不同的是,表面以下原子参与时乙烯分子的吸附反应为吸热反应.综合热力学和动力学的分析表明,paired-end-bridge构型是乙炔分子吸附的主要构型,此结论解释了乙炔分子在Ge(001)表面吸附构型的实验结果.对于乙烯和乙炔两分子在Ge(001)表面吸附的分析比较揭示了导致两者之间差异的原因.关键词:密度泛函理论;Ge(001)表面;乙炔

3、分子;形成反应;亚表层;热力学;动力学O641中图分类号:ReactionPathwaysofAcetyleneAdsorptionontheGe(001)SurfaceFANXiao-Li1,2,*LIUYan1LIUChong1LAUWoon-Ming2,3,*(1SchoolofMaterialsScienceandEngineering,NorthwesternPolytechnicalUniversity,Xi'an710072,P.R.China;2BeijingComputationalScienceResearchCenter,Beijing100084,P.R.Chi

4、na;3ChengduGreenEnergyandGreenManufacturingTechnologyResearchandDevelopmentCenter,Chengdu610207,P.R.China)Abstract:TheadsorptionreactionofacetyleneontheGe(001)surfaceisinvestigatedbyfirst-principlescalculations.Inordertounderstandtherelativepopulationsofthedi-andpaired-end-bridgestructures,wecalcula

5、tedtheadsorptionreactionpathsleadingtotheirformationat0.5and1.0MLcoverage.Moreimportantly,westudiedtheadsorptionchannelinvolvingsublayerGeatomsbyformingametastablesub-di-structure.Thissub-di-structurerepresentssecondreactionpathwaythatresultsintheend-bridgestructure,whichplaysanimportantroleinthefor

6、mationoftheadsorptionconfigurations.IncontrasttoC2H2,theadsorptionofC2H4ontheGe(001)surfaceinvolvingsubsurfaceGeatoms,isendothermic.Ourcalculationsshowfrombothkineticandthermodynamicstandpointsthatthepaired-end-bridgestructureistheprimaryadsorptionconfigurationthatexplainstheexperimentalobservations

7、.OurworkalsohelpstounderstandthefundamentaldifferencesbetweentheadsorptionofC2H2andC2H4ontheGe(001)surface.KeyWords:Densityfunctionaltheory;Ge(001)surface;Acetylenemolecule;Sublayer;Thermodynamics;KineticsFormationreaction;Received:December12,2011;Revised:February20,2012;PublishedonWeb:March1,2012.C

8、orrespondingauthors.FANXiao-Li,Email:xlfan;TelLAUWoon-Ming,Email:leolau;Tel:+86-10-82687096.TheprojectwassupportedbytheNationalNaturalScienceFoundationofChina(20903075)andProgramofIntroducingTalentsofDisciplinetoUniversities,China(111Project)(B08040).国家自然科学基金(20903075)及高等学校学科创新引智计划(

9、111)(B08040)资助项目EditorialofficeofActaPhysico-ChimicaSinica1108ActaPhys.-Chim.Sin.2012Vol.281IntroductionTheadsorptionofunsaturatedhydrocarbonmoleculesontheelementalsemiconductorsurfacehasattractedgreatinterestbe-causeofitspotentialintechnologicalapplicationssuchasnon-linearopticaldevices,molecularel

10、ectronicdevices,andchemi-calsensors.1-4Comparingtotheintensivestudiesontheinterac-tionofhydrocarbonmoleculesonSi(001)surface,thedevotiontotheGe(001)surfaceismuchless.Inordertostudythepoten-tialoftheassemblehydrocarbonlayeronGe(001)surfaceinproductionofmolecularmicroelectronicandoptoelectronicde-vice

11、sfabricationandstability,theinteractionofunsaturatedhy-drocarbonmoleculeswithGe(001)surfacehasreceivedmoreattentionrecently.5-7GedimeristhereactivecenterontheGe(001)surface,thus,boththeintradimerandinterdimeradsorptionsarepossibleforC2H4/Ge(001).Theintradimerdi-modelhasthetwoCatomsoftheC2H4bondedtot

12、hetwoGeatomsofasinglesurfacedi-mer,andtheinterdimerend-bridgemodelhasthetwoCatomsbondedtothetwoGeatomsononesideoftwoadjacentdi-mersalongthedimeraxis.Kimetal.5observedtwodistinctde-sorptionfeaturesbytheirtemperature-programmeddesorption(TPD)measurements.Accordingtotheirobservedscanningtunnelingmicros

13、copy(STM)features,theserespectivefeatureswereassignedasthedi-andpaired-end-bridgeconfigurationsinwhichanadditionalC2H4moleculeadsorptionmakestheend-bridgestructuretobepaired.TheSTMimagesshowthatthedi-structuredominatesoverthepaired-end-bridgestruc-ture.Recently,we8studiedthedi-andend-bridgeconfigura

14、-tionsforC2H4adsorptiononGe(001)surfaceat0.5and1.0MLcoveragesusingfirst-principlescalculations.Ourcalculatedto-talenergiesindicatethatdi-andpaired-end-bridgestructuresareenergeticallyfavorable,i.e.,theadsorptionisexothermic.Furthermore,ourcalculationsoftheformationpathsshowthatthereactionrateofdi-st

15、ructureishigher,andtheend-bridgestructureiseasytobepaired.Inadditiontothedi-andend-bridgemodelsinwhichtwoCatomsarebondedtotwoGeatoms,twoadditionaladsorp-tionmodelsofthep-bridgeandr-bridgeconfigurationsarebe-lievedtobeprobableforC2H2/Ge(001).Inbothther-bridgeandp-bridgeconfigurations,thetwoCatomsofC2

16、H2moleculearebondedtothefourGeatomsofthetwoadjacentsurfacedi-mersbyformingfourbonds.TheCCaxisisparalleltotheGe-Gedimerbondinthep-bridgeconfigurationandperpendic-ulartotheC-Cdimerbondinther-bridgeconfiguration.ThepreviousSTMandTPDinvestigationbyKimetal.9observedtwoadsorptionconfigurationsforC2H2onGe(

17、001)surfacela-beledas“FeatureA”and“FeatureB”,whichwereassignedtothedi-andp-bridgeconfigurations,respectively.However,aslistedinTable1,accordingtoourtotalenergycalculation,10aswellasthetheoreticalcalculationsofChoandKleinman,11p-bridgeconfigurationismuchlessstablethanthepaired-end-bridgeconfiguration

18、.Bothcalculationsconfirmthatthetwobondingfeaturesareactuallythedi-andpaired-end-bridgeTable1Calculatedadsorptionenergies(unitineV)perC2H2moleculeonGe(001)surfacedi-end-bridge0.5ML1.0ML0.5ML1.0MLr-bridgep-bridgethisGGA1.591.571.521.880.07-0.23ChoandKleinman111.781.811.641.870.24-0.03configurations,re

19、spectively.Moreover,theoreticalcalculationsofChoandKleinman11foundthatthereactionratetoformtheend-bridgestructurewassmallerthanthatofthedi-structure.Nevertheless,thewell-measuredSTMimagesindicatesthatFeatureBdominatesatallC2H2coverage,andatthesaturatedcoverage,theappear-anceratioofFeatureBtoFeatureA

20、is0.62:0.38.Thisindicatesthereactionratetoformtheend-bridgeandpaired-end-bridgeadsorptionsshouldbelargerthantheratetoformthedi-ad-sorptions,whichisconflictingwithChoandKleinmanscalcu-lationresults.Ontheotherside,theexperimentalresultsonthetwomoleculesareincontrasttoeachother:paired-end-bridgestructu

21、rehasbeenobservedtobedominantoverthedi-struc-tureinthepresentcaseofC2H2,9andthepopulationofdi-structureislargerthanthatofthepaired-end-bridgestructureinthecaseofC2H4,5whichisindeedconsistentwithourcalcu-lationresultsonC2H4/Ge(001).8Inthepresentwork,were-studytheadsorptionanddesorp-tionkineticsofC2H2

22、/Ge(001)byemployingourexperienceinusingthefirst-principlesmethodbasedonthedensityfunction-altheory(DFT)toexaminesmallmoleculesonSiandGesys-tematically,tounderstandthediscrepancybetweentheexperi-mentobservationandtheoreticalcalculation,andtodigouttherootcausetothedifferencebetweentheadsorptionsofC2H2

23、andC2H4onGe(001)surface.2CalculationmethodsTheGe(001)surfacewassimulatedbyaslabcontainingeightGeatomiclayersandavacuumregionof1.294nmspac-ing.Ge(001)surfacehasthesimilarreconstructionastheSi(001)surface.Fourdifferentreconstructions,symmetric(2×1),bucked(2×1),p(2×2),andc(4×2),have

24、beeninvestigated.Amongthemc(4×2)andp(2×2)arethemoststablegeome-tries.Theenergydifferencebetweenthetwogeometriesislessthan0.003eVdimer-1,whichagreeswellwithtwopreviousstudies12,13inthistopic.Thus,theGe(001)surfacewasmodeledbyarepeatedp(2×2)unitcell,whilethedanglingbondsofthebottomGeato

25、msweresaturatedbyHatoms.Thestructureop-timizationwasperformedusingthecalculatedbulklatticecon-stantof0.575nminthetotalenergycalculation,theGeatomsinthebottomlayeroftheslab,aswellastheterminatinghy-drogenatomswerefixedtothebulkposition.TheBrillouinzonewassampledbyaMonkhorst-Packschemewith4×4

26、5;1k-pointgrids.Thegeometryoptimizationinthepresentstudywasper-formedonthebasisofdensityfunctionaltheorywithapplyingtheViennaabinitiosimulationpackage(VASP).14-17ThetotalNo.5FANXiao-Lietal.:ReactionPathwaysofAcetyleneAdsorptionontheGe(001)Surface1109energycalculationswerecarriedoutusingtheVanderbilt

27、ul-trasoftpseudopotential18-20andplane-wavemethodwithcutoffenergyof350eV.Thegeneralizedgradientapproximation(GGA)21,22ofPerdew-Wang(PW91)wasusedfortheelectronicexchange-correlationpotential.Theminimumenergypathsfortheadsorptionreactionsweremappedoutusingthenudgedelasticband(NEB)methoddevelopedbyJ

28、43;nssonandco-work-ers.23,243Resultsanddiscussion3.1Reactionpathwaysat0.5MLAccordingtopreviousstudies8,25-27forC2H4/Si(001),C2H2/Si(001),andC2H4/Ge(001),theconcerted2+2cycloadditionreactionisactuallyallowedbasedonthecalculatedreactionbarrierandtheanalysisofthesymmetry.Therelativeimpor-tancebetweenth

29、esymmetricconcerted2+2additionmecha-nismandthetwo-stepasymmetricadditionmechanismhasbeeninvestigatedfurther.Itturnsoutthattheasymmetricaddi-tionstartingfromathree-atomcomplexstateinwhichthetwoCatomsoftheadsorbedmoleculearebondedtothe“down”-GeatomofaGe-Gedimerwithadativebondisthemoreaccessibleroutebe

30、causethe“down”-GeatomofaGe-Gedimerisknowntobeelectrondeficient,andbecausetheadsorbedmoleculecanaccesstothisprecursorstatewithnostrictalignmentrequirementofthemolecularaxisinitsar-rivaltrajectoryrelativetotheGe-Gedimer.Incontrast,thecon-certedadditionmechanismislessimportantbecausetheincom-ingmolecul

31、araxismustaligninparalleltothesurfacedimer.Thus,statistically,thesignificanceofconcertedadditionpath-waysismuchlessthanthatoftheasymmetricadditionpath-waysandtheroleofconcertedadditioncanbeignored.Inanotherconsiderationofreactionkinetics,westudytheasymmetricadditionpathwaysincludingtheirintermediate

32、pre-cursorstates.ByusingtheNEBmethod,wehavefoundtheminimumenergypathsfromtheprecursorstatestothedi-andend-bridgestructures.PathIdescribestheformationofthedi-configurationfromthePIstateandPathIIleadstothefor-mationoftheend-bridgeconfigurationfromthePIIstate,thecorrespondingatomicgeometriesoftheprecur

33、sor(P),transi-tion(T),andthechemisorptions(C)statesonthereactionpathsIandIIaredisplayedinFig.1,andthecorrespondingadsorptionenergiesaregiveninTable2.AlongPathI,there-spectiveadsorptionenergiesofthePIandTIstatesare0.27and0.08eV;thusthereactionbarrierfromthePIstatetothedi-configurationis0.19eV.Incompa

34、rison,alongPathII,thecorrespondingadsorptionenergiesforthePIIandTIIare0.28and0.05eV,andthereactionbarriertoformtheend-bridgestructureis0.23eV.Itindicatesthatboththedi-andend-bridgeconfigurationsareenergeticallyfavorableovertheprecursorstatesbyabout1.2-1.3eV.Thus,iftheenergyreleasedbytheformationofth

35、eprecursorstateisnotdissipatedawayquickly,itisenoughtodrivethechemisorp-tionsthroughthetransitionstate.Inotherwords,boththedi-andend-bridgeconfigurationscanbeformedviathepre-cursorstateincommonexperimentalconditions,theirforma-tionratesaredecidedbythereactionbarriers.Ourcalculatedadsorptionenergiesf

36、orPIandPIIstatesareconsistentwiththepreviousfirst-principlesstudybyChoandKleinman,11aslistedinTable2.Accordingtotheircalcula-tions,thebarriersare0.09and0.13eVforthedi-andend-bridgestructures,respectively.Althoughourcalculationsraisebothrespectivevaluesto0.19and0.23eV,thedifferencebe-(a)(b)Fig.1Atomi

37、cgeometriesofthe-complexprecursor(P),transition(T),andchemisorption(C)statesfortheadsorptionofC2H2onGe(001)surfacealongdifferentpaths(a)pathI:asymmetricadditionreactionleadingtothedi-structurefromPIstate;(b)pathII:asymmetricadditionreactionleadingtotheformationoftheend-bridgestructurefromthePIIstate

38、1110ActaPhys.-Chim.Sin.2012Vol.28Table2ComparisonbetweentheadsorptionofC2H2andC2H4onGe(001)surface,calculatedadsorptionenergies(Eads)ofthe-complexprecursor(P),transition(T),andthechemisorption(C)states,andenergybarriers(Eb)fromthePtotheCC2H2/Ge(001)C2H4/Ge(001)bConfigurationEads/eVPTCEEads/eVb/eVPTC

39、Eb/eVdi-0.270.081.590.190.400.171.000.230.25a0.16a1.78a0.09aend-bridge0.280.051.520.230.350.160.900.190.26a0.13a1.64a0.13apaired-di-0.240.051.560.970.171.81apaired-end-bridge0.290.161.81a0.29a1.87a0.02aEads=E(mole)+E(Ge(001)-E(mole/Ge(001),whereE(mole)andE(Ge(001)

40、representtheenergiesoftheC2H2(C2H4)moleculeandthebareGe(001)surface,respectively;E(mole/Ge(001)representsthetotalenergyoftheadsorbedC82H2(C2H4)/Ge(001)system.aReference11,bReferencetweenthetwobarriersisagain0.04eV.AsreportedbyChoandKleinman,11theratioofthereactionrateR1toformthedi-configurationtothe

41、reactionrateR2toformtheend-bridgeconfiguration,representedasR1/R2,is1.2ifalltheadsorptionenergyoftheprecursorstateisretained.UsingtheArrhenius-typeactivationprocesswithatypicalvalue(1014s-1)forthepre-exponentialfactorwhichhasbeenadoptedbyChoandKleinman,wehavecalculatedthereactionrateR2fromtheprecurs

42、orstatePIItotheend-bridgestructure;there-sultantR2is1.3×1010s-1.WealsofindthatthereactionrateR1toformthedi-structureis4.7timeslargerthanR2.ThefactorR1/R2becomes1.1ifalltheadsorptionenergiesoftheprecur-sorstateareretained.Therefore,ourcalculationsareagaincon-sistentwiththereportedresultsofChoand

43、Kleinman,withbothpredictingthattheformationrateofdi-structureislarg-erthanthatoftheend-bridgestructure.3.2Reactionpathwaysat1.0MLAfterstudyingtheadsorptionofonesinglemoleculetoformthedi-andend-bridgestructures,wehavefurthercalculatedtherespectivereactionpathwaysofaddingonemoreC2H2mol-eculetoformthea

44、ctualpaired-di-andpaired-end-bridgestructures.AslistedinTable2,comparingtheformationofthepaired-di-structureandthefirstdi-structure,oneseesthattheadsorptionenergyoftheprecursorstatetoformthepaired-di-structureisslightlylowerby0.03eV,andtheformationenergyoftheseconddi-structureisalsolowerby0.02eV.Inc

45、ontrast,theadsorptionenergyoftheprecursorstatetoformthepaired-end-bridgestructureisslightlyhigher,andthefor-mationenergyofthesecondend-bridgestructureishigherbyabout0.4eV.Thesecomparisonsindicatethatthedi-struc-tureisenergeticallyfavorableoverthepaired-di-structure;incontrast,theend-bridgestructurew

46、illbeeventuallypairedup.Alongthereactionpathwaytoformthepaired-di-struc-ture,theenergybarrieris0.19eV.Incomparison,thereactionbarrieris0.13eValongtheformationpathofthepaired-end-bridgestructure.Comparingtheformationreactionofthepaired-end-bridgestructureandthefirstend-bridgestructure,thereac-tionbar

47、rierislowerby0.10eV.Inthecaseofthedi-struc-ture,thereactionbarriertoformthepaired-di-structuredoesnotchangefromthebarrierofthefirstdi-structure.Allthesecomparisonsfromboththermodynamicsandkineticsindicatethattheadsorptionofaseconddi-C2H2isimpeded;incon-trast,theformationofthepaired-end-bridgestructu

48、reiseasyandtheformationrateishigheroncetheend-bridgestructureisformed.Inordertodemonstratetheabovecomparisonsmoreexplic-itly,weestimatethereactionratetoformthepaired-end-bridgestructurebyadoptinganArrhenius-typerateformulaagainandthevalueturnsouttobe6.4×1011s-1,whichis11timeslargerthantheformat

49、ionrateofthepaired-di-structure.ThefactorR1/R2becomes1.3ifalltheadsorptionenergiesoftheprecur-sorstatesareretained.AccordingtotheSTMexperiment,theratioof“FeatureA”imagewhichisassignedasdi-structuretothe“FeatureB”imagewhichisnowassignedaspaired-end-bridgestructurewasobtainedas0.38:0.62atsaturationcov

50、er-age.Hence,afactorof1.3isnotenoughtomakeupthedefi-ciencyintheformationratesoftheend-bridgestructure.Con-sistentwithourcalculations,theformationofthepaired-end-bridgestructureisalsoeasierasshowninthereportbyChoandKleiman,11whichcannothelptheappearanceratioofpaired-end-bridgestructuretothedi-structu

51、retorisetotheexperimentalvalueof0.62:ReactionpathwaysinvolvingthesublayerGeatomThecalculatedadsorptionenergiesoftheprecursorstateandthereactionbarrierstoformtheintradimerdi-andinterdimerend-bridgestructuresforC2H4moleculeonGe(001)surfacearealsolistedinTable2.Theenergyreleasedbytheformationof

52、theprecursorstateisnotdissipatedawayquicklywhenthesurfacetemperatureishigh,whichisthecommonexperimen-talcondition.SincetheadsorptionenergyofthePIIstateislarg-erthanthatofthePIstate,thereactionratetoformthedi-structurewillbelargerthanthereactionratetoformtheend-bridgestructure.Thisisconsistentwiththe

53、presentcasefortheadsorptionofC2H2onGe(001)surface.Also,theadsorptionen-ergiesoftheprecursorstatesandreactionbarrierstoformthepaired-di-andpaired-end-bridgestructuresareconsistentbe-tweenthetwomolecules,bothshowstheend-bridgestructurewillbeeasilypairedup.Accordingtotheexperimentalstudies,5ontheothers

54、ide,thedi-structuredominatesoverthepaired-end-bridgestructureontheC2H4adsorbedGe(001)surface,whileinthepresentcaseofC2H2/Ge(001),asmentionedabove,theappearancera-tioofpaired-end-bridgestructuretodi-structureis0.68:0.32.Inotherwords,incontrasttothetheoreticalstudies,therela-tivepopulationbetweenthedi

55、-structureandpaired-end-bridgestructureinthecaseofC2H2/Ge(001)isoppositetothatinthecaseofC2H4/Ge(001).Inourpreviousstudy27forthead-No.5FANXiao-Lietal.:ReactionPathwaysofAcetyleneAdsorptionontheGe(001)Surface1111sorptionsofC2H2andC2H4moleculeonSi(001)surface,wefoundonemoreimportantreactionsitebesides

56、thesurfacedi-mer,thesublayeradsorptionsite,whichplaysacrucialroleinunderstandingthedifferentadsorptionofC2H2andC2H4onSi(001)surface.Here,inordertodigouttherootcausetothedifferencebetweentheadsorptionsofthetwomoleculesonGe(001)surface,andtounderstandthediscrepancybetweentheexperimentobservationandthe

57、oreticalcalculation,westudythesublayeradsorptionagain.Theformationofthesub-di-structurefromthePIIstateisdescribedasPathIIIdisplayedinFig.2(a).Theformationpro-cessinvolvesthebreakingoftheGe1Ge3bondandthefor-mationoftwoCGebonds,C2Ge1andC1Ge3.TheadsorptionenergyforthetransitionstateTIIIis0.10eVaslisted

58、inTable3,thusthereactionbarriertoformthesub-di-struc-tureis0.18eV.Themorestableend-bridgestructurecanbeformedthroughthissub-di-structureinthereactionalongPathIV.TheatomicstructuresinvolvedinthispathareshowninFig.2(b).Duringtheconversionfromthesub-di-structuretothetransitionstateTIV,theGe3Ge3andC1Ge3bondsarebroken,andtheC1Ge3andGe1Ge3bondsareformed.AslistedinTable3,theadsorptionenergyofthesub-di-structureis0.54eV,andthereactionbarrierfromittothemorestableend-bridgestructureis0.31eV.Incommonexperi-mentalconditions,thereleasedenergy

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论